Linkage and association studies of QTL for nuclear families by mixed models

RUZONG FAN*
Department of Statistics, Texas A&M University, 447 Blocker Building, College Station, TX 77843-3143, USA
rfan@stat.tamu.edu

MOMIAO XIONG
Human Genetics Center, University of Texas - Houston, P.O. Box 20334, Houston, Texas 77225, USA

Summary

The transmission disequilibrium test (TDT) has been utilized to test the linkage and association between a genetic trait locus and a marker. Spielman et al. (1993) introduced TDT to test linkage between a qualitative trait and a marker in the presence of association. In the presence of linkage, TDT can be applied to test for association for fine mapping (Martin et al., 1997; Spielman and Ewens, 1996). In recent years, extensive research has been carried out on the TDT between a quantitative trait and a marker locus (Allison, 1997; Fan et al., 2002; George et al., 1999; Rabinowitz, 1997; Xiong et al., 1998; Zhu and Elston, 2000, 2001). The original TDT for both qualitative and quantitative traits requires unrelated offspring of heterozygous parents for analysis, and much research has been carried out to extend it to fit for different settings. For nuclear families with multiple offspring, one approach is to treat each child independently for analysis. Obviously, this may not be a valid method since offspring of one family are related to each other. Another approach is to select one offspring randomly from each family for analysis. However, with this method much information may be lost. Martin et al. (1997, 2000) constructed useful statistical tests to analyse the data for qualitative traits. In this paper, we propose to use mixed models to analyse sample data of nuclear families with multiple offspring for quantitative traits according to the models in Amos (1994). The method uses data of all offspring by taking into account their trait mean and variance–covariance structures, which contain all the effects of major gene locus, polygenic loci and environment. A test statistic based on mixed models is shown to be more powerful than the test statistic proposed by George et al. (1999) under moderate disequilibrium for nuclear families. Moreover, it has higher power than the TDT statistic which is constructed by randomly choosing a single offspring from each nuclear family.

Keywords: Linkage disequilibrium mapping; Mixed models; Quantitative trait loci; TDT statistics.

1. Introduction

Using nuclear families to test linkage and association between a disease susceptibility locus and a marker is an interesting research area. In the presence of association between a qualitative trait locus and

*To whom correspondence should be addressed

a marker, Spielman et al. (1993) introduced the transmission disequilibrium test (TDT) to test linkage. On the other hand, TDT can be applied to test for association in the presence of linkage for fine gene mapping (Spielman and Ewens, 1996; Martin et al., 1997). If the data consist of nuclear families with a single affected offspring, TDT is a valid χ^2 test. However, if the data consist of nuclear families with multiple affected offspring, the affected offspring cannot be treated as independent siblings since they are related to each other. One approach is to choose an affected offspring randomly from each multiple affected offspring family and construct a TDT based on the simplex nuclear families. However, much data may be discarded by this method. Martin et al. (1997) proposed two statistics that use data from all affected offspring for a qualitative trait. The statistics are based on the calculation of joint probability that a heterozygous parent transmits or does not transmit his/her marker alleles to the multiple affected offspring. Moreover, the statistics are shown to be more powerful than the TDT, which is constructed with a single randomly chosen affected offspring from each nuclear family. Martin et al. (2000) further extended the test by using data from both affected and unaffected offspring, and proposed a pedigree disequilibrium test (PDT) to analyse data.

In this paper, we investigate linkage and association studies between a quantitative trait locus (QTL) and a marker. First, we calculate conditional means and variance–covariances of the quantitative trait values of offspring of nuclear families, given the transmission status of marker alleles of heterozygous parents. With the mean and variance–covariance structures in hand, we propose to use mixed models to analyse the quantitative genetic data. Using the rich theory of mixed models (Harville, 1974, 1977; Jennrich and Schluchter, 1986; Laird and Ware, 1982; Miller, 1977; Pinheiro, 1994; Pinheiro and Bates, 2000; Robinson, 1991; Searle et al., 1992), we discuss parameter estimations, and introduce a test statistic T to test linkage or association between the trait locus and the marker.

Mixed models have been utilized for data analysis of QTL of nuclear families in linkage and association studies (Allison et al., 1999), which treats sibship as random factors. Abecasis et al. (2000); Fulker et al. (1999) and Sham et al. (2000) have explored linkage and association studies of quantitative traits by variance–component procedures allowing a simultaneous test of allelic association for family data. In this paper, we show how to construct appropriate models based on conditional mean and variance–covariance structures of the trait values of offspring of nuclear families. For data analysis, one may use the standard statistical packages such as SAS for parameter estimations (Littell et al., 1996).

George et al. (1999) proposed interesting regression models to carry out TDT analysis for quantitative traits of nuclear family or pedigree data. Zhu and Elston (2000, 2001) further developed the method by using the distribution of offspring trait values conditional on parent trait values. Moreover, Zhu and Elston (2000, 2001) proposed three test statistics which have good powers in detecting linkage or association, and greatly improve the method of George et al. (1999). However, the variance–covariance matrices in George et al. (1999) and Zhu and Elston (2000, 2001) only contain the effects of polygenic loci and environment, ignoring the important part of the effect of major gene locus. Our method of this paper is to use the distribution of offspring trait values conditional on the marker allele transmission status of one heterozygous parent at the marker locus. Our variance–covariance matrix contains all effects of major gene locus, polygenic loci and environments.

2. MEAN AND VARIANCE–COVARIANCE STRUCTURES

Consider one major quantitative trait locus Q with two alleles Q_1, Q_2 occurring with frequencies q_1, q_2. Assume that the expected phenotypic trait value of a person with genotype Q_rQ_s is $v + \mu_{rs}, r, s = 1, 2$, respectively, where v is overall mean and $\mu_{12} = \mu_{21}$. Suppose that a marker locus M is linked to the trait locus Q. Denote the recombination fraction between the marker locus M and the trait locus Q by θ. Assume that two alleles M_1, M_2 are typed at the marker locus M occurring with frequencies p_1, p_2. The
haplotype frequency is denoted by \(h_{ri} \) for haplotype \(Q_rM_i, r = 1, 2, i = 1, 2 \). The linkage disequilibrium coefficient is defined by \(\Delta = h_{11} - p_1q_1 \). Then \(\Delta \neq 0 \) refers to the presence of association or linkage disequilibrium between the trait locus \(Q \) and the marker locus \(M \). If \(\Delta = 0, h_{ri} = q_i p_i \) for all \(r \) and \(i \), i.e. no association between the marker \(M \) and the trait locus \(Q \). Besides the major gene locus \(Q \), assume there is a polygenic effect which affects the trait values.

Let \(Y \) be a phenotypic trait variable of an individual. Following Amos (1994), one may decompose \(Y = v + g + G + e \), where \(v \) is the overall mean, \(g \) is the random major gene component such that \(E(\gamma\{Q_rQ_r\}) = \mu_{sr}, G \) is the normal random polygenic effect such that \(E(G) = 0 \) and \(Var(G) = \sigma^2_G \), and \(e \) is an error or residual term which is distributed as normal with mean 0 and variance \(\sigma^2_e \), i.e. \(e \sim N(0, \sigma^2_e) \). Moreover, assume that \(g, G \) and \(e \) are independent of each other. Let \(TQ \) denote the abbreviation of ‘transmitted quantitative trait allele’. Then we have the conditional mean \(\alpha_r = E(Y|TQ = Q_r) = v + \sum_{s = 1}^{2} \mu_{rs} q_s \). Let \(\mu_r = \sum_{s = 1}^{2} \mu_{rs} q_s \), and so \(\alpha_r = v + \mu_r \). Assume that a parent has heterozygous genotype \(M_1M_2 \) at the marker locus \(M \). Let \(P(M_1, M_2) \) be the probability of an offspring who receives marker allele \(M_1 \) from his/her heterozygous parent but not alleles \(M_2 \). Then \(P(M_1, M_2) = [1/2][2p_1p_2] \), since the probability of a heterozygous parent possessing allele \(M_1 \) at one copy of his/her chromosome and allele \(M_2 \) at the other copy of his/her chromosome is \(2p_1p_2 \), and the probability of giving one of his/her two alleles to an offspring is \(1/2 \). Similarly, we may show that \(P(M_2, M_1) = p_1p_2 \). Let \(P(Q_r, M_i, M_j) \) be the probability of a child who receives haplotype \(Q_rM_i \) from his/her heterozygous parent but not alleles \(M_j, j \neq i \). Then, we have relation \(P(Q_r, M_i, M_j) = (1 - \theta)h_{ri}p_j + \theta h_{rj}p_i \).

