Assessment of Food Safety Practices of Food Service Food Handlers (Risk Assessment Data): Testing a Communication Intervention (Evaluation of Tools)

BENJAMIN CHAPMAN,1* TIFFANY EVERSLEY,2 KATIE FILLION,3 TANYA MacLAURIN,2 AND DOUGLAS POWELL3

1Department of Plant Agriculture and 2School of Hospitality and Tourism Management, University of Guelph, Guelph, Ontario, Canada N1G 2W1; and 3Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA

MS 09-361: Received 27 August 2009/Accepted 18 January 2010

ABSTRACT

Globally, foodborne illness affects an estimated 30% of individuals annually. Meals prepared outside of the home are a risk factor for acquiring foodborne illness and have been implicated in up to 70% of traced outbreaks. The Centers for Disease Control and Prevention has called on food safety communicators to design new methods and messages aimed at increasing food safety risk-reduction practices from farm to fork. Food safety infosheets, a novel communication tool designed to appeal to food handlers and compel behavior change, were evaluated. Food safety infosheets were provided weekly to food handlers in working food service operations for 7 weeks. It was hypothesized that through the posting of food safety infosheets in highly visible locations, such as kitchen work areas and hand washing stations, that safe food handling behaviors of food service staff could be positively influenced. Using video observation, food handlers (n = 47) in eight food service operations were observed for a total of 348 h (pre- and postintervention combined). After the food safety infosheets were introduced, food handlers demonstrated a significant increase (6.7%, P < 0.05, 95% confidence interval) in hand washing attempts, and a significant reduction in indirect cross-contamination events (19.6%, P < 0.05, 95% confidence interval). Results of the research demonstrate that posting food safety infosheets is an effective intervention tool that positively influences the food safety behaviors of food handlers.

The World Health Organization (WHO) reports that up to 30% of individuals in developed countries acquire illnesses from the food and water consumed annually (37). This estimate is supported by U.S., Canadian, and Australian public health data (20, 22, 26, 35). U.S. estimates put the societal cost of foodborne illness at $1.4 trillion annually (32). The WHO has identified five factors that contribute to these illnesses: improper cooking procedures, temperature abuse during storage, lack of hygiene and sanitation by food handlers, cross-contamination between raw and fresh ready-to-eat foods, and acquiring food from unsafe sources (36). Four of five of these practices are related directly to food service food handler behavior (acquiring foods from unsafe sources is the exception). Eating in food service establishments is a risk factor for acquiring foodborne disease in North America (15). Although there are wide variances in reported data, it has been estimated that up to 70% of foodborne illnesses are linked to food prepared through food service outside of the home (17, 18, 25). In 2007, Canadian food service sales totaled an estimated Can$53.4 billion and represented 41.4% of the market share of food sales (4).

Food handlers carrying pathogens (such as hepatitis A, Salmonella, and Escherichia coli O157:H7) have been associated with outbreaks of foodborne illness (23, 24). Research on health behaviors has suggested that individuals make rational decisions about risk-reduction behaviors when they are aware of, and have some knowledge about, the risks associated with particular actions (19, 28). Prior to 2004, the United States documented 8 years of decrease in rates of foodborne illness, but the decrease in illnesses has stalled, leading to a recommendation by the Centers for Disease Control and Prevention (CDC) to develop enhanced and measures more focused for food safety education (5). New food safety messages and mediums need to be experimented with and evaluated to encourage safe food handling behaviors and effective reduction in the incidence of foodborne illness (27). Past evaluations of food handler training interventions have relied solely on assumed behavior indicators such as inspection results or changes in knowledge with, differing conclusions about efficacy (8, 31). Interventions most likely to be deemed effective are those where behavioral change can be demonstrated, although difficult to measure, as actual changes in practice represents the greatest return on investment (9).

Food safety infosheets, consisting of relevant and timely food safety narratives culled from media sources and produced weekly to supplement traditional food safety training, have previously been evaluated for appropriateness, but not effectiveness (6). The objective of this research was to evaluate the efficacy of food safety infosheets as a training tool by assessing behavior change. It was hypothesized that through the posting of properly designed
食品安全信息单，利用叙事性语言在显眼位置，如厨房工作区域和洗手区域，生成对话，以影响食品服务人员的食品处理行为。行为改变，尤其是影响WHO的食物处理风险因素，可以减少食物中毒事件(36)。

根据个人回忆、报告和实际行为的差异，自我报告的数据显示，食品安全教育评价方法并不理想，特别是如果干预的目标是改变行为(19, 29)。然而，在食品安全教育评价方法中，Redmond和Griffith(28)报告说，大多数发表的研究往往仅限于测量知识和预期变化。在确定食品安全干预的有效性时，通常将程序直接测量行为变化，如在这个研究中，有倡导(10, 11, 27)。

