Respiratory Tract Responses to Repeated Inhalation of an Oxidant and Acid Gas-Particle Air Pollutant Mixture

William J. Mautz* †‡, Michael T. Kleinman†, Deepak K. Bhatta‡ and Robert F. Phalen†

*Department of Biology, University of Hawaii at Hilo, Hilo, Hawaii; †Department of Community and Environmental Medicine, University of California, Irvine, California; and ‡School of Pharmacy, Department of OEHS, Wayne State University, 207 Shapero Annex, Detroit, Michigan

Received October 18, 2000; accepted March 9, 2001

The purpose of this study was to examine a broad range of toxicologic responses in rats exposed to a multi-component pollutant atmosphere. Cumulative and adaptive respiratory tract responses to 3 concentrations of an inhaled particle-oxidant mixture were examined in Fisher 344 N rats exposed 4 h/day, 3 days/week for 4 weeks. The mixtures contained O₃, NO₂, NH₄HSO₄, carbon particles, and HNO₃ vapor. Irritant-induced, rapid-shallow breathing responses were present during the first 4 h of exposure to medium and high concentrations. Successive exposures showed diminished responses in medium concentrations and exacerbated responses in high concentrations. At the end of 4 weeks, rats exposed to high concentrations exhibited lung lesions. Lavaged pulmonary macrophages showed dose-dependent depressions of Fe-receptor binding and phagocytosis. Lung tissue macrophages showed dose-dependent increases in acid phosphatase staining density and carbon particles. Respiratory tract clearance of tracer particles was not significantly affected by the exposures. Bronchoalveolar epithelial permeability was increased by the high concentration. Epithelial cell-proliferation labeling showed a dose-dependent increase at all levels of the respiratory tract. Progressively exacerbated breathing-pattern responses at high concentrations were associated with lung lesions and high cell-proliferation labeling in the nasal transitional epithelium and terminal bronchioles. Attenuating or adaptive breathing-pattern responses occurred in the presence of smaller, but in many cases still significant, compromiss of respiratory functions. Either attenuating or exacerbated breathing-pattern responses can occur in the presence of a significant dose-dependent compromise of other respiratory functions and lung tissue injury.

Key Words: air pollution; particles; ozone; nitrogen dioxide; nitric acid; ammonium bisulfate; oxidants; acids; complex mixtures; inhalation toxicology.

Understanding the adverse health effects of urban air pollution is complicated by recent epidemiologic studies implicating fine particles as being of major toxicologic importance (Abbey et al., 1991; Lebowitz, 1996; National Research Council, 1998; Pope et al., 1991, 1995). In addition, laboratory exposure studies show that repeated daily ozone exposures result in pulmonary function responses that peak on the first or second day of exposure and are subsequently attenuated, in some cases returning to control levels (Foxcroft and Adams, 1986; Horvath et al., 1981; Linn et al., 1988; Wiester et al., 1995). Changes in breathing patterns are sensitive indications of respiratory tract irritation from inhaled pollutants (Alarie, 1973), and breath frequency and tidal volume responses often attenuate with repeated daily exposure to oxidant pollutants in both humans and laboratory animals. Attenuated or adaptive responses to repeated ozone exposure observed for spirometric pulmonary-function measures may not occur for other oxidant-injury responses of the lung (McKinney et al., 1998; Sun and Chung, 1997; Tepper et al., 1989). Furthermore, repeated exposures to ozone in combination with an acidic carbon particle aerosol showed significant modification and disruption of the attenuated responses to repeated exposures to ozone alone (Kleinman et al., 1999, 2000). The mechanism by which particle exposure can blunt ozone-response attenuation is not known, but such ozone-particle interactions raise the possibility of an important role for particles in toxicity of urban air pollution.