2.1 Nuclear families with a single child

For a family with two parents and a single offspring, we assume that at least one parent is heterozygous at the marker locus \(M \). Moreover, assume we may infer clearly the transmission of parental marker alleles to the offspring, i.e. all offspring of homozygous \(\times \) homozygous matings and all homozygous offspring of heterozygous \(\times \) heterozygous matings (George et al., 1999; Zhu and Elston, 2000, 2001). In Figure 1, assume that a heterozygous mother \(M_1M_2 \) transmits allele \(M_1 \) to her daughter in Graph I (i.e. the left-hand side one). On the other hand, the male offspring \(2 \) in Graph II (i.e. the right-hand side one) receives allele \(M_2 \) from his heterozygous mother \(M_1M_2 \). Based on the information in the pedigree, we may calculate the conditional trait mean of the offspring provided that allele \(M_1 \) or \(M_2 \) is transmitted from the heterozygous parent. Let \(TM \) denote the abbreviation of ‘transmitted marker allele’, \(NM \) of ‘non-transmitted marker allele’, and \(TH \) of ‘transmitted haplotype’. Given that marker allele \(M_1 \) is transmitted and allele \(M_2 \) is not transmitted from the heterozygous mother, the conditional trait mean of the offspring 1 in graph I of Figure 1 is

\[
\alpha_{1,2} = E(Y|1) = E[Y|TM = M_1, NM = M_2] = \alpha_r[(1 - \theta)h_{r1}p_2 + \theta h_{r2}p_1]/[p_1p_2]
\]

\[
= \sum_{r = 1}^{2} E[Y|TH = Q_rM_i, NM = M_2] P(Q_r, M_i, M_2) P(M_1, M_2)
\]

\[
= \sum_{r = 1}^{2} \alpha_r[(1 - \theta)h_{r1}p_2 + \theta h_{r2}p_1]/[p_1p_2]
\]

(1)
Fig. 1. Two nuclear families each has a single offspring, and a heterozygous M_1M_2 mother at the marker locus M. For Graph I, the heterozygous mother transmits allele M_1 to her daughter. In Graph II, the heterozygous mother transmits allele M_2 to her son.

Similarly, the conditional mean of the offspring 2 in graph II of Figure 1 is

$$\alpha_2 = E(y_2) = E[Y | M_2, NM = M_1]$$

$$= \frac{\sum_r \alpha_r [(1 - \theta) h_r p_1 + \theta h_r p_2]}{[p_1 p_2]}$$

$$= v + \frac{\sum_r \mu_r [(1 - \theta) h_r p_1 + \theta h_r p_2]}{[p_1 p_2]}.$$ \hspace{1cm} \text{(2)}

Equations (1) and (2) lead to

$$\alpha_{1,2} - \alpha_{2,1} = (1 - 2\theta) \frac{\sum_r \mu_r (h_r p_2 - h_r p_1)}{[p_1 p_2]} = (1 - 2\theta) \Delta (\mu_1 - \mu_2)/[p_1 p_2].$$ \hspace{1cm} \text{(3)}

Hence, one may construct statistics and models to test linkage in the presence of association (or association in the presence of linkage) between the trait locus and the marker by comparing $\alpha_{1,2}$ and $\alpha_{2,1}$.

To build valid test statistics and models, we need to calculate the conditional variance–covariances of the trait values of offspring in nuclear families. In Appendix A, we show that the conditional variance of trait value of the female offspring 1 in graph I is

$$\sigma_{1,2}^2 = \sum_r \sum_s (\nu + \mu_{rs} - \alpha_{1,2})^2 q_r p_r Q_r M_1, M_2) / P(M_1, M_2).$$

Similarly, the conditional variance of trait value of the male offspring 2 in graph II is

$$\sigma_{2,1}^2 = \sum_r \sum_s (\nu + \mu_{rs} - \alpha_{2,1})^2 q_r p_r Q_r M_2, M_1) / P(M_2, M_1).$$

The trait values of offspring from different families are independent, and so the covariance of the traits of offspring 1 and 2 in Figure 1 is 0.

2.2 General nuclear families

For pedigrees which have more than two offspring, we may get the conditional mean and variance–covariances in a similar way as in Section 2.1. For example, let us look at a pedigree depicted in Figure 2. Suppose we may clearly infer the transmission of parental marker alleles to the offspring. Assume that the genotype of the father at the marker locus is heterozygous M_1M_2. Moreover, the father transmits allele
Fig. 2. A nuclear family with \(n \) offspring. Assume that the genotype of the father at the marker locus is heterozygous \(M_1M_2 \). Moreover, the father transmits allele \(M_1 \) to kids 1, \ldots, \(k \), and transmits allele \(M_2 \) to kids \(k + 1, \ldots, n \). For child \(i \), the quantitative trait value is denoted by \(y_i \), \(i = 1, \ldots, n \). As in equations (1) and (2), we may calculate the conditional means of the traits of offspring 1, \ldots, \(k \) as \(\alpha_{1,2} \), and the conditional means of the traits of offspring \(k + 1, \ldots, n \) as \(\alpha_{2,1} \). Moreover, we may obtain the conditional variances of \(y_1, \ldots, y_k \) as \(\sigma_{1,2}^2 = \Sigma_{12}^2 + \sigma_G^2 + \sigma_e^2 \), and the conditional variances of \(y_{k+1}, \ldots, y_n \) as \(\sigma_{2,1}^2 = \Sigma_{21}^2 + \sigma_G^2 + \sigma_e^2 \). In Appendix B, we calculate the conditional covariance between \(y_l \) (\(l = 1, \ldots, k \)) and \(y_t \) (\(t \neq l, t = 1, \ldots, k \)) as \(\Sigma_{12,12} \), the conditional covariance between \(y_l \) (\(l = 1, \ldots, k \)) and \(y_t \) (\(t = k + 1, \ldots, n \)) as \(\Sigma_{12,21} = \Sigma_{21,12} \), and the conditional covariance between \(y_t \) (\(t = k + 1, \ldots, n \)) and \(y_t \) (\(t \neq l, t = k + 1, \ldots, n \)) as \(\Sigma_{21,21} \).

3. Models for Linkage and Association Studies

Based on the analysis in Section 2, we propose to use a mixed linear model to analyse the data from nuclear families. Suppose we have \(I \) nuclear families, each of them has at least one child. Moreover, assume that at least one of the parents is heterozygous, and that one can determine which marker allele is transmitted to the offspring from the heterozygous parent. For each child, a quantitative trait is observed. For the \(i \)th family, assume that there are \(n_i \) siblings, and the siblings’ trait values are listed as \(y_{i1}, \ldots, y_{in_i} \).

Consider the \(n_i \) offspring in the \(i \)th family. Assume that the siblings consist of two parts: (1) \(k_i \) siblings correspond to that allele \(M_1 \) is transmitted and allele \(M_2 \) is not transmitted from their heterozygous parent, and their trait values are listed as \(y_{i1}, \ldots, y_{ik_i} \); (2) the rest of the siblings correspond to that allele \(M_1 \) is not transmitted and allele \(M_2 \) is transmitted from their heterozygous parent, and their trait values are listed as \(y_{i,k_i+1}, \ldots, y_{in_i} \). Under the alternative hypothesis of linkage (or association) in the presence of association (or linkage) between the trait locus and the marker locus, one may use a full multivariate linear model

\[
\begin{align*}
y_{ij} &= v + g_{ij} + e_{ij}, \quad j = 1, 2, \ldots, k_i, \\
y_{ij} &= v + g_{ij} + e_{ij}, \quad j = k_i + 1, \ldots, n_i.
\end{align*}
\]

(4)

\(y_{ij} \) are normal variables with means \(\alpha_{1,2} \) for \(j = 1, \ldots, k_i \) and \(\alpha_{2,1} \) for \(j = k_i + 1, \ldots, n_i \), and an \(n_i \times n_i \)
variance–covariance matrix

\[
\Gamma_j = \begin{pmatrix}
\sigma_{1,2}^2 & \Sigma_{12,12} & \cdots & \Sigma_{12,21} \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma_{12,12} & \Sigma_{12,12} & \cdots & \sigma_{1,2}^2 \\
\Sigma_{21,12} & \Sigma_{21,12} & \cdots & \Sigma_{21,21} \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma_{21,12} & \Sigma_{21,12} & \cdots & \Sigma_{21,21} \\
\end{pmatrix}
\]

