Hazard Analysis of Escherichia coli O157:H7 Contamination during Beef Slaughtering in Calvados, France

R. GUYON,1 F. DOREY,1 J. P. MALAS,1 AND A. LECLERCQ2*

1Laboratoire Départemental Frank Duncombe, Caen, France; and 2Institut Pasteur de Lille, Villeneuve d’Ascq, France

ABSTRACT

To identify hazard points and critical points during beef slaughtering, which is a necessary first step toward developing a hazard analysis and critical control point system to control meat contamination by Escherichia coli O157:H7, samples (n = 192) from surfaces, work tops, worker’s hands, and beef carcasses were collected from a slaughterhouse in Calvados, France. Five strains of E. coli O157:H7 were isolated from a footbridge and a worker’s apron at the preevisceration post and from a worker’s hand at the defatting post. Three isolates carried stx2c, eae, and EHEC-hlyA genes and showed similar molecular types by random amplified polymorphic DNA, polymerase chain reaction IS3, and Xbol pulsed-field gel electrophoresis. Thus, this study has shown that preevisceration and defatting post and associated worker’s materials are critical points for carcasses contamination by E. coli O157:H7 during beef slaughtering.

Escherichia coli O157:H7 and O157:H- (nonmotile) can be associated with mild diarrhea, hemorrhagic colitis, and the diarrhea-associated form of the hemolytic-uremic syndrome. Humans can become infected with E. coli O157:H7 and O157:H- following the consumption of contaminated foods or animals (25). Foodborne infections have mainly implicated undercooked ground beef and raw milk (8, 10, 20). E. coli O157:H7 and O157:H- can be harbored by healthy domestic animals, such as cattle (4, 11, 25, 27), in the feces. Therefore, cattle have been regarded as a natural reservoir of this pathogen (4, 12).

Several outbreaks in the United States and Scotland (3, 23, 33, 37), affecting hundreds of people, have shown the necessity of knowing the prevalence of E. coli O157:H7 in cattle and beef carcasses. Based on this knowledge, a quantitative risk assessment concerning E. coli O157:H7 has been developed in Europe to clarify the European situation with regard to this pathogen (7). Quantitative risk assessment is a method used to organize and analyze scientific information to estimate the probability and severity of an adverse event. Applied to microbial food safety, the method can also help to identify those stages in the manufacture, distribution, handling, and consumption of food that contribute to an increased risk of foodborne illness and help focus resources and efforts to most effectively reduce the risk of foodborne pathogens. In the United States, after outbreaks in 1992 and 1993, the Food Safety and Inspection Service of the U.S. Department of Agriculture issued a “zero tolerance” policy that included drastic measures to control this pathogen during slaughtering (14, 15, 34). In 1996, however, a new approach to meat and poultry inspection, using the concept of hazard analysis and critical control point (HACCP) systems, was published by the Food Safety and Inspection Service to ensure product safety. It included microbiological performance criteria for evaluating slaughtering facilities in respect to E. coli and Salmonella (16). HACCP principles can be found in a number of European Community directives for meat, poultry, and fish (38). Lack of knowledge about points that are critical to controlling microbiological contamination in meat production has impeded the development of effective HACCP systems (9, 35). Identification of critical points during the meat plant process, especially during beef slaughtering, is a necessary first step toward developing a fully functional HACCP system (17, 18).

E. coli O157 has been found in 0.28 to 7.9% of groups of cattle tested, with the highest numbers found in young animals (10, 12, 19–21, 28, 40). In slaughterhouses, levels of beef carcass contamination by E. coli O157:H7 of 0 to 0.5% have been reported (6, 9, 12, 17, 20, 28, 40). The generally low level of E. coli O157:H7 contamination in cattle and beef carcasses seems to indicate that although certain improvements in the slaughtering process are needed to reduce this bacterial hazard, drastic measures are not. Critical points during beef slaughtering should be identified, and formal hazard management procedures of the HACCP type must be established.

In this study, we evaluated the hazard of E. coli O157:H7 contamination during beef slaughtering at 18 critical points in a Calvados slaughterhouse.