The purpose of the present study was to examine, in laboratory rats, a diverse range of respiratory effects of inhaling a fine particle and oxidant gas mixture representative of photochemical air pollution. By studying a variety of endpoints, a more complete picture of the responses could be obtained, and effects on related lung functions could be compared. Nose-only inhalation exposures were conducted for 4 h per day, 3 days per week for 4 weeks to a mixture of oxidant, acid and particulate pollutants. Elevated levels of urban air pollution tend to occur in repeated daily excursions driven by meteorological patterns, with more severe episodes lasting for several h per day for several consecutive days (Blumenthal et al., 1978). Breathing patterns were recorded during the course of exposures to monitor the development and possible attenuation of pulmonary responses. At the end of the 4-week exposure, respiratory tract injury was evaluated with a variety of measures historically affected by ozone exposure including respiratory tract clearance, epithelial permeability, epithelial cell...
proliferation labeling, pulmonary macrophage functions, and inflammatory injury. The exposure mixture, which contained oxidants (ozone and nitrogen dioxide), acids (ammonium bisulfate and nitric acid), and fine particulate carbon (Table 1) was based upon ambient measurements made in the San Gabriel Valley of the South Coast Air Basin in California (Solomon et al., 1996). This is an area with intense levels of photochemically derived oxidants and particles. This region was of interest because prior epidemiological studies (Tashkin et al., 1994), and a current multi-community children’s health study (McConnell et al., 1999) has demonstrated adverse effects in sensitive children in these communities. Many urban communities in the United States and other countries have significant levels of ozone, nitrogen oxides, sulfates and carbonaceous particles (Kley et al., 1999).

Table 1: Component Concentrations of the Oxidant Gas-particle Pollutant Mixtures

<table>
<thead>
<tr>
<th>Exposure group</th>
<th>Component pollutant</th>
<th>Target concentration</th>
<th>Exposure concentrations (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>O<sub>3</sub> (ppm)</td>
<td>0.15</td>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>NO<sub>2</sub> (ppm)</td>
<td>0.10</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>ABS (mg/m<sup>3</sup>)</td>
<td>0.05</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>C (mg/m<sup>3</sup>)</td>
<td>0.03</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>HNO<sub>3</sub> (mg/m<sup>3</sup>)</td>
<td>0.025</td>
<td>0.020 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>Aerosol size (μm MMAD)</td>
<td>0.3</td>
<td>0.29 ± 1.6 GSD</td>
</tr>
<tr>
<td>Medium</td>
<td>O<sub>3</sub> (ppm)</td>
<td>0.30</td>
<td>0.30 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>NO<sub>2</sub> (ppm)</td>
<td>0.20</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>ABS (mg/m<sup>3</sup>)</td>
<td>0.10</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>C (mg/m<sup>3</sup>)</td>
<td>0.06</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>HNO<sub>3</sub> (mg/m<sup>3</sup>)</td>
<td>0.05</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Aerosol size (μm MMAD)</td>
<td>0.3</td>
<td>0.31 ± 1.4 GSD</td>
</tr>
<tr>
<td>High</td>
<td>O<sub>3</sub> (ppm)</td>
<td>0.60</td>
<td>0.59 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>NO<sub>2</sub> (ppm)</td>
<td>0.40</td>
<td>0.39 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>ABS (mg/m<sup>3</sup>)</td>
<td>0.20</td>
<td>0.22 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>C (mg/m<sup>3</sup>)</td>
<td>0.12</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>HNO<sub>3</sub> (mg/m<sup>3</sup>)</td>
<td>0.10</td>
<td>0.11 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Aerosol size (μm MMAD)</td>
<td>0.3</td>
<td>0.31 ± 2.1 GSD</td>
</tr>
<tr>
<td>All groups</td>
<td>Relative humidity 60.5 ± 0.3%; temperature 23.5 ± 0.8°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Data are means ± standard deviation (SD) of daily average values. ABS is ammonium bisulfate, NH₄HSO₃. Aerosol size was measured from the mixture sampled at the breathing zone of the exposed animals and includes both carbon and sulfate components.