Let \(n = \sum_{i=1}^f n_i \) be the total number of offspring of all families, \(\vec{y}_i = (y_{i1}, \ldots, y_{in_i})^r \) and \(\vec{y} = (\vec{y}_1^T, \ldots, \vec{y}_f^T)^T \), and define \(\vec{g}_i, \vec{e}_i, \vec{G}_i, \vec{G}_i, \vec{G}_i, \vec{F}_i \) and \(\vec{e}_i \) accordingly. Define an \(n \times 2 \) design matrix

\[
X_i = \begin{pmatrix}
1 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 1 & \cdots & 1
\end{pmatrix}
\]

and a total \(n \times 2 \) design matrix \(X = (X_1^T, \ldots, X_f^T)^T \). Then, \(\vec{y} \) is normally distributed with the following mean and variance–covariance structure for model (4):

\[
E(\vec{y}) = X \begin{pmatrix}
\alpha_{1,2} \\
\alpha_{2,1}
\end{pmatrix}, \quad \text{Cov}(\vec{y}) = \text{diag}(\Gamma_1, \ldots, \Gamma_f).
\]

Under the null hypothesis of no linkage (i.e. \(\theta = 1/2 \)) in the presence association (i.e. \(\Delta \neq 0 \)) between the trait locus and the marker locus, then \(\alpha_{1,2}\theta=1/2, \Delta \neq 0 = \alpha_{2,1}\theta=1/2, \Delta \neq 0 \) by relation (3). Moreover, the conditional variance \(\Sigma_{12,12}\theta=1/2, \Delta \neq 0 = \Sigma_{21,12}\theta=1/2, \Delta \neq 0 \) since \(P(Q, M_1, M_2) = P(Q, M_2, M_1) \). Besides, we can show that \(\Sigma_{12,12} = \Sigma_{12,21} = \Sigma_{21,12} = \Sigma_{21,21}\theta=1/2, \Delta \neq 0 \) by the formulae in Appendix B. Therefore, one may use a multivariate linear model to analyse the data

\[
y_{ij} = v + g_{ij} + G_{ij} + e_{ij}, \quad j = 1, 2, \ldots, n_i, \quad \text{reduced model I},
\]

where \(y_{ij} \) are normal variables with mean \(\alpha_{1,2}\theta=1/2, \Delta \neq 0 \) and \(n_i \times n_i \) variance–covariance matrix

\[
W_i = \begin{pmatrix}
\sigma_{1,2}^2 & \Sigma_{12,12} & \cdots & \Sigma_{12,21} \\
\Sigma_{12,12} & \sigma_{1,2}^2 & \cdots & \Sigma_{12,12} \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma_{12,12} & \Sigma_{12,12} & \cdots & \sigma_{1,2}^2
\end{pmatrix}_{\theta=1/2, \Delta \neq 0}
\]

Under the null hypothesis of no association in the presence of linkage between the trait locus and the marker locus, \(\alpha_{ij} = \sum_{r=1}^2 \alpha_r q_r = \alpha, i \neq j, i, j = 1, 2, \) which is the population trait mean. Let us denote \(\sum_{r=1}^2 \sum_{t=1}^2 \mu_{rt} q_r q_t \) by \(\mu \), \(\gamma_{ij} = \mu_{ij} - \mu \), and \(\gamma_k = \sum_{j=1}^f \gamma_{kj} q_j \). The conditional variance \(\sigma_{ij}^2 = \sum_{r=1}^2 \sum_{t=1}^2 (\mu_{rt} - \mu)^2 q_r q_t + \sigma_G^2 + \sigma_E^2, i \neq j \), which is the total variance of a trait variable. Moreover, the conditional covariance \(\Sigma_{12,12}\Delta=0, \theta \neq 1/2 \) is equal to the covariance \(\Sigma_{21,21}\Delta=0, \theta \neq 1/2 \) of trait variables between siblings (Appendix B). Therefore, one may use a multivariate linear model to analyse the data

\[
y_{ij} = v + g_{ij} + G_{ij} + e_{ij}, \quad j = 1, 2, \ldots, n_i, \quad \text{reduced model II},
\]
where \(y_{ij} \) are normal variables with mean \(\alpha = \nu + \mu \) and \(n_i \times n_i \) variance–covariance matrix
\[
V_i = \begin{pmatrix}
\sigma_{12}^2 & \Sigma_{12,12} & \cdots & \Sigma_{12,12} & \cdots & \Sigma_{12,21} & \cdots & \Sigma_{12,21} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\Sigma_{12,12} & \Sigma_{12,12} & \cdots & \sigma_{12}^2 & \cdots & \Sigma_{12,21} & \cdots & \Sigma_{12,21} \\
\Sigma_{21,12} & \Sigma_{21,12} & \cdots & \Sigma_{21,12} & \sigma_{12}^2 & \cdots & \Sigma_{12,21} & \cdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\Sigma_{21,12} & \Sigma_{21,12} & \cdots & \Sigma_{12,12} & \cdots & \sigma_{12}^2 & \cdots & \Sigma_{12,21} \\
\end{pmatrix}
\Delta=0,\theta \neq 1/2
\]

4. Parameter Estimation and Test Statistics

In model (4), there are two mean coefficients \(\alpha_{1,2} \) and \(\alpha_{2,1} \), five variance–covariance parameters \(\Sigma_{12}^2, \Sigma_{12,12}, \Sigma_{12,21}, \Sigma_{21,12}, \Sigma_{21,21} \), polygenic variance \(\sigma_{22}^2 \), and error variance \(\sigma_{12}^2 \). Due to the redundancy, not all variance–covariance parameters are identifiable. However, five parameters \((\sigma_{12}^2, \alpha_{2,1}, \Sigma_{12,12}, \Sigma_{12,21}, \Sigma_{21,21}) = \sigma^2 \) are independent and identifiable. Similarly, in model (5), there are one population mean coefficient \(\alpha_{1,2} | \theta = 1/2, \Delta = 0 \) and two variance–covariance parameters \(\eta_{ij} = (\sigma_{12}^2 | \theta = 1/2, \Delta = 0, \Sigma_{12,12} | \theta = 1/2, \Delta = 0) \) which are independent and identifiable. In model (6), there is one population mean coefficient \(\alpha \) and three variance–covariance parameters \(\eta_{II} = (\sigma_{12}^2 | \Delta = 0, \theta \neq 1/2, \Sigma_{12,12} | \Delta = 0, \theta \neq 1/2, \Sigma_{21,21} | \Delta = 0, \theta \neq 1/2) \) which are independent and identifiable. In the following, we are going to discuss the parameter estimations for model (4). The same method can be applied to models (5) and (6). Denote \(\beta^T = (\alpha_{1,2}, \alpha_{2,1}) \). The loglikelihood function of model (4) is
\[
I = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{l} \log |\Gamma_i| - \frac{1}{2} \sum_{i=1}^{l} (\hat{y}_i - X_i \hat{\beta})^T \Gamma_i^{-1} (\hat{y}_i - X_i \hat{\beta}).
\]
Based on the above loglikelihood function, one may estimate the parameters \(\beta \) and \(\sigma \) by Newton–Raphson or Fisher scoring algorithms (Jennrich and Schluchter, 1986).

Under the null hypothesis \(H_0 : \theta = 1/2 \) of no linkage in the presence of association or \(H_0 : \Delta = 0 \) of no association in the presence of linkage between the trait locus and the marker locus, one can get \((1, -1) \beta = 0 \) from relation (3). Hence, we may construct a \(\chi^2 \)-statistic
\[
T = \frac{(\hat{\alpha}_{1,2} - \hat{\alpha}_{2,1})^2}{(1, -1) \left[\sum_{i=1}^{l} X_i^T \hat{\Gamma}_i^{-1} X_i \right]^{-1} \left(\begin{array}{c} 1 \\ -1 \end{array} \right)}.
\] (7)

In Appendix C, we discuss the asymptotic distribution of statistic \(T \). By assuming that the sample size is large, we may show that \(\hat{\beta} \) is asymptotic normal (see more details in Appendix C). Under the alternative hypothesis, \(T \) is distributed approximately as a non-central \(\chi^2 \) random variable with non-central parameter
\[
\lambda_T \approx \frac{(\alpha_{1,2} - \alpha_{2,1})^2}{(1, -1) \left[\sum_{i=1}^{l} X_i^T \hat{\Gamma}_i^{-1} X_i \right]^{-1} \left(\begin{array}{c} 1 \\ -1 \end{array} \right)}.
\]

The above relation is not strictly equal since the maximum likelihood estimates may not be unbiased.