非参与者视频观察，通过利用摄像机来捕捉行为，比参与者观察更有效，观察者可以一起观看相同的动作，减少编码偏见。使用多个摄像机的视频观察也可以同时拍摄食物处理人员和任务。这在食品服务环境中尤其重要，因为多个参与者可能在各个站上负责生成一餐。

材料和方法

实际食物处理人员的行为被通过视频观察和分析来评估食品安全信息单作为行为改变的工具。食品安全信息单干预。食品安全信息单(www.foodsafetyinfosheets.com)是针对食品处理人员的单独通讯工具，旨在满足食品处理人员的信息需求，生成对话(图1)。在整个研究中，食品安全信息单包含媒体故事、意外或幽默的图形(通过Google图像搜索http://images.google.com/)。食品安全信息单也包含一个通常用于的食品处理人员。

图片1. 食品安全信息单示例。
entitled “What You Can Do” to connect the outbreak story with behaviors that food handlers could employ during their tasks. Food safety infosheets were created with iWork Pages (Apple, Inc., Silicon Valley, CA), and reviewed by researchers at Kansas State University (Manhattan) and the University of Guelph (Ontario, Canada).

Study group. An international food service company collaborated with the researchers for the evaluation of the food safety infosheets. The company operates institutional food service facilities across North America, serving thousands of meals daily. Thirteen locations across southern Ontario, Canada, were selected for potential participation by corporate management, and the final decision to participate was left to on-site operators. Eight of the 13 sites were included in the study. The company provided unfettered access to the 8 sites and personnel. In accordance with the institutional research ethics board, all staff members (food handlers and management) were provided with study objectives and were told that recording of the site was being undertaken to conduct research on food flow, efficiency, food handler practices, and teamwork. All participants were informed of the proposed video observation, and consent was required before inclusion in the study. A generic description of the intent of the study (to view food handlers’ actions) was provided, but food safety behaviors were not explicitly mentioned until after food safety infosheets had been introduced and the second observation had taken place. When provided with the opportunity to be excluded from the study, three potential food handler participants elected to do so, citing privacy concerns. These food handlers were reassigned to tasks outside of the camera’s capture field for the duration of the study.

Posting. Current food safety infosheets designed to reflect food safety issues relevant to the study group were provided to the target audience weekly and passively posted in five high-visibility areas defined by each site’s operator. Food safety infosheets were placed in plastic protective coverings and physically posted by researchers each week for 7 weeks.

Data collection. Nonparticipant observation of practices was used to collect the food safety behaviors of food handlers. Because observation can capture actual behavior in context, data obtained through this methodology often yields valid and reliable information upon which further interventions can be developed, and more accurate risk assessment calculations can be made (1).

The framework established for the evaluation of food safety infosheets was measure baseline behaviors, introduce food safety infosheets, and record postintervention behaviors (Fig. 2.). Not reported in this publication are the results of in-depth interviews conducted with food handlers after the initial observations and prior to introducing the food safety infosheets. The total data collection cycle at each site was approximately 8 weeks.

Observation equipment. Food handling practices were recorded at eight sites and split into two occasions, pre–food safety infosheet introduction and post–food safety infosheet introduction. For each of these occasions 2 consecutive days were recorded. Cameras were placed in strategic positions to capture

RESULTS

A total of 47 food handlers were observed for 2 days on each occasion (occasion 1, pre–food safety infosheet introduction; occasion 2, post–food safety infosheet introduction), resulting in the capture of 4 days of individual food handlers’ behaviors. A total of 174 h of video recordings were taken on each occasion, resulting in a total of 348 h of data analyzed (Table 1). Participants were on-camera for a mean of 13.43 h of actual food handling pre–food safety infosheet introduction and 13.55 h post–food safety infosheet introduction. As hours of operation varied between sites, it was decided that recording would commence 30 min prior to the first scheduled employee’s start time and end 30 min after the site’s staff were scheduled to leave.