Materials and Methods

Animals and experimental design. This study was conducted under an Institutional Animal Care and Use Committee-approved protocol and in an Association for Assessment and Accreditation of Laboratory Animal Care-accredited facility. Male Fischer 344/N rats, barrier reared and specific-pathogen free (Simonsen Laboratories, Inc., Gilroy, CA), were tattooed for identification. Rats were housed in wire-bottomed cages (Hoeltge, Inc., Cincinnati, OH) over rock salt to absorb moisture from excreta and prevent ammonia formation (Phalen, 1997). Laminar flow isolators supplied each cage with filtered air (Mautz and Kleinman, 1997). The animals were provided with dry laboratory chow (Wayne Lab Blox, Western Research Products, Orange, CA) and water ad libitum. Upon arrival, 10 animals were sacrificed for quality control analysis. Lungs were removed, fixed, embedded, and then processed through high-efficiency particle filters (Phalen, 1997). Air supplied to the chambers was passed through coarse-particle filters and gas scrubbers, humidified, and then passed through high-efficiency particle filters (Phalen, 1997). Carbon aerosol was generated with a modified MRE-type 3-jet collision nebulizer model CN-24 (BGI, Inc., Waltham, MA) containing ultrasonically agitated fresh suspensions of carbon black (Monarch 120, Cabot Chemical). Ammonium bisulfate aerosol was nebulized from a dilute solution in a second generation and monitoring of exposure atmospheres. Air pollutant exposure mixtures were generated at 3 different concentration levels that differed by successive factors of 2 (Table 1). Each mixture and purified air stream was delivered to 1-m³ volume, Rochester-type chambers modified to accept nose-only exposure tubes in ports that placed each rat’s nose into an individual stream of a test atmosphere (Mautz, 1997; Phalen, 1997). Air supplied to the chambers was passed through coarse-particle filters and gas scrubbers, humidified, and then passed through high-efficiency particle filters (Phalen, 1997).
collision nebulizer. Each aerosol was dried and diluted with air, passed through a 125Kr aerosol discharger, equilibrated with purified air at 60% relative humidity, and then introduced into the exposure chamber air stream (Kleinman et al., 1999, 2000). Ozone was generated by passing medical-grade oxygen through a corona-discharge ozonizer (Sander type III, Osterberg, Germany). Nitrogen dioxide (1% in nitrogen; Matheson) was metered into purified air and mixed with diluted ozone in a fluorocarbon delay line, to allow for a dynamic equilibrium to be reached between the ozone and nitrogen dioxide precursors at 60% relative humidity at the rat’s breathing zone. The mixture of O3 and NO2 was expected to also yield nitrate radical and N2O5 (Mauz et al., 1988; Mustafa et al., 1984; Pitts, 1983), but these reactive compounds were not measured. Each chamber air stream, containing mixed component pollutants, entered the modified Rochester-type chamber by a tangential inlet to an expending plenum for swirl mixing, followed by distribution to individual rat exposure-tube ports. Samples of the mixture for component pollutant analyses were continuously drawn from unoccupied exposure-tube ports during the exposure.

Ozone was measured with a calibrated ultraviolet-absorption continuous monitor (Dasibi Environmental Corp., Glendale, CA, Model 1003-AH). Nitrogen dioxide was measured by chemiluminescence using a Monitor Labs Model 8440 detector. Size distribution of mixed sulfate and carbon particles was measured using an 8-stage cascade impactor (Andersen Model 210, Graseby, Atlanta, GA). Total aerosol samples were collected on acid-washed and distilled-water-rinsed quartz fiber filters and weighed with a sensitive 1999, 2000). Ozone was generated by passing medical-grade oxygen through a 85Kr aerosol discharger, equilibrated with purified air at 60% relative humidity at the rat’s breathing zone. The mixture of O3 and NO2 was introduced into the exposure chamber air stream (Kleinman et al., 1983, 1996). Monodisperse 1.2 μm diameter polystyrene latex tracer aerosol, sampled from the breathing zone of the rats, had an activity measured at 1 h following the last exposure (Bhalla et al., 1986, Bhalla and Young, 1992). The aerosol, sampled from the breathing zone of the rats was filled with dental impression cream to block the posterior nares. A radiolabeled tracer aerosol containing 125Kr labeled diethylenetriaminepentaacetate (125Kr-DTPA, molecular weight 492) in 0.1 ml phosphate buffered saline (PBS) was instilled into the right nasal cavity, and then passed across the nasal septum at the posterior end, filled the left nasal cavity, and emerged through the left nares. Blood samples of 0.10 ml were drawn from a femoral artery at 6, 7, 8, 9, and 10 min after the start of instillation. Blood samples were counted for 125Tc radioactivity in a gamma counter. Isotope counts for 125Tc were expressed as the percent of the inoculum transferred to the site of the blood of each rat. An index of epithelial permeability was obtained by interpolation of a regression of the fraction of label transferred at the mid-time point for the 5 samples.

Broncho-alveolar lavage and pulmonary macrophage function. Broncho-alveolar lavage (BAL) was performed at 1 and 18 h after the last exposure. The animals were anesthetized, prepared with tracheal cannula, and lavaged with Ca2+ and Mg2+-free HEPES-buffered Hanks balanced salt solution (HBSS) as described previously (Kleinman et al., 2000). Cells were separated from the recovered lavage fluid by centrifugation at 300 x g for 10 min. Assay of lactate dehydrogenase was performed on a sample of the supernate, and the remainder was frozen at –70°C for later analyses. Total protein in the supernate fluid was determined by a biocinchonic acid (BCA) procedure (Smith et al., 1985) using a bovine serum albumin (BSA) standard and Pierce BCA Protein Assay Reagents (Pierce Chemical CO, Rockford, IL). For the group sampled at 18-h post-exposure, total protein, albumin, and lactate dehydrogenase were measured. Lactate dehydrogenase was analyzed spectrophotometrically by enzymatic conversion of pyruvate to lactate in the presence of NADH (Sigma Chemical, St. Louis, MO). Albumin concentration was evaluated with an enzyme-linked immunosorbent assay (ELISA) as described by Bhalla and Young (1992).