MATERIALS AND METHODS

Meat and surface sampling. Samples of beef carcasses (n = 48) and surfaces (n = 144) were collected during an 8-week period from a French slaughterhouse. The slaughtered cattle, aged 2 to 7 years, had been bred and calved on various farms of the Calvados region. Sampling of beef carcasses followed the procedures of sterile excision described in the Association Française de Normalisation standard (1). Briefly, after delimitation of an area
of 25 cm² with a disinfected metal frame, thick meat samples (2 to 3 mm) were removed from the carcass with a sterile scalpel. Samples, representing a total area of 225 cm²-washed sheep erythrocytes (Oxo

Detection and characterization of E. coli O157. Samples of tissue were diluted 10 times in buffered peptone water. Wipes were homogenized in 100 ml of buffered peptone water. These inoculated broths were incubated 6 h at 37 ± 1°C overnight. A single colony was inoculated into casein-peptone soya broth (Merek, Darmstadt, Germany), which was incubated for 18 h at 37 ± 1°C without shaking to the stationary growth phase. DNA was extracted with the Wizard genomic DNA purification kit (Promega, Madison, Wis.), except that cell pellets were washed with water before cell lysis. This washing of cell pellets is important because it prevents the appearance of weaker and less reproducible banding patterns. Each sample was analyzed twice, and each experiment included a negative control reaction in which DNA was replaced by distilled water.

Random amplified polymorphic DNA (RAPD) analyses were carried out using a method derived from that of Birch et al. (5). Each 25-µl reaction contained one Ready-To-Go RAPD analysis bead (Pharmacia Biotech, Uppsala, Sweden), a 20-ng template DNA, 25 pmol of RAPD M13 primers (5), and distilled water. Each Ready-To-Go bead contains a unknown amount of AmpliTag DNA polymerase and Stoffe1 fragment, 0.4 mM deoxyribonucleotides triphosphates, 2.5 µg of bovine serum albumin, 3 mM MgCl₂, 30 mM KCl, and 10 mM Tris (pH 8.3). The PCR cycles consisted of an initial 5-min denaturation at 94°C followed by 40 cycles at 94°C for 1 min, 50°C for 1 min, and 72°C for 2 min.

IS3 PCR was carried out using a method derived from that of Thompson et al. (36). Each reaction contained one Ready-To-Go RAPD analysis bead (Pharmacia Biotech), a 20-ng template DNA, 25 pmol of PCR IS3 primers (36), and distilled water to a final volume of 25 µl. The PCR cycles consisted of an initial 5-min denaturation at 94°C followed by 50 cycles at 94°C for 1 min, 35°C for 1 min, and 72°C for 2 min and a final elongation at 72°C for 7 min.

PCR products (10 µl) were resolved by electrophoresis in a 1.4% agarose gel stained with ethidium bromide. The amplified fragments were photographed using a Kappa CCD CF 8/1 camera (Pharmacia Biotech). Profile interpretation was standardized using Taxotron software (Institut Pasteur, Paris, France).

Molecular typing by PFGE XbaI. Pulsed-field gel electrophoresis (PFGE) was performed by a modification of the method described by Heuvelink et al. (22) with a contour-clamped homogeneous electric field DR-II apparatus (BioRad Laboratories, Richmond, Calif.). Classic plugs were replaced by drops deposited on a sterile petri dish for solidification of 50 µl of the mix (washed cells in 300 µl of 100 mM Tris [pH 7.5]–100 mM EDTA [pH 7.5]–150 mM NaCl carefully mixed with an equal volume of 2% agarose [Ultra-Pure Low Melting Point Agarose, Gibco BRL, Life Technologies Ltd., Paisley, England]). These drops, called frog eggs, permit a better cell lysis and DNA digestion. One frog egg from the sample, cut in half, was used to establish genomic profiles by PFGE.

The genomic patterns were analyzed with Taxotron software (Institut Pasteur) with cubic Spline algorithm (30) and compared with our laboratory PFGE database. To determine the relationship among different strains, we compared the number and size of fragments.

RESULTS AND DISCUSSION

E. coli are not naturally present on or in red meat, but they are present as the direct result of feces deposited on the carcass at one or several points between slaughter and packaging of meat. Some level of fecal contamination of a
TABLE 2. E. coli O157:H7 isolates from the slaughterhouse characterized by PCR and serogrouping

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Sampling week</th>
<th>Sampling site</th>
<th>Presence of a: stx</th>
<th>eae</th>
<th>EHEC-hlyA b</th>
<th>Shiga toxins typing c</th>
<th>Serotyping d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Footbridge</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>O157:H7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Footbridge</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>O157:H7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Footbridge</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ stx2c</td>
<td>O157:H7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Apron</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ stx2c</td>
<td>O157:H7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Hand before washing</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ stx2c</td>
<td>O157:H7</td>
</tr>
</tbody>
</table>

a +, present; –, absence of PCR products (26, 29).
b Gene detection was confirmed on enterohemorrhagic agar (bioMérieux).
c Typing of Shiga toxins by digestion of stx-Lin PCR products (26) by HincII according to the method of Bastian et al. (2).
d Serotyped by the French Reference Center at Institut Pasteur of Paris (France) and confirmed for O serogroup by rfbO157 PCR (29).

beef carcass during these operations is considered largely unavoidable, but control measures at different critical points could prevent this from spreading.

