Research Note

Human Norovirus RNA Persists in Seawater under Simulated Winter Conditions but Does Not Bioaccumulate Efficiently in Pacific Oysters (Crassostrea gigas)

D. DANCER,1,2* R. E. RANGDALE,1 J. A. LOWTHER,1 and D. N. LEES1

1European Community Reference Laboratory for Monitoring Bacteriological and Viral Contamination of Bivalve Molluscs, Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK; and 2Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK

ABSTRACT

Norovirus (NoV) is the principal agent of bivalve molluscan shellfish-associated gastroenteric illness worldwide. Currently, noncultivable human NoVs can be detected in bivalve molluscan shellfish by using molecular methods such as real-time reverse transcription PCR assays (qRT-PCR). In addition to infectious viruses, this methodology may also detect noninfectious NoV, including fragments of the NoV genome. This study addresses, in part, the implications of qRT-PCR results for the detection of NoV in shellfish in the absence of an infectivity assay. To evaluate environmental persistence, the stability of a short fragment of the NoV genome, spanning the qRT-PCR target in the open reading frame 1/2 junction, was assessed in seawater under artificial environmental conditions simulating winter in the United Kingdom (1 mW/cm² UV irradiation, 8°C) during a 4-week period. Detectable RNA levels decreased exponentially (T½ of approximately 141 h); however, sequences were still detectable for up to 2 weeks. The ability of Pacific oysters (Crassostrea gigas) to bioaccumulate NoV particles (from human feces) and RNA fragments was also compared using qRT-PCR. Oysters exposed to NoV particles subsequently were positive for NoV by qRT-PCR at levels several orders of magnitude in excess of the theoretical limit of detection, whereas oysters exposed to similar quantities of NoV RNA were either negative or positive at significantly lower levels. Therefore, although noninfectious fragments of NoV RNA may persist in the environment under winter conditions, this type of material will not be efficiently bioaccumulated by Pacific oysters and should not significantly contribute to positive qRT-PCR results.

Human norovirus (NoV) is the most common cause of nonbacterial gastroenteritis globally, with high attack rates in both children and adults (1, 37). NoV can be found in high levels in the feces of infected individuals, raw sewage, rivers, and estuarine and marine waters (5). Transmission can be person to person via the fecal-oral route or from consumption of contaminated water or foodstuffs. Filter-feeding bivalve molluscan shellfish have frequently been linked to outbreaks of NoV infection (18), particularly during winter months (9).

NoV cannot currently be routinely cultured in the laboratory. Therefore, existing methods, such as real-time reverse transcription PCR assays (qRT-PCR) for detection of NoV in food and environmental samples are based upon detection of a fragment of the viral genome. However, it is not clear whether detection of such fragments is correlated with the presence of infectious virus and thus corresponds to a health risk. If free or particle-associated NoV RNA can be concentrated in bivalve molluscan shellfish tissues, use of qRT-PCR may produce NoV-positive results that do not reflect consumer risk.

NoV particles are stable both inside the human host and in the environment and may survive in seawater or in bivalve molluscan shellfish and consequently remain a risk to public health for extended periods (18). Several authors have reported that most viruses and pathogenic bacteria occur in the environment as particle-associated organisms (2, 26, 29). Various factors affect virus survival in the environment, including water temperature and the extent of UV irradiation. Many enteric viruses can survive longer during low-temperature periods in the winter than during summer months (13, 21, 22). The higher temperatures may damage both viral capsids and nucleic acids, possibly preventing binding of the virus to host receptors or causing inactivation of enzymes required for replication by damaging genes encoding these enzymes (3). The germicidal and inactivation properties of UV radiation are well documented (11, 16). Several authors have suggested that because NoV possesses a single-stranded RNA (ssRNA) genome, it could be less resistant to UV radiation than double-stranded DNA or RNA viruses (12, 34). The survival of free RNA in the environment is thought to be transient (31).

In this study, we assessed the persistence of NoV RNA in seawater under artificial winter conditions and examined the potential for the uptake of particulate-adsorbed NoV...
genomic RNA fragments in Pacific oysters (*Crassostrea gigas*) to provide a better understanding of the significance of qRT-PCR results in bivalve molluscan shellfish with respect to consumer health risks.