The cell pellet from the 18-h post-exposure BAL animals was resuspended in HBSS containing Ca2+ and Mg2+ for analysis of pulmonary macrophage function. The number of viable cells recovered was determined by trypan blue exclusion using a bright line hemocytometer. Between 0 and 5% of the cells from any sample were non-viable, independent of pollutant exposure. Cells were diluted to 105/ml and a 0.1-ml aliquot of cells was mounted onto a glass microscope slide using a cytospinfruge, and was stained with Wright-Giemsa stain for cell differential counts. The recovered cells were >95% macrophages. Assays of pulmonary macrophage function included measurements of Fc-receptor binding, phagocytosis of polystyrene latex (PSL) particles, and carbon particle inclusions. Phagocytic activity of pulmonary macrophages was measured in suspension, as previously described (Kleinman et al., 2000). Cell suspensions containing 2 x 106 pulmonary macrophages per ml and 2 x 104 fluorescent polystyrene latex microspheres (1 μm in diameter, Duke Scientific, Palo Alto, CA) per ml were incubated with gentle agitation for 1 h. Cells were

EFFECTS OF COMPLEX MIXED AIR POLLUTANTS
then pelleted onto a slide using a cytocentrifuge, then the slides were fixed with methanol, immersed in xylene for 10 min to remove extracellular PSL microspheres, and stained with light green stain (Diff-Quick). Engulfed spheres in the cell cytoplasm were counted, and the percentage of a sample of 100 cells containing >2 microspheres was the phagocytic activity index.

Pulmonary macrophage Fc-receptor (FcR) binding activity was assayed as macrophage capacity to bind sheep red blood cells following activation of FcR with anti-sheep red blood cell antibody, as previously described (Kleinnan et al., 1993, 2000; Prasad et al., 1988, 1990; Rao et al., 1980). Activated cell preparations coating well slide chambers were incubated 30 min at 38°C in 5% CO₂ with sheep red blood cells (10⁷ cells suspended in HBSS). The unbound preparations coating well slide chambers were incubated 30 min at 38°C in 5% respiratory, and olfactory epithelia (Level 1 of Young, 1981). Paraffin 5-μm sections were cut, mounted, and digitized to determine shrinkage. The head was skinned, external tissue and muscle removed, and the nasal portion of the head was fixed by immersion with vacuum degassing in 10% buffered formalin. Decalcification was performed in 6% EDTA followed by embedment in paraffin, 5-μm sections were cut, mounted, and stained with light green stain (Diff-Quick). Engulfed spheres in the cell cytoplasm were counted, and the percentage of a sample of 100 cells containing >2 microspheres was the phagocytic activity index.

The data were analyzed using analysis of variance (ANOVA), and tested with multiple comparisons of group means using Bonferroni adjustment of critical values (Dixon, 1988).

RESULTS

Table 1 shows concentrations of air pollutants measured during the exposures. There was good agreement between the target concentrations and concentrations measured from nose-only exposure ports at the breathing zone of rats during exposures. The low, medium, and high concentration groups were effectively factors of 2 increases.

Breathing pattern is influenced by body mass, and rat mean mass during exposure increased from 247 to 264 g. All groups increased in parallel and there was no significant interaction between change in mass over time and exposure group. Figure 1 shows breath frequency and tidal volume during each h of the first exposure day. The high concentration induced a rapid-shallow breathing pattern developing during hours 3 and 4 of...
the exposure (high vs. control exposure-time interactions for breath frequency and for tidal volume \(p < 0.0001 \)). The medium concentration induced a smaller degree of rapid-shallow breathing (medium vs. control exposure-time interactions for breath frequency \(p < 0.03 \) and for tidal volume \(p < 0.03 \)). The rapid-shallow breathing pattern was modified with successive daily and weekly exposures. Figure 2 shows the breathing pattern during hour 4 of the first day and then on the third day of each weekly 3-day episode. Over the successive days and weeks of exposure, the high concentration rapid-shallow breathing pattern progressively increased (breath frequency high vs. control exposure-time interaction, \(p < 0.0001 \); tidal volume exposure \(\times \) time interaction, \(p < 0.0001 \)). In the medium concentration, the rapid-shallow breathing pattern observed at hour 4 on day 1 was successively diminished over the 4 weeks of episodic exposures (tidal volume medium vs. control exposure-time interaction, \(p < 0.0004 \); and breath frequency medium vs. control exposure-time interaction, \(p < 0.06 \)). By the end of the entire exposure, tidal volume in medium concentration had returned to near-purified air control levels. The medium concentration induced an acute response that was attenuated with repeated episodic exposure, while the high concentration induced a strong, rapid-shallow-breathing response that was exacerbated with repeated episodic exposure.