The above formula can be simplified when we consider nuclear families with one single child or sib-pair. If \(n_i = 1 \) for each family, then there is only one child in each family. Let \(y_i, i = 1, 2, \ldots, m_1 \)
correspond to the trait values of offspring who receive allele \(M_1 \) from their heterozygous parents, and
\(y_i \), \(i = m_1 + 1, 2, \ldots, m_1 + m_2 \) correspond to the trait values of offspring who receive allele \(M_2 \) from their heterozygous parents. Then
\[
\hat{\sigma}_{1,2} = \sum_{i=1}^{m_1} y_i / m_1, \quad \hat{\sigma}_{2,1} = \sum_{i=m_1+1}^{m_1+m_2} y_i / m_2, \quad \hat{\sigma}_{1,2}^2 = \sum_{i=1}^{m_1} (y_i - \hat{\sigma}_{1,2})^2 / m_1, \quad \text{and} \quad \hat{\sigma}_{2,1}^2 = \sum_{i=m_1+1}^{m_1+m_2} (y_i - \hat{\sigma}_{2,1})^2 / m_2.
\]

The test statistic \(T \) is
\[
T_{\text{singleton}} = \frac{(\hat{\sigma}_{1,2} - \hat{\sigma}_{2,1})^2}{\hat{\sigma}_{1,2}^2 / m_1 + \hat{\sigma}_{2,1}^2 / m_2}.
\]

The non-centrality parameter of the singleton test statistic \(T_{\text{singleton}} \) is
\[
\lambda_{\text{singleton}} \approx \frac{\left[\left(1 - 2\theta \right) \Delta (\mu_1 - \mu_2)/\left(p_1 p_2 \right) \right]^2}{\hat{\sigma}_{1,2}^2 / m_1 + \hat{\sigma}_{2,1}^2 / m_2}.
\]

Assume that the data consist of two parts: singleton and sib-pair families. Suppose there are \(k \) singleton offspring who receive allele \(M_1 \) from their heterozygous parents, \(k_1 \) singleton offspring who receive allele \(M_2 \) from their heterozygous parents, \(k_{ii} \) (\(i = 1, 2 \)) sib pairs in each of them where both sibs receive allele \(M_i \) from their heterozygous parents, and \(k_{12} \) sib pairs in each of them where one sib receives allele \(M_1 \) from his/her heterozygous parent and the other receives allele \(M_2 \) from the same heterozygous parent. In Appendix D, we obtain the test statistic \(T \) as
\[
T_{\text{singleton,sibs}} = \frac{(\hat{\sigma}_{1,2} - \hat{\sigma}_{2,1})^2 (\hat{c} - \hat{b})}{\hat{c} + \hat{f} - 2\hat{b}}.
\]

where
\[
\hat{c} = \frac{k_1}{\hat{\sigma}_{1,2}^2} + \frac{k_2}{\hat{\sigma}_{2,1}^2} - \frac{k_{12} \hat{\sigma}_{1,2}^2 \hat{\sigma}_{2,1}^2}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{2,1}^2}, \quad \quad \quad \hat{b} = \frac{2k_{11}}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{12,21}},
\]
\[
\hat{f} = \frac{k_2}{\hat{\sigma}_{2,1}^2} + \frac{k_1}{\hat{\sigma}_{1,2}^2} - \frac{k_{12} \hat{\sigma}_{1,2}^2 \hat{\sigma}_{2,1}^2}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{2,1}^2} + \frac{2k_{22}}{\hat{\sigma}_{2,1}^2 + \hat{\sigma}_{21,21}}.
\]

The non-centrality parameter is
\[
\lambda_{\text{singleton,sibs}} \approx \frac{\left[\left(1 - 2\theta \right) \Delta (\mu_1 - \mu_2)/\left(p_1 p_2 \right) \right]^2 \left(c \hat{f} - b^2 \right)}{\hat{c} + \hat{f} - 2\hat{b}},
\]

where
\[
c = \frac{k_1}{\hat{\sigma}_{1,2}^2} + \frac{k_2}{\hat{\sigma}_{2,1}^2} - \frac{k_{12} \hat{\sigma}_{1,2}^2 \hat{\sigma}_{2,1}^2}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{12,21}}, \quad \quad \quad b = \frac{2k_{11}}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{12,21}},
\]
\[
f = \frac{k_2}{\hat{\sigma}_{2,1}^2} + \frac{k_1}{\hat{\sigma}_{1,2}^2} - \frac{k_{12} \hat{\sigma}_{1,2}^2 \hat{\sigma}_{2,1}^2}{\hat{\sigma}_{1,2}^2 + \hat{\sigma}_{2,1}^2} + \frac{2k_{22}}{\hat{\sigma}_{2,1}^2 + \hat{\sigma}_{21,21}}.
\]
5. POWER AND SAMPLE SIZE COMPARISON

To perform power and sample size calculation, we transform the phenotypic values for genotypes \(Q_1Q_1, Q_1Q_2, Q_2Q_2\) by deducting the average \((\mu_{11} + \mu_{22})/2\) of expected homozygous trait values from each \(\mu_{ij}\)

\[
\begin{align*}
\mu'_{11} &= \mu_{11} - (\mu_{11} + \mu_{22})/2 = a, \\
\mu'_{12} &= \mu_{21} - (\mu_{11} + \mu_{22})/2 = d, \\
\mu'_{22} &= \mu_{22} - (\mu_{11} + \mu_{22})/2 = -a.
\end{align*}
\]

The additive variance is \(\sigma_a^2 = 2q_1q_2(a + d(q_2 - q_1))^2\), and the dominant variance is \(\sigma_d^2 = (2q_1q_2d)^2\). The heritability is denoted by \(h^2\), and \(h^2\) is defined by \(\sigma_a^2/(\sigma_a^2 + \sigma_d^2 + \sigma_e^2)\).

5.1 Comparison with other tests

To compare powers of test statistic \(T\) with those in George et al. (1999) and Zhu and Elston (2000, 2001), we take the same parameter values \(q_1 = 0.5, p_1 = 0.4, \sigma_e^2 = 0.125, \sigma_e = 0.50, a = 0.7071, d = 0.00\) for an additive mode of inheritance (George et al., 1999, pp. 240–241; Zhu and Elston, 2000, p. 326). For a dominant mode of inheritance, we take \(\mu_{11} = \mu_{12} = 1.1547, \mu_{22} = 0.00\). For a recessive mode of inheritance, we take \(\mu_{11} = 1.1547, \mu_{12} = \mu_{22} = 0.00\) (Zhu and Elston, 2000, p. 326). Then the trait locus variance \(\sigma_q^2 + \sigma_e^2 = 0.25\).

For nuclear families each with two offspring, assume that there are \(k_{ij}\) (\(i = 1, 2\)) sib pairs in each of them where both sibs receive allele \(M_i\) from their heterozygous parents, and \(k_{ij}\) sib pairs in each of them where one sib receives allele \(M_1\) from his/her heterozygous parent and the other receives allele \(M_2\) from the same heterozygous parent. For nuclear families each with four offspring, assume that there are \(k_{iii}\) (\(i = 1, 2\)) families where in each of them every offspring receive allele \(M_i\) from their heterozygous parents, \(k_{1112}\) families where in each of them three offspring receive allele \(M_1\) from his/her heterozygous parent and the other one receives allele \(M_2\) from the same heterozygous parent, \(k_{1122}\) families in each of them two offspring receive allele \(M_1\) from their heterozygous parent and the other two receive allele \(M_2\) from the same heterozygous parent, and \(k_{1222}\) families in each of them one offspring receives allele \(M_1\) from their heterozygous parent and the other three receive allele \(M_2\) from the same heterozygous parent.

Table 1 shows the powers of test statistic \(T\) for sib-pair families and four offspring families. For sib-pair families, the rows with \(k_{11} = 50, k_{12} = 100, k_{22} = 50\) correspond to those in Table 1 of George et al. (1999) and Table I of Zhu and Elston (2000) that the total number of families is 200, and the rows with \(k_{11} = 25, k_{12} = 50, k_{22} = 25\) correspond to those in Table 1 of George et al. (1999) and Table I of Zhu and Elston (2000) that the total number of families is 100. For families with four offspring, \(k_{ijmn} = 40\) correspond to those in Table 1 of George et al. (1999) and Table I of Zhu and Elston (2000) that the total number of families is 200, and \(k_{ijmn} = 20\) correspond to those in Table 1 George et al. (1999) and Table I of Zhu and Elston (2000) that the total number of families is 100. Therefore, the results in Table 1 are comparable to those in Table 1 of George et al. (1999) and Table I of Zhu and Elston (2000).