MATERIALS AND METHODS

Production of NoV RNA. Purified ssRNA of 126 bases (NoV genogroup I [GI]) and 131 bases (NoV genogroup II [GII]) carrying the qRT-PCR target sequence (which spanned the open reading frame [ORF] 1/2 junction of the NoV genome) were transcribed from plasmids (Dr. Soizick LeGuyader, Ifremer, Nantes, France) produced by ligating the target sequences from the Norwalk strain of NoV GI or the Lordsdale strain of NoV GII into vector pGEM-3Zf (+) (Promega, Madison, WI). Before RNA transcription, the plasmids were linearized; 37.5 µl of molecular grade water, 5 µl of reaction buffer (Promega), and 2.5 µl of Xhol restriction enzyme (Promega) were added to 5 µl (~500 ng) of each plasmid and incubated at 37°C for 2 h. The linearized plasmid DNA was then purified using the QiAquick PCR purification kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. In vitro RNA transcription was carried out using the Riboprobe in vitro transcription system (Promega). A reaction mix containing 20 µl of transcription buffer (5 × 100 µM dithiothreitol, 2.5 µl of RNasin, 20 µl of a mix of 2.5 mM concentrations of rATP, rGTP, rUTP, and rCTP, 5 µl of T7 polymerase, and 39.5 µl of nuclease-free water was added to 5 µl of linearized DNA. The reactions were mixed by pipetting and incubated at 37°C for 2 h. After incubation, 5 µl of RQ1 RNase-free DNase was added to each reaction and incubated at 37°C for 15 min to degrade the remaining DNA template. The RNA transcripts were then purified using the RNeasy mini kit (Qiagen) following the manufacturer’s instructions. The RNA preparations were then checked for DNA contamination with qRT-PCR mastermix in which the RT enzyme had been heat inactivated at 95°C. In both cases, there was <0.03% DNA contamination (data not shown). The concentration of RNA in copies per microliter was calculated for each preparation by extrapolation from absorbance at 260 nm as measured using a NanoDrop spectrophotometer (Thermo Scientific, Pittsburgh, PA). RNA transcripts were stored at −20°C until required.

Stability of NoV RNA fragments in seawater. A 500-ml volume of natural seawater was equilibrated to 8 ± 0.5°C and then exposed to UV light at 1 mW/cm² (SOL 500 UV transilluminator, Honle, Graefelfing, Germany). The UV radiation intensity was adjusted with plastic filter sheets, simulating average winter conditions in the southern United Kingdom as measured from November 2008 through March 2009 (data not shown). The water was then spiked with approximately 1 × 10⁵ copies of NoV GI RNA transcripts. Duplicate samples of 1 ml were removed after 0 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 1 day, 2 days, 1 week, and weekly thereafter up to 4 weeks. Seawater was mixed by stirring before sample collection. All samples were frozen at −20°C until the end of the sampling period to enable simultaneous testing.

Adsorption of NoV RNA and virus particles to solids from seawater. Suspended solids were sedimented from 400 ml of natural seawater by centrifugation at 4,000 × g and then resuspended in 50 µl of natural seawater. NoV RNA or viral particles (see below) were added to this suspension and incubated for 30 min at 22°C to allow adsorption to suspended solids.

Bioaccumulation in Pacific oysters. Thirty liters of artificial seawater, made by adding Seamix (Peacock Salt, Ayr, UK) to distilled water, was added to two aerated 48-liter tanks and equilibrated to 18°C. Thirty Pacific oysters were then added to each tank and left to acclimatize for 96 h to allow resumption of filter-feeding activity. Aliquots of a NoV GI.4.2004–positive fecal sample (99.7% sequence homology in ORF2 to Monastir strain, EU650225) and NoV GII RNA transcripts, each containing approximately 6 × 10⁶ PCR-detectable copies, were allowed to adsorb to the suspended solids. Ten oysters were removed for testing for prior NoV contamination using methods described below, and then adsorbed NoV RNA transcripts and fecal material were added to the tanks. Aliquots of a GI4-positive fecal sample (96.2% sequence homology in ORF2 to Chiba virus, AB022679) containing approximately 6 × 10⁶ PCR-detectable copies were added to each tank to act as a bioaccumulation control. Oysters were allowed to bioaccumulate for 16 h and then tested for NoV GI and GII as described below. This procedure was repeated on four occasions.