Neither early- nor late-term particle clearance was significantly affected by the 4 weeks of exposures (Table 2). Because the tracer particle deposition occurred after the end of the exposures, an additional analysis was performed to verify that all groups had roughly equivalent total deposition, as measured by radioactivity excreted in feces up to 50 h post-deposition. The lung count activities after 30 days (A30 values) indicated that the pollutant exposures had no significant effect on the deep lung clearance rates of the rats.

Although nasal epithelial permeability, measured with DTPA tracer 1 h after the end of the last exposure (Fig. 3), was elevated in all groups relative to control, the changes were not dose-dependent and individual group differences from control were not statistically significant. Protein concentrations in

![FIG. 2. Effects of oxidant gas-particle mixtures, at 3 concentration levels, on breathing patterns of rats during the 4th hour of exposure on day 1 of week 1 and on day 3 of weeks 1, 2, 3, and 4. Data are hourly means \(\pm \) SE, \(n = 8 \). Open circles are purified air, closed circles are low-, triangles are medium-, and squares are high-concentration mixtures.](https://academic.oup.com/toxsci/article-abstract/61/2/331/1697260)

TABLE 2

<table>
<thead>
<tr>
<th>Mixture Concentration</th>
<th>Early clearance (T_{50%}) (h)<sup>a</sup></th>
<th>Late clearance (A_{30%})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified air</td>
<td>14.2 (\pm) 0.5</td>
<td>11.5 (\pm) 0.1</td>
</tr>
<tr>
<td>Mixture Concentration</td>
<td>13.8 (\pm) 0.5</td>
<td>11.5 (\pm) 0.1</td>
</tr>
<tr>
<td>Low</td>
<td>14.3 (\pm) 0.4</td>
<td>11.6 (\pm) 0.1</td>
</tr>
<tr>
<td>Medium</td>
<td>14.8 (\pm) 0.5</td>
<td>11.4 (\pm) 0.1</td>
</tr>
</tbody>
</table>

^aEarly clearance \(T_{50\%} \) is the time required to excrete 50% of the total activity excreted through 50 h post-deposition.

^b\(A_{30\%} \) index of late clearance is residual lung radioactivity remaining at 30 days post-deposition.

Note. Data are mean \(\pm \) SE, \(n \).

![FIG. 3. Effects of oxidant gas-particle mixtures, at 3 concentration levels, on nasal epithelial permeability of rats measured 1 h following the last exposure. Permeability is the percent of \(^{99m}\)Tc labeled DTPA inoculum transferred from the nasal cavity to the blood at 8-min following instillation. Data are mean \(\pm \) SE, \(n = 6–7 \) per group.](https://academic.oup.com/toxsci/article-abstract/61/2/331/1697260)
bronchoalveolar lavage fluid (BALF) are shown in Table 3. Samples collected 1 h following the last exposure exhibited elevated levels of total protein in the exposure groups, and the difference between purified air control levels and the high-concentration group was significant ($p < 0.05$). This change was apparently rapidly reversible. Protein and albumin analyses performed on lavage samples collected 18 h after the last exposure showed no statistically significant differences; total protein and lactate dehydrogenase were slightly elevated in the exposed groups compared to control.

Pulmonary macrophages recovered from BALF had a viability of $94 \pm 2 \text{SD}\%$, with no significant differences between exposure groups. Figure 4 shows significant dose-dependent depression in Fc-receptor binding, polystyrene latex (PSL) particle phagocytosis, and significant dose-dependent increases in carbon particle content of lavaged macrophages.

Histopathologic measures of lung tissue and pulmonary macrophages in the lung are shown in Table 4. Focal inflammatory lesions were observed only at the high concentration. Pulmonary macrophages in sections showed increasing proportions of cells with carbon particles with increasing exposure concentration, paralleling the results observed with macrophages collected in BALF (Fig. 4). Pulmonary macrophages showed an increased acid phosphatase stain density in pollutant-exposed groups. The high and medium exposures shifted the proportions of macrophages in the 3 separate classes from lower- to higher-density classes.

