Survival and Growth of *Escherichia coli* O157:H7 in Unpasteurized and Pasteurized Milk

GUODONG WANG, TONG ZHAO, and MICHAEL P. DOYLE*

Center for Food Safety and Quality Enhancement, Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30223-1797, USA

(Revised 4 June 1996/Accepted 12 October 1996)

ABSTRACT

Escherichia coli O157:H7, which causes hemorrhagic colitis and hemolytic uremic syndrome, has been responsible for several outbreaks associated with consumption of unpasteurized and improperly processed pasteurized milk, and yogurt. Studies were conducted to determine the survival and growth characteristics of this pathogen in unpasteurized milk and pasteurized milk (3.5% fat, 2% fat, skim) at 5, 8, 15, and 22°C for up to 28 days. Two levels of inocula (10³ and 10⁵ CFU/ml) of a mixture of five nalidixic acid-resistant *E. coli* O157:H7 strains were used. *E. coli* O157:H7 did not grow at 5°C and decreased by 1.6 to 2.0 log CFU/ml in 28 days. Growth occurred at 8°C, with an approximately 1- to 2-log CFU/ml increase within the first 4 days. About a 3- to 5-log CFU/ml increase in *E. coli* O157:H7 populations was observed at 15°C within the first 3 days. In 3 pasteurized milk samples, *E. coli* O157:H7 continued to grow to populations of greater than 1.0 x 10⁸ CFU/ml at day 7 and remained constant during the remainder of the incubation period. At 22°C, the pH decreased rapidly to less than 4.0 within 4 days and *E. coli* O157:H7 decreased to undetectable populations within 14 days. *E. coli* O157:H7 grew more slowly (*P < 0.01*) in unpasteurized milk, which had a higher initial microbial population, than in pasteurized milks at 8, 15, or 22°C, likely because of antagonistic activity of preexisting bacteria. No significant differences (*P > 0.05*) in survival or growth of *E. coli* O157:H7 were observed among the pasteurized milk samples, regardless of fat concentration, at all temperatures throughout the study. The data indicate that temperature abuse during shipping and handling can result in significant growth of *E. coli* O157:H7. Holding milk at ≤5°C is recommended to prevent growth of this pathogen.

Key words: Milk, *Escherichia coli* O157:H7, enterohemorrhagic *E. coli*

Fluid milk is a highly perishable commodity. Milk has special importance as a principal component of the diets of the young and the elderly. The immune system of individuals in these groups is often not sufficiently responsive to prevent infection by pathogenic bacteria. For these reasons, greater emphasis has been placed upon the safety of milk than that of most other foods. The nutritional attributes of milk which make it an important part of the human diet are the same components that support the growth of many pathogenic bacteria that have been associated with milk and dairy products (2, 14). Contaminated milk and dairy products have been associated with foodborne illness caused by *Salmonella* spp., *Listeria monocytogenes*, *Yersinia enterocolitica*, *Staphylococcus aureus*, and most recently, *Escherichia coli* O157:H7 (15, 17). Thermally processed fluid milk has also been implicated as a source of human illness where inadequate pasteurization and pretreatment contamination were considered major contributing factors in many incidents (15).

E. coli O157:H7 has emerged with increasing frequency in the past decade as an important foodborne pathogen causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) (7). Bovine products such as undercooked ground beef and unpasteurized milk have most often been associated with *E. coli* O157:H7 foodborne infections (6, 7, 8). Epidemiologic investigations have revealed that dairy cattle, especially young animals, are a principal reservoir of *E. coli* O157:H7 (1, 4, 9, 12, 19). Fecal contamination of milk is one likely route of transmitting *E. coli* O157:H7 to humans. Unpasteurized milk contaminated with *E. coli* O157:H7 has resulted in several milk-borne outbreaks of gastroenteritis, with several cases developing HUS (3, 11). Children in kindergarten visiting a dairy farm in southern Canada received fresh unpasteurized milk during a class outing and many of them were infected by this pathogen (10). An *E. coli* O157:H7 outbreak associated with consumption of pasteurized milk raised special concern about milk-borne transmission of this pathogen (16). Among more than 100 people infected in this outbreak, 46 were children under 15 years of age and 32 were under 5 years. Almost one-third of cases required hospital admission. Nine children from 9 months to 11 years of age developed HUS with 6 requiring dialysis, and one elderly woman developed thrombotic thrombocytopenic purpura. *E. coli* O157:H7 was isolated from a milk-handling pipe and the bottling machine in a local dairy plant, indicating that inadequate pasteurization or postpasteurization contamination was the likely factor responsible for the outbreak (16).