Preparation of oyster homogenate. Oysters were opened aseptically, and the animals were removed from their shells. The peripheral flesh and organs were cut away from the digestive glands (stomach and digestive diverticula), which were pooled and finely chopped with a sterile razor blade. Homogenates were then prepared by treating a 2-g portion of chopped digestive glands with 100 µg/ml Proteinsase K solution (30 U/mg; Promega) as described previously (17) but modified to include a secondary incubation of 60°C instead of 65°C for 15 min. Homogenates were stored at 4 ± 0.5°C until RNA extraction and qRT-PCR analysis.

RNA extraction. Total RNA was extracted from 500 µl of seawater or shellfish homogenate using a NucliSENS miniMAG extraction machine and NucliSENS magnetic extraction reagents (bioMérieux, Marcy l’Etoile, France) following the manufacturer’s instructions (eluting in 100 µl of elution buffer). A negative extraction control (water only) was included with each set of samples extracted. Eluted RNA was stored at −20°C until required.

One-step qRT-PCR. For both NoV genogroup-specific qRT-PCR primer and probe sets (Table 1), duplicate or triplicate aliquots (depending on the particular experiment) of 5 µl of sample or extraction control RNA were added to adjacent wells of a 96-well optical reaction plate, and the volume was increased to 25 µl with one-step reaction mix prepared using the RNA Ultrasense one-step qRT-PCR system (Invitrogen, Carlsbad, CA) (final concentrations of 1 × reaction mix, 500 nM forward and 900 nM reverse primers, and 250 nM probe, plus 0.5 µl of Rox and 1.25 µl of enzyme mix per reaction). Wells containing nuclease-free water and the same one-step reaction mix also were included on each plate as negative controls. To enable quantification of each sample RNA in copies per microliter, log dilution series of the GI and GII plasmids (range: 1 × 10⁶ to 1 × 10⁸ copies per µl) were included on each qRT-PCR plate. The plate was incubated at 55°C for 60 min, 95°C for 5 min, and then 45 cycles of 95°C for 15 s, 60°C for 1 min, and 65°C for 1 min on an SDS7000 real-time PCR machine (Applied Biosystems, Foster City, CA).

RESULTS AND DISCUSSION

Stability of NoV RNA fragments in seawater. NoV GI RNA spiked into seawater and held under conditions similar to those of a northern European winter (8°C, 1 mW/cm² UV radiation) was detected by qRT-PCR for up to 14 days postcontamination. Decay of detectable RNA was exponen-
TABLE 1. Sequences of norovirus primers and probes used in this study

<table>
<thead>
<tr>
<th>Primer or probe</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norovirus GI assay</td>
<td>QNIFS</td>
<td>FAM-AGC ACG TGG GAG GGC GAT CG-BHQ-1</td>
</tr>
<tr>
<td></td>
<td>QNIF2</td>
<td>ATG TTC AGR TGG ATG AGR TTC TCW GA</td>
</tr>
<tr>
<td></td>
<td>COG2R</td>
<td>TCG ACG CCA TCT TCA TCA ACA</td>
</tr>
<tr>
<td></td>
<td>TM9</td>
<td>FAM-TGG ACA GGA GAT CGC-MGB</td>
</tr>
<tr>
<td></td>
<td>QNIFS</td>
<td>FAM-AGC ACG TGG GAG GGC GAT CG-BHQ-1</td>
</tr>
<tr>
<td>Norovirus GII assay</td>
<td>QNIFS</td>
<td>FAM-AGC ACG TGG GAG GGC GAT CG-BHQ-1</td>
</tr>
<tr>
<td></td>
<td>QNIF2</td>
<td>ATG TTC AGR TGG ATG AGR TTC TCW GA</td>
</tr>
<tr>
<td></td>
<td>COG2R</td>
<td>TCG ACG CCA TCT TCA TCA ACA</td>
</tr>
<tr>
<td></td>
<td>TM9</td>
<td>FAM-TGG ACA GGA GAT CGC-MGB</td>
</tr>
<tr>
<td></td>
<td>QNIFS</td>
<td>FAM-AGC ACG TGG GAG GGC GAT CG-BHQ-1</td>
</tr>
</tbody>
</table>