When there is moderate linkage disequilibrium, i.e. \(\Delta = 0.10\), we notice that the powers are very much higher for small recombination fraction \(\theta\). Under moderate disequilibrium (\(\Delta = 0.1\)), the powers are very much higher than those in Table 1 of George et al. (1999), and are similar to those in Table I of Zhu and Elston (2000) by tests \(T_{ZE1}\) and \(T_{ZE2}\). This shows the advantage of the test statistic \(T\). Under the weak linkage disequilibrium, i.e. \(\Delta = 0.01\), the powers are very low and similar to those in Table 1 of George et al. (1999).

Table 2 shows the powers of test statistic \(T\) for a dominant mode of inheritance and a recessive mode of inheritance under moderate disequilibrium \(\Delta = 0.10\). At significant level 5%, the powers in Table 2
Table 1. Powers of test statistic T of an additive mode of inheritance when $q_1 = 0.5$, $p_1 = 0.4$, $\sigma^2_G = 0.125$, $\sigma_e = 0.50$, $a = 0.7071$, $d = 0.00$. Note: $k_{ijmn} = 40$ implies that the total number of families is 200, and $k_{ijmn} = 20$ implies that the total number of families is 100.

<table>
<thead>
<tr>
<th>No. of family</th>
<th>No. of offspring</th>
<th>Δ</th>
<th>θ</th>
<th>Power at 5% significance</th>
<th>Power at 1% significance</th>
<th>Power at 0.5% significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{ijmn} = 40$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>98.5</td>
<td>94.0</td>
<td>90.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>96.3</td>
<td>87.9</td>
</tr>
<tr>
<td>$k_{ijmn} = 40$</td>
<td>4</td>
<td>0.01</td>
<td>0.00</td>
<td>6.8</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>6.5</td>
<td>1.5</td>
</tr>
<tr>
<td>$k_{11} = 50$</td>
<td></td>
<td></td>
<td>0.00</td>
<td>89.0</td>
<td>72.9</td>
<td>64.7</td>
</tr>
<tr>
<td>$k_{12} = 100$</td>
<td>2</td>
<td>0.10</td>
<td>0.01</td>
<td>87.7</td>
<td>70.7</td>
<td>62.3</td>
</tr>
<tr>
<td>$k_{22} = 50$</td>
<td></td>
<td></td>
<td>0.05</td>
<td>81.9</td>
<td>61.6</td>
<td>52.5</td>
</tr>
<tr>
<td>$k_{11} = 50$</td>
<td></td>
<td></td>
<td>0.00</td>
<td>6.1</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>$k_{12} = 100$</td>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>6.1</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>$k_{22} = 50$</td>
<td></td>
<td></td>
<td>0.05</td>
<td>6.0</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>$k_{ijmn} = 20$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>83.1</td>
<td>63.4</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>75.4</td>
<td>52.9</td>
</tr>
<tr>
<td>$k_{ijmn} = 20$</td>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>5.9</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>5.8</td>
<td>1.3</td>
</tr>
<tr>
<td>$k_{11} = 25$</td>
<td></td>
<td></td>
<td>0.00</td>
<td>61.5</td>
<td>37.3</td>
<td>28.9</td>
</tr>
<tr>
<td>$k_{12} = 50$</td>
<td>2</td>
<td>0.10</td>
<td>0.01</td>
<td>59.8</td>
<td>35.6</td>
<td>27.4</td>
</tr>
<tr>
<td>$k_{22} = 25$</td>
<td></td>
<td></td>
<td>0.05</td>
<td>52.8</td>
<td>29.2</td>
<td>21.8</td>
</tr>
<tr>
<td>$k_{11} = 25$</td>
<td></td>
<td></td>
<td>0.00</td>
<td>5.6</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>$k_{12} = 50$</td>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>5.5</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>$k_{22} = 25$</td>
<td></td>
<td></td>
<td>0.05</td>
<td>5.5</td>
<td>1.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

are similar to those of T_{ZE_1} in Tables II and III of Zhu and Elston (2000). Generally, T has good powers to study quantitative traits.

5.2 Comparison of $T_{\text{singleton}}$ and $T_{\text{singleton.sibs}}$

In this section, we are going to compare the powers and sample sizes of test statistics $T_{\text{singleton}}$ and $T_{\text{singleton.sibs}}$. To calculate the non-centrality parameters $\lambda_{\text{singleton}}$ and $\lambda_{\text{singleton.sibs}}$, we need parameters such as the marker allele frequencies p_1 and p_2, trait allele frequencies q_1 and q_2, haplotype frequencies h_{ri}, recombination fraction θ, trait values μ_{rs}, polygenic variance σ^2_G, and error variance σ^2_e. Due to the evolutionary process of the population, the haplotype frequencies h_{ri} change from generation to generation. Under a Fisher–Wright model, Xiong and Guo (1997) showed that the haplotype frequencies can be modeled by a diffusion process. The expected haplotype frequencies can be calculated by $E[h_{ri}] = h_{ri}(0)e^{-\theta A} + p_i q_r (1 - e^{-\theta A})$, where A is the age of the most recent mutation at the trait locus and $h_{ri}(0)$ is the initial haplotype frequency of haplotypes $Q_r M_i$ at the generation of occurrence of the mutation at the trait locus. If there is only a single mutation in the population, one may assume that $h_{11}(0) = q_1$, $h_{12}(0) = 0$, and $h_{21}(0) = p_1 - q_1 \geq 0$, $h_{22}(0) = p_2$. Replacing h_{ri} in $P(Q_r M_i, M_j)$ by $E[h_{ri}]$, we may calculate the approximations of the non-centrality parameters. If there is more than one
Table 2. Powers of test statistic T when $q_1 = 0.5$, $p_1 = 0.4$, $\sigma^2_C = 0.125$, $\sigma_C = 0.50$.

Note: $k_{ijmn} = 40$ implies that the total number of families is 200, and $k_{ijmn} = 20$ implies that the total number of families is 100

<table>
<thead>
<tr>
<th>No. of family</th>
<th>No. of offspring</th>
<th>Δ</th>
<th>θ</th>
<th>Power at 5% significance</th>
<th>Power at 1% significance</th>
<th>Power at 0.5% significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{11} = 25</td>
<td></td>
<td></td>
<td>0.00</td>
<td>40.3</td>
<td>19.6</td>
<td>13.9</td>
</tr>
<tr>
<td>k_{12} = 50</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>39.4</td>
<td>18.8</td>
<td>13.2</td>
</tr>
<tr>
<td>k_{22} = 25</td>
<td></td>
<td></td>
<td>0.05</td>
<td>34.8</td>
<td>15.7</td>
<td>10.8</td>
</tr>
<tr>
<td>$k_{ijmn} = 20$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>64.5</td>
<td>40.4</td>
<td>31.8</td>
</tr>
<tr>
<td>k_{11} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>58.9</td>
<td>34.8</td>
<td>26.7</td>
</tr>
<tr>
<td>k_{12} = 100</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>63.5</td>
<td>39.3</td>
<td>30.8</td>
</tr>
<tr>
<td>k_{22} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>60.2</td>
<td>36.1</td>
<td>27.8</td>
</tr>
<tr>
<td>$k_{ijmn} = 40$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>91.0</td>
<td>76.6</td>
<td>68.9</td>
</tr>
</tbody>
</table>

Dominant mode of inheritance: $\mu_{11} = \mu_{12} = \mu_{21} = 1.1547$, $\mu_{22} = 0.00$

<table>
<thead>
<tr>
<th>No. of family</th>
<th>No. of offspring</th>
<th>Δ</th>
<th>θ</th>
<th>Power at 5% significance</th>
<th>Power at 1% significance</th>
<th>Power at 0.5% significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{11} = 25</td>
<td></td>
<td></td>
<td>0.00</td>
<td>43.2</td>
<td>21.6</td>
<td>15.4</td>
</tr>
<tr>
<td>k_{12} = 50</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>41.9</td>
<td>20.6</td>
<td>14.6</td>
</tr>
<tr>
<td>k_{22} = 25</td>
<td></td>
<td></td>
<td>0.05</td>
<td>36.6</td>
<td>16.9</td>
<td>11.7</td>
</tr>
<tr>
<td>$k_{ijmn} = 20$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>62.4</td>
<td>38.2</td>
<td>29.7</td>
</tr>
<tr>
<td>k_{11} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>54.7</td>
<td>30.9</td>
<td>23.3</td>
</tr>
<tr>
<td>k_{12} = 100</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>60.9</td>
<td>36.7</td>
<td>28.4</td>
</tr>
<tr>
<td>k_{22} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>60.2</td>
<td>36.1</td>
<td>27.8</td>
</tr>
<tr>
<td>$k_{ijmn} = 40$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>89.6</td>
<td>73.9</td>
<td>65.9</td>
</tr>
</tbody>
</table>