Epithelial cell proliferation measured following the last exposure is shown for tissues at several levels of the respiratory tract in Figure 5. Increases in the labeling index above control levels likely represent cell proliferation in areas where epithelial cells were killed or damaged by the exposures. The high-concentration group showed increased cell labeling in all tissues examined, the medium concentration group had significantly elevated labeling in trachea and lung parenchyma, and tracheal epithelium showed significantly increased labeling in all pollutant exposures. At the high concentration, nasal transitional epithelium and terminal bronchiolar epithelium showed large elevations of proliferation labeling.

Discussion

Toxic interactions among pollutant compounds need to be considered because of the potential for antagonism, additivity, and synergism in comparison to single components (Last et al., 1986; Mauderly, 1993; Mautz et al., 1988; Schlesinger et al., 1992; Warren and Last, 1987). In particular, if mixtures of oxidant or acid-forming gases with particles exhibit synergism, the importance of particulate air pollution, as revealed in epidemiologic investigations, might be better understood (Abbey et al., 1991; Lebowitz, 1996; National Research Council, 1998; Pope et al., 1991, 1995). Acute symptoms that disappear upon repeated exposure may be only a subset of a larger array of injury processes, others of which may be persistent or progressive. We selected the 5-component oxidant, acid, and particle mixture and an episodic exposure pattern to represent an environmentally relevant challenge, while recognizing that real ambient air pollution is yet more complex than our model mixture, both in diversity of chemical species and in aerosol size distribution. We examined a proven battery of inhalation-injury variables in order to explore possible relationships among variables at different dose levels.

Measures of pulmonary function show strong sensitivity to one of our components, ozone (Alarie, 1973; Lippmann, 1989; Mautz and Bufalino, 1989; Menzel, 1984), and pulmonary function variables are readily measured markers of respiratory irritant exposure in humans. However, as these responses may attenuate on repeated daily exposure, it is important to understand what health effects they are indicating. In rats exposed daily to 0.5 ppm O_3, Tepper et al. (1989) observed an attenuation of the rapid-shallow breathing pattern response in the presence of progressive lung epithelial damage, inflammation, and increased concentrations of lavagable protein. The rapid-shallow breathing pattern response to ozone and other so-called
deep lung or respiratory irritants is a vagally mediated reflex stemming from stimulation of lung C nerve fibers (Coleridge and Coleridge, 1984; Coleridge et al., 1993; Schelegle et al., 1993). The mechanism of response attenuation to repeated ozone exposure is not well understood, but has been suggested to involve replacement of oxidant-damaged epithelial cells with more resistant cells (Moffatt et al., 1987; Nikula et al., 1998), or with increases of anti-oxidant compounds in the lung (Duan et al., 1996; Tepper et al., 1989; Wiester et al., 1995, 2000). Response attenuation to repeated oxidant exposure could represent a beneficial process, but the attenuation does not appear to include all tissue oxidant injury processes.

In the rats exposed here to the 5-component oxidant, acid, and particle mixture, there were distinct differences in breathing-pattern responses among groups. The low-concentration group did not show significant breathing pattern responses, the medium group showed an initial day-1 exposure response that attenuated over successive exposures, and the high-concentration group showed progressively exacerbated rapid-shallow breathing patterns over the 4-week exposure (Fig. 2). The fact that the exposures were to a mixture and were episodic may have modified the expected response to the oxidant gases. Single exposures to combinations of O₃ and NO₂, which also contained formed HNO₃ vapor, strongly enhanced oxidant lung injury compared to O₃ exposure alone (Mautz et al., 1988). Five successive daily 4-h exposures to mixtures of 0.4 ppm O₃ with sulfuric acid-coated carbon particles blunted the breathing pattern-attenuation response observed in similar exposures to O₃ alone (Kleinman et al., 1999). Tepper et al. (1989) observed breathing-pattern attenuation in daily 2.25-h exposures of rats to 0.5 ppm O₃ and no attenuation in rats exposed to 1.0 ppm O₃. In the present study, the mixture with O₃ at 0.3 ppm induced attenuation with repeated exposure, but the higher concentration mixture with O₃ at 0.6 ppm induced an exacerbated breathing pattern response with each of the 4 3-day episodes of exposure (Fig. 2). Because of the complexity of our mixture, comparisons to other studies are difficult, but, within the study, responses can be compared.