GII NoV (genome copies per gram of digestive glands) in oysters exposed to both human GI NoV–positive fecal material and either human GII NoV–positive fecal material or GII NoV RNA transcripts (containing similar numbers of PCR-detectable copies) were significantly higher (2.9-log difference between NoV GII detected in oysters exposed to virus from fecal material, not from oysters exposed to GI NoV RNA transcripts; however, oysters from the same batch that had not been bioaccumulating tested positive at the same level, suggesting low level contamination of the harvesting area as opposed to accumulation of transcripts. In experiment 3, bioaccumulation of NoV GII RNA fragments was apparent (oysters were positive at levels well in excess of the limit of detection), however at considerably lower levels (1.74 log units fewer detected) than those found when oysters were exposed to virus from fecal material. On average, there was a 2.9-log difference between NoV GII detected in oysters exposed to virus particles in fecal material and the NoV GII detected in oysters exposed to NoV GII RNA fragments. This difference in bioaccumulation of NoV GII particles and NoV GII RNA fragments was significant (paired t test of log copies per gram; P = 0.007).

When important risk management decisions are made on the basis of qRT-PCR results, it is important that these results be understood in the context of risk. Several authors have suggested that because qRT-PCR does not distinguish...
TABLE 2. Comparative bioaccumulation of human NoV GII particles and RNA fragments in Pacific oysters

<table>
<thead>
<tr>
<th>NoV (detectable copies/g of digestive gland)(^a)</th>
<th>Tank 1</th>
<th>Tank 2</th>
<th>Log tank-to-tank difference(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt</td>
<td>GI</td>
<td>GII</td>
<td>GI</td>
</tr>
<tr>
<td>1</td>
<td>597</td>
<td>10,941</td>
<td>3,137</td>
</tr>
<tr>
<td>2</td>
<td>705</td>
<td>27,941</td>
<td>977</td>
</tr>
<tr>
<td>3</td>
<td>2,000</td>
<td>108,444</td>
<td>5,466</td>
</tr>
<tr>
<td>4</td>
<td>19,540</td>
<td>81,217</td>
<td>5,197</td>
</tr>
<tr>
<td>Mean(^c)</td>
<td>4</td>
<td>19,540</td>
<td>81,217</td>
</tr>
</tbody>
</table>

\(^a\) Tank 1 contained GI and GII fecal material; tank 2 contained GI fecal material and GII RNA transcripts. <LOD, less than the limit of detection (~15 copies per g); ≈LOD, positive at the limit of detection.

\(^b\) Results ≈LOD or <LOD treated as 15 copies per g.

\(^c\) Mean of absolute values regardless of direction of difference.

between infectious viruses and nonviable virus materials (e.g., RNA fragments), a positive sample may be suggestive of contamination but not necessarily of consumer health risk (20, 28, 32, 38) and have questioned the use of qRT-PCR in the management of shellfisheries (4, 25). Our findings indicate that short fragments of nonencapsulated NoV RNA can persist in the marine environment for up to 2 weeks and that bioaccumulation of such materials can occur. However, the efficiency of uptake of RNA is significantly lower (mean of 2.9 log units) than that of virus particles, and in three of four repeated experiments NoV GII was detected by qRT-PCR at levels above the environmental background only in oysters exposed to virus particles from fecal material, not in oysters exposed to RNA fragments.

The RNA fragments used in this study may have been too small to efficiently concentrate in the oyster digestive diverticula, the various enzymes and RNases present within the digestive system may have degraded the NoV RNA fragments rapidly rendering the majority undetectable, or NoV accumulation in bivalve mussels may be dependent predominantly upon interactions between intact virus and receptor sites in the digestive tissues. The outcome of this series of studies indicates that the presence of NoV RNA fragments in the environment is unlikely to make a major contribution to positive qRT-PCR signals. This finding is of significance with respect to interpretation of qRT-PCR results for NoV in Pacific oysters and other shellfish species.

ACKNOWLEDGMENTS

This work forms part of a joint Ph.D. research project with the University of Surrey and the Centre for Environment, Fisheries and Aquaculture Science. The Ph.D. research was funded by D. G. Sanco (European Comission, Brussels) with matching funding from the Department of Environment, Food and Rural Affairs, and the Food Standards Agency of the United Kingdom.

REFERENCES