Recessive mode of inheritance: $\mu_{11} = 1.1547$, $\mu_{12} = \mu_{21} = \mu_{22} = 0.00$

<table>
<thead>
<tr>
<th>No. of family</th>
<th>No. of offspring</th>
<th>Δ</th>
<th>θ</th>
<th>Power at 5% significance</th>
<th>Power at 1% significance</th>
<th>Power at 0.5% significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{11} = 25</td>
<td></td>
<td></td>
<td>0.00</td>
<td>43.2</td>
<td>21.6</td>
<td>15.4</td>
</tr>
<tr>
<td>k_{12} = 50</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>41.9</td>
<td>20.6</td>
<td>14.6</td>
</tr>
<tr>
<td>k_{22} = 25</td>
<td></td>
<td></td>
<td>0.05</td>
<td>36.6</td>
<td>16.9</td>
<td>11.7</td>
</tr>
<tr>
<td>$k_{ijmn} = 20$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>62.4</td>
<td>38.2</td>
<td>29.7</td>
</tr>
<tr>
<td>k_{11} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>54.7</td>
<td>30.9</td>
<td>23.3</td>
</tr>
<tr>
<td>k_{12} = 100</td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>60.9</td>
<td>36.7</td>
<td>28.4</td>
</tr>
<tr>
<td>k_{22} = 50</td>
<td></td>
<td></td>
<td>0.05</td>
<td>60.2</td>
<td>36.1</td>
<td>27.8</td>
</tr>
<tr>
<td>$k_{ijmn} = 40$</td>
<td>4</td>
<td>0.10</td>
<td>0.00</td>
<td>89.6</td>
<td>73.9</td>
<td>65.9</td>
</tr>
</tbody>
</table>

mutation in a population, one needs more care with the fluctuation of haplotype frequencies. However, assuming a single copy mutation would be a sound assumption for a rare disease.

Using the non-centrality parameters given in Section 4, we can carry out power and sample size calculations by setting different parameter values for the trait gene and the marker allele frequencies, heritability, recombination fraction, the age of mutation for the trait allele, etc. To make the comparison valid, we assume that only one offspring is picked up from the sib-pair families for analysis. Hence, k_{ii} offspring will be treated as singleton offspring who receive allele M_i from the heterozygous parents. Moreover, let us treat $k_{12}/2$ offspring as singleton offspring who receive allele M_1 from the heterozygous parents, and $k_{12}/2$ offspring as singleton offspring who receive allele M_2 from the heterozygous parents. Hence, we will have $k_1 + k_{11} + k_{12}/2$ (or $k_2 + k_{22} + k_{12}/2$) offspring who are treated as singleton offspring who receive allele M_1 (or M_2) from the heterozygous parents. In Figures 3–6, we assume that $m_1 = m_2 = 100$ and $k_{ij} = 40$. Since $k_1 + k_{11} + k_{12}/2 = k_2 + k_{22} + k_{12}/2 = 100$, $T_{\text{singleton}}$ in these
Recombination Fraction

Power

0.0 0.02 0.04 0.06 0.08 0.1

0.0 0.2 0.4 0.6 0.8 1.0

Curve of $T_{\text{singleton}}$

Curve of $T_{\text{singleton}, \text{sibs}}$

Fig. 3. Power curves of $T_{\text{singleton}}$ and $T_{\text{singleton}, \text{sibs}}$ when $q_1 = 0.25$, $h^2 = 0.60$, $A = 20$, $p_1 = 0.50$, $m_1 = m_2 = 100$, $k_1 = k_2 = 40$, $k_{11} = k_{12} = k_{22} = 40$, $\sigma^2_G = 0.75$ for a dominant trait $a = d = 1.0$.

Figures can be viewed as the singleton families constructed from the nuclear families for $T_{\text{singleton}, \text{sibs}}$.

Figures 3 and 4 plot the power curves of $T_{\text{singleton}}$ and $T_{\text{singleton}, \text{sibs}}$ against the recombination fraction for dominant and recessive traits. Figures 5 and 6 plot the power curves of $T_{\text{singleton}}$ and $T_{\text{singleton}, \text{sibs}}$ against the heritability for dominant and recessive traits. The four figures show that $T_{\text{singleton}, \text{sibs}}$ has higher power than that of $T_{\text{singleton}}$.

6. AN EXAMPLE

As an example, we apply our method to Genetic Analysis Workshop 12 Oxford asthma data (Cookson and Abecasis, 2001). The data consist of 80 nuclear families with a total of 203 offspring. In these 80 families, 43 have two offspring, 31 have three offspring, and 6 have four offspring. In Daniel et al. (1996), linkage to bronchial responsiveness to methacholine (slope) and other quantitative traits was tested by the Haseman–Elston sib-pair technique (Haseman and Elston, 1972). Three regions of potential linkage to autosomal markers were detected with loge slope on chromosomes 4, 7 and 16 in Daniel et al. (1996).

We analyse the data using model (4), and test the linkage by using statistic T in (7). By using SAS mixed model procedures, we have got the following results:

<table>
<thead>
<tr>
<th>Marker Locus</th>
<th>Estimate of parameters σ^2</th>
<th>P-value of T in (7) to test $\alpha_{1,2} = \alpha_{2,1}$</th>
<th>P-value of Daniel et al. (1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4S1540</td>
<td>(1.28, 2.70, 0.88, 1.23, 1.10)</td>
<td>0.02</td>
<td><0.05</td>
</tr>
<tr>
<td>D7S484</td>
<td>(2.31, 1.94, 1.36, 1.07, 0.58)</td>
<td>0.02</td>
<td><0.0005</td>
</tr>
<tr>
<td>D16S515</td>
<td>(3.02, 2.06, 0.95, 0.51, 0.80)</td>
<td>0.04</td>
<td><0.05</td>
</tr>
<tr>
<td>D16S289</td>
<td>(2.25, 1.24, -1.10, 0.75, 0.31)</td>
<td><0.0001</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Fig. 4. Power curves of $T_{\text{singleton}}$ and $T_{\text{singleton, sibs}}$ when $q_1 = 0.50, h^2 = 0.50, A = 20, p_1 = 0.50, m_1 = m_2 = 100, k_1 = k_2 = 40, k_{11} = k_{12} = k_{22} = 40, \sigma^2_G = 1.0$ for a recessive trait $a = 1.0$ and $d = -0.5$.

Fig. 5. Power curves of $T_{\text{singleton}}$ and $T_{\text{singleton, sibs}}$ when $q_1 = 0.25, \theta = 0.005, A = 20, p_1 = 0.50, m_1 = m_2 = 100, k_1 = k_2 = 40, k_{11} = k_{12} = k_{22} = 40, \sigma^2_G = 0.75$ for a dominant trait $a = d = 1.0$.
Heritability

Power

Curve of $T_{\text{singleton, sibs}}$
Curve of $T_{\text{singleton}}$

Fig. 6. Power curves of $T_{\text{singleton}}$ and $T_{\text{singleton, sibs}}$ when $q_1 = 0.50, \theta = 0.005, A = 20, p_1 = 0.50, m_1 = m_2 = 100, k_1 = k_2 = 40, k_{11} = k_{12} = k_{22} = 40, \sigma_G^2 = 1.0$ for a recessive trait $a = 1.0$ and $d = -0.5$.

The p-values of testing the equality of the coefficients $\alpha_{1,2}$ and $\alpha_{2,1}$ are smaller than 0.05 significant level for three markers D4S1540, D7S484 and D16S515, and smaller than 0.0001 for marker D16S289. Hence, our results confirm the findings in Daniel et al. (1996) that the three regions are potentially linked to asthma phenotype $\log e$ slope.

7. Discussion

The objective of this paper is to explore models and test statistics of linkage and association studies between a marker and a quantitative trait locus for sample data of nuclear families. Although the trait values of offspring from unrelated nuclear families can be treated as independent variables, the trait values of multiple offspring of a family are dependent on each other. Hence, the TDT statistics for singleton offspring nuclear families may not be used directly to analyse sample data of multiple offspring nuclear families. One way to handle this problem is to randomly choose an offspring from each nuclear family. However, this method, because of considerable information loss, is less powerful than the mixed model method proposed in this paper.