A paired sample Student’s t test was conducted on the means of coded food handler behaviors. Significant differences were found in food handler behaviors between pre– and post–food safety infosheet introduction (Table 2). During observation occasion 1, prior to introducing food safety infosheets, food handlers were recorded demonstrating a mean of 21.09 hand washing attempts (an average of 1.57 hand washing attempts per hour) with 2.38 of attempts coded as correct (Table 3). The most common factor leading to an incorrect hand washing event (93% of incorrect hand washing events) was the lack of proper hand drying with a paper towel. Many observed participants used common-use dry rags, aprons, or other garments to dry their hands. Indirect cross-contamination (mean = 17.50 events per observation occasion) was found to be more prevalent than direct cross-contamination (mean = 1.89 events per observation occasion) (Table 3). The mean number of hand washing attempts and correct hand washing events increased significantly after the introduction of the food safety infosheets (Table 3). The mean number of indirect and direct cross-contamination events decreased significantly after the introduction of the food safety infosheets (Table 3).

When analyzed by hour, indirect cross-contamination rates appeared to follow a pattern. More indirect cross-contamination events, which would result in greater risk of

TABLE 1. Number of work stations, food handlers, observation hours, and camera angles per site

<table>
<thead>
<tr>
<th>Site</th>
<th>Stations</th>
<th>Food handlers (n)</th>
<th>Hours recorded per observation occasion</th>
<th>Total camera angles used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deli, grill, preparation</td>
<td>7</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Prep</td>
<td>5</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Deli, grill, preparation</td>
<td>7</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Deli, grill, preparation</td>
<td>4</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Deli, grill, preparation</td>
<td>10</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Deli, grill, preparation</td>
<td>8</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Preparation</td>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Deli, grill, preparation</td>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47</td>
<td>174</td>
<td>51</td>
</tr>
</tbody>
</table>

Coding trees were developed for the following events and researchers trained on each: (i) hand washing attempts, (ii) correct hand washing outcomes, (iii) direct cross-contamination event, and (iv) indirect cross-contamination event.

The lead researcher and two assistants first independently viewed and coded, and then simultaneously reviewed and coded 6 h of video to establish intercoder reliability. Differences identified in coding were discussed, and agreements were made concerning the descriptions of the behaviors of interest to improve further the uniformity of the coding of the data. During a pilot of this research, 15 actions were selected by the primary researcher and provided to the other coders to conduct an intercoder reliability test. Initial agreement was arrived at in coding 13 of the 15 actions; both of the disagreed actions were indirect cross-contamination. Discrepancies were resolved by reviewing the actions. Similar methods have been reported in the literature (1, 16). Notational analysis was used to organize events and their frequencies along a timeline. Notational analysis is a generic tool used to collect observed events and place them in an ordered sequence, especially useful for following cross-contamination (7, 13).

Data analysis. The coded observation data were analyzed using the Statistical Package for the Social Sciences 16.0 (SPSS Inc, Chicago, IL) for descriptive statistics, and paired sample Student’s t tests determined whether there was a difference in mean events between pre– and post–food safety infosheet introduction.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Event</th>
<th>Difference in mean events</th>
<th>SD</th>
<th>SEM</th>
<th>Lower</th>
<th>Upper</th>
<th>t</th>
<th>df</th>
<th>P value (two-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total hand washing attempts, pre- and postintervention</td>
<td>-1.426</td>
<td>4.338</td>
<td>0.633</td>
<td>-2.699</td>
<td>-0.152</td>
<td>-2.253</td>
<td>46</td>
<td>0.029*</td>
</tr>
<tr>
<td>2</td>
<td>Total correct hand washing outcomes, pre- and postintervention</td>
<td>-1.638</td>
<td>2.506</td>
<td>0.336</td>
<td>-2.374</td>
<td>-0.903</td>
<td>-4.482</td>
<td>46</td>
<td>0.000*</td>
</tr>
<tr>
<td>3</td>
<td>Total indirect cross-contamination events, pre- and postintervention</td>
<td>2.574</td>
<td>6.006</td>
<td>0.876</td>
<td>0.811</td>
<td>4.338</td>
<td>2.939</td>
<td>46</td>
<td>0.005*</td>
</tr>
<tr>
<td>4</td>
<td>Total direct cross-contamination events, pre- and postintervention</td>
<td>0.851</td>
<td>2.147</td>
<td>0.313</td>
<td>0.221</td>
<td>1.481</td>
<td>2.718</td>
<td>46</td>
<td>0.009*</td>
</tr>
</tbody>
</table>

*P < 0.05, 95% CI.
foodborne illness, occurred during breakfast- and lunch-serving times (Fig. 3). Mean indirect cross-contamination events between 7 a.m. and 9 a.m. ranged from 0.6 to 2.0 events per hour. These events dipped below 0.5 events per hour between 10 a.m. and 11 a.m., and rose to over 3.16 events during 12 p.m. and 1 p.m. While there were improvements post–food safety infosheet introduction, the incidence of indirect cross-contamination followed the same pattern, increasing during traditional busy meal service times. From frequency of the evaluation of behaviors, direct cross-contamination made up less than 11% of total cross-contamination events, signifying that indirect cross-contamination events are much more likely to happen, and it highlights the complexity of the food service kitchen situation.