Respiratory tract clearance, both short-term and long-term, did not show significant alterations from purified-air control animals at the end of any of the mixture-exposure groups (Table 2). Whether this resulted from absence of response to all 3 concentrations or adaptive responses is uncertain, because measurements were not made following single exposures. Our laboratory has conducted more than 20 studies on the effects of inhaled air pollutants on the short- and long-term clearance of radiolabeled tracer particles (Phalen et al., 1994). In these studies, 4-h exposures of resting rats to O₃ above 0.6 ppm delayed short-term clearance and accelerated long-term clearance. In the short-term exposures, O₃, if present, typically dominated the effects on clearance. In multi-day exposures (4 h/day, 21 days) O₃ did not dominate the effects of mixtures on clearance, suggesting an adaptation of clearance mechanisms to the effects of O₃. Furthermore, when focal lesions were extensive in the lung parenchyma, they were correlated with accelerated long-term clearance. The present study is consistent with these prior findings in that the clearance of tracer was unaffected in repeated resting exposures to O₃ containing atmospheres.
Lavagable protein was significantly elevated by 1 h after the last high-concentration-mixture exposure (Table 3). In repeated O₃ exposures, elevated lavage protein levels have been observed to attenuate in one study (Canning et al., 1991), but Tepper et al. (1989) observed sustained significant elevation of lavaged protein levels in rats that demonstrated response attenuation in breathing pattern. While BAL protein may show attenuated responses under some repeated exposure conditions, it does not appear to be tightly coupled to other attenuation responses. Increases in BAL protein generally means that pulmonary epithelia have increased permeability (Bhalla, 1999). When broncho-alveolar epithelial permeability is increased, inhaled oxidants and reactive oxidation products in the fluid lining of the lung have greater access to lower levels of epithelia. This increase might also support greater capacity to achieve higher concentrations at pulmonary C fibers and to override breathing pattern-response attenuation. Nevertheless, the difference in permeability, as indexed by lavagable protein between the high- and lower-concentration groups, was modest at 1 h following the last exposure (Fig. 3) and was not evident 18 h post-exposure (Table 3). The differences in breathing-pattern responses among the mixture exposure groups, however, were dramatic (Fig. 2). BAL levels of lactate, dehydrogenase as an indicator of tissue injury, showed only a weak trend of increase in the mixture-exposure groups, but no significant difference among the groups (Table 3). Tissue injury and inflammation was evident in histological examination of the lung parenchyma exposed to the high concentration (Table 4). This exposure-induced parenchymal injury is apparently not sufficient to substantially elevate BAL indicators in total protein, albumin, or lactate dehydrogenase.

While BAL proteins were weakly, if at all, affected by the exposures, pulmonary macrophages collected by BAL or analyzed histologically in situ did show strong concentration-

Table 4

<table>
<thead>
<tr>
<th>Mixture concentration</th>
<th>Purified air</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung parenchyma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory foci (area %)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.15 ± 0.59<sup>a</sup></td>
</tr>
<tr>
<td>Pulmonary macrophages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing carbon particles (%)</td>
<td>0.0</td>
<td>0.22 ± 0.07<sup>b</sup></td>
<td>0.64 ± 0.12<sup>c</sup></td>
<td>0.90 ± 0.12<sup>d</sup></td>
</tr>
<tr>
<td>Acid phosphatase stain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (% of cells sampled)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class I</td>
<td>41 ± 5</td>
<td>53 ± 7</td>
<td>42 ± 5</td>
<td>24 ± 6<sup>e</sup></td>
</tr>
<tr>
<td>Class II</td>
<td>56 ± 3</td>
<td>43 ± 8</td>
<td>44 ± 5</td>
<td>59 ± 5</td>
</tr>
<tr>
<td>Class III</td>
<td>4 ± 2</td>
<td>4 ± 7</td>
<td>15 ± 4<sup>f</sup></td>
<td>18 ± 5<sup>f</sup></td>
</tr>
</tbody>
</table>

^{Note}. Data are mean ± SE, n = 10 for all groups.

^aFive of 10 rats showed focal lesions.

^bSignificantly different from control (p < 0.05).

^cSignificantly different from control (p < 0.01).

^dSignificantly different from control (p < 0.001).
response relations in all measures examined, including the functional capacities, Fc receptor binding, and phagocytosis, and in their carbon particle-inclusion load and acid phosphatase-staining density (Fig. 4, Table 4). The high-concentration group progressed through the latter weeks of exposure with extreme rapid-shallow breathing patterns (Fig. 2), and these might be expected to substantially alter dose-deposition of gases and particles in the lung compared to other groups. However, the proportions of macrophages with carbon loads and the depression of their FcR-receptor binding and phagocytotic capacities was proportionate to airborne pollutant concentrations. Despite the impairment of macrophage immune recognition and phagocytotic capacity and the carbon-particle loads in pulmonary macrophages, the late-term clearance index, which is expected to be determined primarily by macrophages, was not significantly modified by the exposures (Table 2).