George et al. (1999) and Zhu and Elston (2000, 2001) have proposed very interesting TDT regression models to analyse quantitative family data. Their variance–covariance matrices take into account of the polygenic and environmental effects, ignoring the effects on major gene locus. In this paper, we propose a mixed model whose variance–covariance matrix contains all effects of major gene locus, polygenic loci and environment. The powers of the test statistic T proposed in this paper is higher than those of George et al. (1999), and similar to those of $T_{Z_{E1}}$ in Zhu and Elston (2000) under moderate disequilibrium.

After comparing the sample sizes and powers between singleton offspring families and sib-pair families, we conclude that the statistic is more powerful than the TDT constructed by randomly choosing
an offspring from each nuclear family. This conclusion is similar to that of Martin et al. (1997) for qualitative traits. Moreover, one may use likelihood ratio tests for the linkage and association studies.

The method proposed in this paper can use all data of all offspring of homozygous \(\times \) heterozygous matings, and homozygous offspring of heterozygous \(\times \) heterozygous matings. For the nuclear families that both parents and each offspring have the same heterozygous genotypes \(M_1M_2 \), it is impossible to tell if a parent transmits allele \(M_1 \) or \(M_2 \) to each of his/her offspring. Hence, the mean and variance–covariance structure is problematic. For this kind of family, one may use the Bayesian method to analyze the data by considering each possible transmission and treating it via a prior probability.

In the case where the sample data have general pedigrees (e.g. more than two generation pedigrees) in addition to the nuclear families, one may use mixed models to analyze the data according to the principles described in this paper. However, one needs to calculate the mean and variance–covariance structure for each family, and then construct appropriate mixed models. Moreover, one may include interesting covariates in the models such as gender and age of the offspring. Using standard statistical packages such as SAS, the analysis should be readily carried out.

In real data analysis, we often encounter multi-allelic markers. One may collapse the multiple marker alleles to form a bi-allelic marker, and apply the theory of the bi-allelic marker for analysis. In the meantime, one may still want to use the multi-allelic marker for a composite analysis since it may capture more information and has higher power (Fan et al., 2002; Sham and Curtis, 1995). One may generalize the mixed model method of this paper for multi-allelic markers. However, it is more involved in terms of notation and theoretical inferences.

APPENDIX A

Let us utilize the notation introduced in Section 2 such as \(TQ, TH, TM \) and \(NM \). Consider a heterozygous parent with a genotype \(M_1M_2 \) at the marker locus \(M \). First of all, we may calculate the conditional variance of the trait value for the offspring given the transmitted allele \(Q_r \)

\[
\sigma^2_r = \text{Var}(Y|TQ = Q_r) = \sum_{j=1}^{2} \text{E}[(v + g + G + e - \alpha_r)^2|Q_r, Q_3]q_s
\]

\[= \sum_{j=1}^{2} (\mu_{rs} - \mu_r)^2 q_s + \sigma_G^2 + \sigma_e^2.
\]

Then, we have conditional variance of the trait values for \(i \neq j \), given that the marker allele \(M_i \) is transmitted and \(M_j \) is not transmitted

\[
\sigma^2_{i,j} = \text{Var}(Y|TM = M_i, NM = M_j) = \text{E}[(Y - \alpha_{i,j})^2|TM = M_i, NM = M_j]
\]

\[= \sum_{r=1}^{2} \text{E}[(Y - \alpha_{i,j})^2|TH = Q_r, M_i, NM = M_j] \cdot \frac{P(Q_r, M_i, M_j)}{P(M_i, M_j)} = \Sigma_{ij} + \sigma_G^2 + \sigma_e^2.
\]

APPENDIX B

In this Appendix, we calculate the covariance \(\Sigma_{12,12} \) of \(y_l \) (\(l = 1, \ldots, k \)) and \(y_t \) (\(t \neq l, t = 1, \ldots, k \)), and covariance \(\Sigma_{12,21} \) of \(y_l \) (\(l = 1, \ldots, k \)) and \(y_t \) (\(t = k + 1, \ldots, n \)) in Figure 2. Without loss of generality, assume that \(k = 2 \) and \(n = 3 \). Let \(TM_1 \) be the abbreviation of the ‘transmitted marker allele for child 1’, and \(NM_1 \) be the abbreviation of the ‘non-transmitted marker allele for child 1’, from the heterozygous father \(M_1M_2 \) in Figure 2. Similarly, we define \(TM_i, NM_i, i = 2, 3 \).
Denote $A = (T M_1 = M_1, N M_1 = M_2, T M_2 = M_1, N M_2 = M_2)$. Then we have $P(A) = [p_1 p_2]^1 / 2 = p_1 p_2 / 2$. Using the notation in Lange (1997, Chapter 5), let S_7, S_8 and S_9 be three condensed identity states (Jacquard, 1974). Specifically, S_7 is the state where two offspring share two identical major trait locus genes by descent, S_8 is the state where two offspring share one identical major trait locus gene by descent, and S_9 is the state where two offspring share no identical major trait locus gene by descent. Then

$$\Sigma_{12,12} = \text{Cov}(y_1, y_2) = E \{ (Y_1 - \alpha_{1,2})(Y_2 - \alpha_{1,2}) \} | A$$
$$= E(\{g_1 g_2 l (A \cap S_7)\} + E(\{g_1 g_2 l (A \cap S_8)\} + E(\{g_1 g_2 l (A \cap S_9)\}) / (p_1 p_2 / 2) - (v - \alpha_{1,2})^2 + E(G_1 G_2),$$

where $E(G_1 G_2) = \sigma_G^2 / 2$ (Amos, 1994; Zhu and Elston, 2001). Let S_{7kl} be the state where two offspring share two identical trait alleles Q_k and Q_l by descent, and Q_l is from the heterozygous father and Q_k is from the mother; S_{8kldr} be the state where two offspring share one identical trait allele Q_k by descent, and the other two trait alleles Q_l and Q_r are not identical by descent; and S_{9kldr} be the state where two offspring share no identical trait alleles by descent, and two trait alleles Q_l, Q_r of the two offspring are from the heterozygous father, and the other two trait alleles Q_k, Q_r are from the mother. Then

$$\Sigma_{12,12} = \left[\sum_k \sum_l \mu_{kl}^2 P(A \cap S_{7kl}) + \sum_k \sum_l \sum_r \mu_{kl} \mu_{lr} P(A \cap S_{8kldr}) \right. \left. + \sum_k \sum_l \sum_r \sum_s \mu_{kl} \mu_{rs} P(A \cap S_{9kldr}) \right] / (p_1 p_2 / 2) - (v - \alpha_{1,2})^2 + \sigma_G^2 / 2, \quad (11)$$

where

$$P(A \cap S_{7kl}) = \frac{q_k}{2} \left(2 h_{11} p_2 \frac{1 - \theta}{2} \frac{1 - \theta}{2} + 2 h_{12} p_1 \frac{\theta}{2} \frac{\theta}{2} \right)$$
$$= \frac{q_k (h_{11} p_2 (1 - \theta)^2 + h_{12} p_1 \theta^2) / 4}{2}$$

$$P(A \cap S_{8kldr}) = \frac{q_k q_r}{2} \cdot \left(2 h_{11} p_2 \frac{1 - \theta}{2} \frac{1 - \theta}{2} + 2 h_{12} p_1 \frac{\theta}{2} \frac{\theta}{2} \right) + \frac{q_k}{2} \cdot (h_{11} h_{12} + h_{11} h_{12} + h_{11} h_{12}) 2 \theta (1 - \theta) / 4$$
$$= \frac{q_k q_r (h_{11} p_2 (1 - \theta)^2 + h_{12} p_1 \theta^2) / 4 + q_k (h_{11} h_{12} + h_{11} h_{12}) \theta (1 - \theta) / 4}{2}$$

$$P(A \cap S_{9kldr}) = \frac{q_k q_r}{2} \cdot (h_{11} h_{12} + h_{11} h_{12}) \theta (1 - \theta) / 4$$

Similarly, denote $B = (T M_1 = M_1, N M_1 = M_2, T M_3 = M_2, N M_3 = M_1)$. We can calculate the conditional covariance of offspring 1 and 3 in Figure 2

$$\Sigma_{12,21} = \Sigma_{21,12} = \text{Cov}(y_1, y_3)$$
$$= \left[\sum_k \sum_l \mu_{kl}^2 P(B \cap S_{7kl}) + \sum_k \sum_l \sum_r \mu_{kl} \mu_{lr} P(B \cap S_{8kldr}) \right. \left. + \sum_k \sum_l \sum_r \sum_s \mu_{kl} \mu_{rs} P(B \cap S_{9kldr}) \right] / (p_1 p_2 / 2) - (v - \alpha_{1,2})(v - \alpha_{2,1}) + \sigma_G^2 / 2, \quad (12)$$
where

\[
P(B \cap S_{\ell k}) = \frac{q_k}{2} \cdot (2h_{ll}p_2 + 2h_{l2}p_1)\theta(1 - \theta)/4 = q_k(h_{ll}p_2 + h_{l2}p_1)\theta(1 - \theta)/4
\]

\[
P(B \cap S_{\ell kr}) = \frac{q_kq_r}{2} \cdot (2h_{\ell k}p_2 + 2h_{k2}p_1)\theta(1 - \theta)/4 + \frac{q_k}{2} \cdot (h_{ll}h_{r2} + h_{l1}h_{12}) \theta^2 + (1 - \theta)^2/4
\]

\[
P(B \cap S_{\ell klr}) = \frac{q_kq_r}{2} \cdot (h_{l1}h_{r2} + h_{s1}h_{12}) \theta^2 + (1 - \theta)^2/4
\]