It is beneficial to know the survival and growth...
characteristics of *E. coli* O157:H7 in milk to reduce its potential as a milk-borne disease agent. The purpose of this study was to determine the survival and growth characteristics of *E. coli* O157:H7 in unpasteurized and pasteurized milk at different temperatures.

MATERIALS AND METHODS

Bacteria

A five-strain mixture of nalidixic acid (50 μg/ml)-resistant *E. coli* O157:H7, including strain 932 (human isolate), E0122 (calf fecal isolate), C7927 (human isolate), E09 (meat isolate), and E0018 (calf fecal isolate) was used in this study. Each strain was capable of growing on sorbitol-MacConkey agar (SMAC) and the five-strain mixture were determined by dilutions and about equal concentrations. Cell counts of each individual strain fecal isolate), C7927 (human isolate), E09 (meat isolate), and *E. coli* O157:H7 were randomly selected from plates (10^8 CFU/ml) during the incubation period were subjected to an analysis of variance; the Duncan’s multiple range test (SAS Institute, Cary, NC) was used to determine statistical differences between treatments and among milk samples.

RESULTS AND DISCUSSION

The average initial APC of the unpasteurized and pasteurized milks were 4.7 × 10^8 CFU/ml and 2.3 × 10^1 to 2.6 × 10^1 CFU/ml, respectively. The average initial SMAC bacteria count was 9 CFU/ml in unpasteurized milk and <1 × 10^8 CFU/ml in the pasteurized milk samples. The average initial pH values of pasteurized and unpasteurized milks were 7.1 and 6.9, respectively. No *E. coli* O157:H7 was detected by using the enrichment method in any of the milk samples before inoculation.

At 5°C, *E. coli* O157:H7 did not grow and the population decreased about 1.5 to 2 log CFU/ml within 28 days of incubation (Figure 1). No significant differences (*P > 0.05*) in survival of *E. coli* O157:H7 were observed among any milk samples at this temperature. Spoilage of unpasteurized milk was observed within 21 days and no spoilage in 3 pasteurized milk samples occurred during 28 days at this incubation temperature. The observation that *E. coli* O157:H7 cannot grow at 5°C in milk is consistent with our previous

![FIGURE 1. Survival and growth of *E. coli* O157:H7 in unpasteurized milk (□), homogenized milk (○), low-fat milk (●), and skim milk (▲) at 5°C, 8°C, 15°C, or 22°C with a 10^6 CFU/ml inoculum. Arrow ↑ indicates the time of visible spoilage of unpasteurized milk and arrow ↓ indicates the time of visible spoilage of pasteurized milk samples.](http://meridian.allenpress.com/jfp/article-pdf/60/6/610/1666442/0362-028x-60_6_610.pdf)
studies \((18)\). Growth of \(E.\ coli\ O157:H7\) occurred at \(8^\circ C\), with an approximate 1- to 2-log CFU/ml increase within the first 4 days and a 2- to 3-log CFU/ml increase within the first 7 days of storage (Figure 1). After day 7, \(E.\ coli\ O157:H7\) populations in unpasteurized milk decreased, with about a 1.5-log CFU/ml reduction (Figure 1). In the 3 pasteurized milk samples at \(8^\circ C\), \(E.\ coli\ O157:H7\) populations ultimately increased to approximately \(1.0 \times 10^3\) CFU/ml. \(E.\ coli\ O157:H7\) populations decreased slowly after day 7, with about a 1-log CFU/ml decrease within the next 3 weeks. Spoilage was observed within 21 days in unpasteurized milk and no spoilage was observed in the 3 pasteurized milk samples.