The sets of effects that most closely parallel the disparate breathing pattern differences among exposure groups were the patterns of epithelial-cell proliferation in the terminal bronchioles and nasal transitional epithelium (Fig. 5) and the presence of inflammatory lesions in the lung (Table 4). For these analyses, the high-concentration exposure group showed marked increases compared to medium- and lower-concentration exposure groups. The nasal transitional epithelium and the centri-acinar portions of the lung (including terminal bronchioles and proximal alveoli) were the foci of inflammatory responses in single acute exposures of rats to 0.8 and 1.2 ppm O₃ (Hotchkiss et al., 1989). This pattern of injury, as revealed by high epithelial-cell labeling, was also apparent in our high-concentration group (Fig. 5). Increased epithelial cell labeling is observed over a period of days following single acute exposures to O₃ at 0.35–0.6 ppm and the cell-proliferation response exhibits attenuation with repeated 0.5 ppm O₃ exposure (Evans et al., 1985; Mautz et al., 1988). The results of the episodic exposure to the mixtures (Fig. 5) indicate that an injury and cell-proliferation response to the exposure persisted through the 4-week duration of the exposures. Lung parenchymal lesions were also visible in the high concentration group (Table 4), but only in half of the sample of 10 rats. No such lesions were observed in any of the other groups, including the medium concentration-exposure group, which showed breathing pattern-response attenuation (Fig. 2) and a more modest elevation of epithelial labeling in the lung parenchyma. This suggests that events in the terminal bronchiole epithelium mediate the breathing-pattern attenuation response to repeated exposure. C-fiber endings are present in the bronchiolar epithelium as well as alveolar epithelia (Coleridge and Coleridge, 1984).

Oxidant breathing pattern response attenuation or adaptation to repeated exposure may involve induction of defense against high concentrations of oxidants penetrating to epithelial and sub-epithelial tissues in the terminal bronchioles, a defense that can be overridden by exposure conditions that further damage this epithelium. With sufficient injury to the epithelial barrier in the terminal bronchioles, oxidant gases like O₃ still penetrate at high enough concentrations to stimulate C fibers and induce vagal reflex breathing-pattern changes. Tepper et al. (1989) found detectable centri-acinar lesions in rats that had demonstrated attenuated breathing pattern responses to repeated 0.5 ppm O₃. Breathing pattern-response attenuation did not imply an absence of tissue inflammatory signs. In our exposure to the high-concentration mixture (including 0.6 ppm O₃), breathing-pattern response was not attenuated, but rather exacerbated; over 2% of the lung parenchyma was involved in centri-acinar lesions, and epithelial cell proliferation was strongly elevated (Table 4, Figs. 2 and 5). When breathing-pattern responses to repeated exposures are persistent or increasing rather than attenuating, they may reflect underlying persistent or increasing patterns of lung-tissue inflammation. Attenuating responses in general may show dose-response relations where low doses induce a response that then attenuates on repeated exposure, but higher doses delivered in repetition result in an exacerbated response. Furthermore, the pattern of response development with repeated exposures may be altered by factors other than concentration-related dose: episodic exposure (Wiester et al., 1995; and the present study), exposures to mixtures (Kleinman et al., 1999, 2000; and the present study), or exercise during exposure (Horstman et al., 1990). This study showed that various measures of response in the respiratory tract can respond in diverse ways to a relatively realistic air pollutant mixture exposure. This complexity of response was clearly revealed by the use of a battery of endpoints performed by different investigators that had shown previous utility in studying pollutants singly. Further investigation of the pattern of exposure to realistic concentrations of mixed air pollutants would clearly benefit from the collaboration of independent investigators using complementary endpoints.

ACKNOWLEDGMENTS

This work was supported by the California Air Resources Board contract A833–104 and NIH grants ES03521 and GM08073-29. We wish to thank S. Bucher-Evans, C. Bufalino, D. Daniels, K. Daughters, E. Schaffer, L. Hoffman, A. Linden, R. Mannix, T. McClure, and T. Nguyen for their expert technical assistance during the course of the project; S. Akhavan, M. Tonini, and S. Usdansky for word processing; and D. Westerdahl and S. Prasad for valuable advice.

REFERENCES