Assuming that \(\theta = 1/2 \) and \(\Delta \neq 0 \), then relations (11) and (12) lead to \(\Sigma_{12,12} = \Sigma_{12,21} = \Sigma_{21,12} = \Sigma_{21,21} \). Similarly, the conditional covariance \(\Sigma_{12,12|\Delta=0,\theta \neq 1/2} \) is equal to the covariance \(\Sigma_{12,21|\Delta=0,\theta \neq 1/2} \). Let \(\gamma_{kl} = \mu_{kl} - \mu = \sum_k \sum_i \mu_{kl}q_i q_i \), and \(\gamma_k = \sum_i \gamma_{k1} q_i \). If there is no linkage (i.e. \(\theta = 1/2 \)) and no association (i.e. \(h_{ri} = q_r p_i \) for all \(r \) and \(i \)) between the marker and the trait locus, then one may obtain

\[
\Sigma_{12,12} = \Sigma_{21,12} = \sum_k \sum_i (\gamma_{kl} - \gamma_k - \gamma_l)^2 q_k q_i / 4 + \sum_k \gamma_k^2 q_k + \sigma_G^2 / 2 = \sigma_2^2 / 4 + \sigma_a^2 / 2 + \sigma_G^2 / 2,
\]

which is the covariance of trait values between siblings (Almasy and Blangero, 1998; Amos, 1994; Blangero and Almasy, 1997; Lange, 1997).

APPENDIX C

In this Appendix, we are going to discuss the asymptotic property of the test statistic \(T \) in Section 4. To simplify the notation, we assume that the data consist of two parts: singleton and sib-pair families. Suppose there are \(k_1 \) singleton offspring who receive allele \(M_1 \) from their heterozygous parents, \(k_2 \) singleton offspring who receive allele \(M_2 \) from their heterozygous parents, \(k_{i1} \) (\(i = 1, 2 \)) sib pairs in each of them where both sibs receive allele \(M_1 \) from their heterozygous parents, and \(k_{12} \) sib pairs in each of them, one sib receives allele \(M_1 \) from his/her heterozygous parent and the other receives allele \(M_2 \) from the same heterozygous parent.

Let us denote \(\sigma^2 = (\sigma_1 = \sigma_{11}^2, \sigma_2 = \sigma_{22}^2, \sigma_3 = \Sigma_{12,12}, \sigma_4 = \Sigma_{12,21}, \sigma_5 = \Sigma_{21,21}) \). Let \(c, b, f \) be the constants defined in (10). Under the alternative hypothesis, we may get the following expected second
partial derivatives:

\[
\frac{\partial^2 l_F}{\partial \beta \partial \beta'} = - \left(\begin{array}{cc}
c & -b \\
-b & f
\end{array} \right), \quad \text{E} \left(\frac{\partial^2 l_F}{\partial \beta \partial \sigma^2} \right) = 0,
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_1^2} \right) = \frac{k_1}{2 \sigma_1^2} - \frac{k_{11}(\sigma_1^2 + \sigma_2^2)}{(\sigma_1^2 - \sigma_2^2)^2} - \frac{k_{12} \sigma_2^2}{2(\sigma_1 \sigma_2 - \sigma_2^2)^2},
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_2^2} \right) = \frac{k_2}{2 \sigma_2^2} - \frac{k_{22}(\sigma_2^2 + \sigma_1^2)}{(\sigma_2^2 - \sigma_1^2)^2} - \frac{k_{12} \sigma_1^2}{2(\sigma_1 \sigma_2 - \sigma_2^2)^2},
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_1 \partial \sigma_2} \right) = \frac{k_{11}(\sigma_1^2 + \sigma_2^2)}{(\sigma_1^2 - \sigma_2^2)^2}, \quad \text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_1^2 \partial \sigma_2} \right) = -\frac{k_{12} \sigma_2^2}{2(\sigma_1 \sigma_2 - \sigma_2^2)^2},
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_1 \partial \sigma_3} \right) = \frac{2k_{11} \sigma_1 \sigma_3}{(\sigma_1^2 - \sigma_3^2)^2}, \quad \text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_1 \partial \sigma_4} \right) = \frac{k_{12} \sigma_2 \sigma_4}{(\sigma_1 \sigma_2 - \sigma_2^2)^2},
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_2 \partial \sigma_3} \right) = \frac{k_{12} \sigma_1 \sigma_4}{(\sigma_1 \sigma_2 - \sigma_4^2)^2}, \quad \text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_2 \partial \sigma_4} \right) = \frac{2k_{22} \sigma_2 \sigma_4}{(\sigma_2^2 - \sigma_4^2)^2},
\]

\[
\text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_3 \partial \sigma_4} \right) = \text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_3 \partial \sigma_3} \right) = \text{E} \left(\frac{\partial^2 l_F}{\partial \sigma_4 \partial \sigma_3} \right) = 0.
\]

Assume that \(k_1, k_2, k_{ij} \rightarrow \infty, i, j = 1, 2 \). To make it simple, assume \(k_1 \leq k_2, k_1 \leq k_{ij} \). Furthermore, assume \(k_2/k_1 \rightarrow k_2', k_{ij}/k_1 \rightarrow k_{ij}' \) with some positive constants \(k_2' \) and \(k_{ij}' \). Then we can show that \(-\frac{1}{k_1} \frac{\partial^2 l_F}{\partial \beta \partial \beta'} \) and \(-\frac{1}{k_1} \text{E} \left(\frac{\partial^2 l_F}{\partial \beta \partial \sigma^2} \right) \) are positive definite. Now we are in a position to use the method in Miller (1977) and Pinheiro (1994) according to the theory of Weiss (1971, 1973). Actually, taking \(k_1 \) to replace \(u_j \) we can see that the key condition, i.e. Assumption 3.1.7 of Pinheiro (1994, p. 28), holds. Then by the same arguments in Pinheiro (1994, Chapter 3), we can show that \(\sqrt{k_1} \beta \) converges to normal in distribution. This implies that the test statistic \(T \) is asymptotically \(\chi^2 \) by considering the denominator of \(T \) as the estimate of the variance of the difference \(\hat{\alpha}_{1,2} - \hat{\alpha}_{2,1} \).
Appendix D

Note that

\[\sum_{i=1}^{l} X_i^T \hat{\Gamma}^{-1} X_i \]

\[= \begin{pmatrix} k_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,1} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + k_{12} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + k_{22} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + k_{12} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \\ \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + k_{22} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 0 \end{pmatrix} + k_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 0 \end{pmatrix} + k_{22} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^2_{1,2} \end{pmatrix}^{-1} \begin{pmatrix} 0 \end{pmatrix} = \begin{pmatrix} \hat{c} \\ -\hat{b} \end{pmatrix}. \]

where \(\hat{c}, \hat{b}, \) and \(\hat{f} \) are quantities given in relations (9). Plugging the above relation into (7), we may get the test statistic in (8).

Acknowledgements

We thank Dr Joanna Floros for helpful suggestions in writing the paper, and Dr Yuedong Wang for discussions on mixed models. Dr Zeger, one Associate Editor and one referee have raised very good questions and suggestions which led to much improvements of the paper. Dr Pinheiro kindly supplied us his PhD thesis for the investigation of asymptotic property of the test statistics. Ms Jeesun Jung helped us in data analysis. R. Fan was supported partially by a pilot project at Texas A&M University. M. Xiong was supported by NIH grant R01-GM56515, and MH59518.

References

SPIELMAN, R. S., McGINNIS, R. E. AND EWENS, W. J. (1993). Transmission test for linkage disequilibrium: the

[Received March 15, 2001; first revision June 28, 2001; second revision August 29, 2001; third revision November 7, 2001; fourth revision December 14, 2001; accepted for publication January 10, 2002]