About a 3- to 5-log CFU/ml increase in \(E.\ coli\ O157:H7\) populations was observed at \(15^\circ C\) within the first 3 days (Figure 1). In 3 pasteurized milk samples, \(E.\ coli\ O157:H7\) continued to grow to populations of greater than \(1.0 \times 10^8\) CFU/ml at day 7 and remained constant during the remainder of the incubation period. Spoilage at \(15^\circ C\) was observed within 21 days for the 3 pasteurized milk samples and within 4 days for unpasteurized milk. There was no correlation between \(E.\ coli\ O157:H7\) populations and the time of milk spoilage. No visible evidence of spoilage was observed between day 4 and day 14, although \(E.\ coli\ O157:H7\) populations were very high (>1.0 \times 10^8 CFU/ml) in all 3 pasteurized milk samples (Figure 1). This finding suggests that \(E.\ coli\ O157:H7\) may not produce overt signs of milk spoilage. No substantial changes (<0.4 pH units) in pH were observed during incubation at 5 or \(8^\circ C\) (data not shown). At \(15^\circ C\), the pH changed from 6.9 to 6.0 in pasteurized milks and 7.1 to 5.8 in unpasteurized milk within 28 days of incubation. At \(22^\circ C\), \(E.\ coli\ O157:H7\) populations increased rapidly during the first day of incubation (Figure 1). The pH decreased rapidly to less than 4.0 within 4 days, resulting in a decrease of \(E.\ coli\ O157:H7\) to undetectable populations (as determined by direct plating and enrichment) within 14 days for all milk samples (Figure 2). Spoilage at \(22^\circ C\) was observed within 1 and 4 days for unpasteurized and pasteurized milk samples, respectively (Figure 1).

The survival and growth characteristics of \(E.\ coli\ O157:H7\) inoculated at \(10^5\) CFU/ml in pasteurized low-fat milk and held at \(5, 8, 15,\) or \(22^\circ C\) were very similar to those shown in Figure 1 for the \(10^5\) CFU/ml inoculum (data not shown). Similar growth behaviors were observed in pasteurized homogenized and skim milk as well as unpasteurized milk. No significant differences \((P > 0.05)\) in survival or growth of \(E.\ coli\ O157:H7\) were observed among the 3 pasteurized milk samples, regardless of fat concentrations, at all temperatures throughout the study. \(E.\ coli\ O157:H7\) grew at \(8, 15,\) or \(22^\circ C\) more slowly \((P < 0.01)\) in unpasteurized milk, which had a higher initial microbial count, than in pasteurized milks. It is likely that antagonistic activity from preexisting bacteria affected the survival and growth of \(E.\ coli\ O157:H7\) in milk.

D’Aoust et al. \((5)\) determined that heating unpasteurized milk at \(72.0^\circ C\) for \(16.2\) s inactivated a mixture of \(E.\ coli\ O157:H7,\) \(Yersinia\ enteroxoiitica,\) and \(Campylobacter\ spp.\) at populations of approximately \(1.0 \times 10^8\) CFU/ml. Hence, \(E.\ coli\ O157:H7\) will not survive high temperature—short time pasteurization treatment. Inadequate pasteurization or postpasteurization contamination are the likely explanations for \(E.\ coli\ O157:H7\) infection acquired through consumption of pasteurized milk.

Results indicate that \(E.\ coli\ O157:H7\) can grow in milk at \(8^\circ C,\) which is not an uncommon temperature for holding refrigerated milk at retail or in consumers’ homes. Palumbo et al. \((13)\) determined that most \(E.\ coli\ O157:H7\) isolates grow in brain heart infusion broth at \(10^\circ C\) and that some strains grow at \(8^\circ C.\) Three strains increased by 1,000-fold in 4 to 6 days at \(10^\circ C.\) \(E.\ coli\ O157:H7\) strains used in our study could grow at \(8^\circ C,\) with populations increasing by 1- to 2-log CFU/ml within 4 days.

The most important control measures to ensure milk safety are proper pasteurization and avoiding postpasteurization contamination. However, storage temperature is also an important factor that influences the safety and quality of milk. Our data indicate that temperature abuse during shipping and handling can result in significant growth of \(E.\ coli\ O157:H7.\) Holding milk at \(\leq 5^\circ C\) is recommended to prevent growth of this pathogen.

REFERENCES

7. Griffin, P. M. 1995. \(Escherichia\ coli\ O157:H7 and other enterohemorrhagic \(Escherichia\ coli\) p. 739–762. In M. J. Blaser, P. D. Smith, J. I.