DISCUSSION

Results indicate that the introduction of food safety infosheets had significant positive influence on the risk-reduction practices of food handlers participating in this study. While significant improvements were seen, a drastic improvement or elimination of risky behaviors was not seen. Time of day, especially during busy times during traditional meal times of the food service operation, affected the food handling behaviors more than did the introduction of food safety infosheets. A recommendation could be the re-engineering of some food service operational behaviors to reduce potential food safety risks quickly, such as the addition of quick-use, alcohol-based hand sanitizer at workstations. Schaffner and Schaffner (33) demonstrated effectiveness of this intervention, even on visibly soiled hands, and the introduction of the tool may increase compliance resulting in a public health affect.

The prevalence of indirect cross-contamination seen throughout this study, confirming Jay and colleagues (14), suggests that prevalence of cross-contamination is a hidden problem for food service, as food handlers acting in a multi-user environment may not see themselves as part of a team. Many of the recorded indirect cross-contamination events occurred when multiple food handlers used common food contact surfaces, utensils, or equipment. The team-like nature of a food service system should be highlighted, built upon, and it is currently missing from national food safety training packages such as ServSafe (http://www.nraef.org) and TrainCan (http://www.traincan.com). Development of cross-contamination demonstration techniques as well as showing food handlers how they influence their coworkers’ food safety behaviors is an area where further investment is needed. This result supports Beegle’s (2) findings on the team-like aspect of food handlers. Food handler training currently focuses solely on an individual’s actions, not how they influence others.

A move to a more even-paced, commissary-like system where meals are preprepared, portioned, and packaged prior to arriving on-site, and the food handlers are left to do little more than reheat and plate, may reduce the affect of busy, intense meal times and be practical at some types of food service operations. This is especially supported in the literature (7, 12), where lack of time was reported as a major factor in not always carrying out proper food handling techniques. While such an approach may counter building a

<table>
<thead>
<tr>
<th>Event</th>
<th>Pre–food safety infosheet introduction</th>
<th>Post–food safety infosheet introduction</th>
<th>Change</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand washing attempts</td>
<td>21.09</td>
<td>22.51</td>
<td>1.42</td>
<td>6.7</td>
</tr>
<tr>
<td>Correct hand washing events</td>
<td>2.38</td>
<td>4.02</td>
<td>1.64</td>
<td>68.9</td>
</tr>
<tr>
<td>Indirect cross-contamination</td>
<td>15.70</td>
<td>13.13</td>
<td>-2.57</td>
<td>-19.6</td>
</tr>
<tr>
<td>Direct cross-contamination</td>
<td>1.89</td>
<td>1.04</td>
<td>-0.85</td>
<td>-81.7</td>
</tr>
</tbody>
</table>

* Number of food handlers was 47.

* P < 0.05, 95% CI.
connection between patrons and the production of their meals (an increasingly prevalent marketing option), preparing foods in an even-paced environment may be safer than the traditional meal rushes are.

The lack of use of paper towels when hand washing was attempted to complete a correct hand washing event suggests that while some risk-reduction steps were taken (to attempt hand washing), further concentration should be placed on providing evidence of control to food handlers. As Beegle (2) and Clayton and Griffith (7) have indicated, hand drying is a risk-reduction step as important as using soap, lathering, and rinsing. Food service operators could track paper towel usage as an indicator of incorrect hand washing, and create a culture within the organization where all components of hand washing are valued.

Two additional factors (outside of posting the food safety infosheets) may have influenced food handlers’ behaviors throughout this study: the utilization of video capture as an observation method and the in-depth interviews focusing on food safety knowledge, attitudes, and intentions. While these factors may be responsible, at least in part, for the significant change in behaviors of food handlers in this study, the study did, however, result in increased risk-reduction behaviors. Future research comparing different behavior capture methods can help reduce the potential ambiguity of results.

While food safety infosheets are effective in positively influencing food handlers’ behaviors, they did not provide a solution for risk reduction alone. Food safety infosheets integrated within the organizational culture of a food service operation, where the understanding of risk, risk-reduction behaviors and why they are important, can lead to safer food handling behaviors.

ACKNOWLEDGMENTS

The authors thank the participating international food service company for providing unfettered access to facilities to perform observations. The authors also thank Chris Choi, School of Hospitality and Tourism Management at the University of Guelph, for the guidance in statistical analysis of observation data.

REFERENCES