On 18 critical points of beef slaughtering evaluated during 8 sampling weeks in this study, four E. coli O157: H7 were isolated from material sampled (footbridge and apron) at the preevisceration post (Table 2). One E. coli O157:H7 strain from the footbridge had the gene eae encoding intimin associated with enteropathogenic E. coli but not the hemolysin and Shiga toxin genes (Table 2). Because of the extrachromosomal situation of these genes, this strain could have been present and then lost during subculture (24). Two other strains, from footbridge and apron, carried all the pathogenicity genes: stx, eae, and EHEC-hlyA. The digestion of stx-Lin PCR products by HincII shows two fragments with molecular weights of about 565 and 325 bp, characteristics of Stx2c toxin variants. This result reflects a level of carcass contamination that was assumed to be proportional to the prevalence of healthy carriers or animals shedding the pathogen (13, 31). On the one hand, these steps in slaughtering correspond to the opening of the carcass with a knife to eviscerate it before going further. The skill of the given worker counts for a lot in preventing feces contamination due to accidental perforation of parts of the digestive tract. Decontamination of workers’ aprons could be investigated as a control measure, but decontamination of the footbridge would be difficult because of the speed of the slaughter chain (one carcass per min) and would also create a safety hazard. The footbridge enables workers to reach the top of the carcass. Carcasses come in contact with the footbridge, and this could favor the cross contamination of the meat. Nonetheless, no meat samples from carcasses have been found to be contaminated during this study. At the same slaughterhouse, we found one positive sample in 255 carcasses analyzed. This isolate is an E. coli O157:H7–carrying eae gene, though not verotoxigenic (data not shown). These results from dairy cows do not lead one to expect a high risk of cross contamination by contact with the footbridge. On the other hand, this contamination could result from the skinning-dressing step. Fecal material residing on the hide of the carcass may come in contact with the newly exposed meat at that stage. This fecal material or soil could have come primarily from the slaughtered animal but also from cross contamination with fecal material from several other animals in the slaughterhouse yard pens.

Only one E. coli O157:H7 isolate carrying all the pathogenicity genes was detected on the operator’s hand at the defatting post before washing and not after decontamination (Table 2). Hand washing with bactericidal soap seems to be an efficient control measure to avoid cross contamination between carcasses. However, Wilson et al. (41) reported cases of symptom-free carrier status with regard to this bacterium among slaughterhouse operators, which allowed not only person-to-person contamination but also the contamination of meat. In our case, the operator could have been such a carrier; however, this possibility was not investigated. Contamination could also result during the evisceration process. There is a possibility of significant contamination occurring if the gut is nicked during evisceration. Excessive handling during evisceration and trimming is likely to spread filth more evenly over the carcass surface. Failure to wash carcasses between evisceration and defatting, which could reduce the pathogen load, obviously cannot be used to explain why no contaminated carcasses were found during this study.

Molecular fingerprinting analyses of enterohemorrhagic E. coli O157:H7 isolates by RAPD, IS3-based PCR, and XbaI PFGE suggest that the three strains isolated the same week are similar. The isolates number 4 (Table 2) presents only a difference of one band rather than other fingerprints using IS3-based PCR. This may imply that the slaughterhouse was contaminated by a single strain or a clone.

This study has shown that preevisceration and defatting post and associated worker’s materials are critical points for carcass contamination by E. coli O157:H7. These two steps in the slaughtering process have not usually been described in the literature, which identifies the skinning and evisceration steps as critical points (12, 18), even after Schnell et al. (32) showed that the microbial load on the carcass after evisceration is not significantly different than just after skinning. Improvement of hazard management (9) in this Calvados slaughterhouse through simple control measures should significantly reduce even the current low level of contaminated beef carcasses.

ACKNOWLEDGMENTS

This study was supported by the General County Council of Calvados (France). We would like to thank F. Grimont (Institut Pasteur, Paris, France) for the confirmation of the O157:H7 serotype.
REFERENCES


E. coli O157:H7 contamination during beef slaughtering in Calvados


