Malocclusion impacts adolescents’ oral health–related quality of life

Annarosa Scapinia; Carlos Alberto Feldensb; Thiago Machado Ardenghic; Paulo Floriani Kramera

ABSTRACT

Objective: To test the hypothesis that malocclusion does not have an independent and negative effect on quality of life of adolescents.

Materials and Methods: The cross-sectional design study comprised a sample of 519 children, aged 11 to 14 years, attending public schools in Osorio, a city in southern Brazil. One calibrated examiner carried out clinical examinations and recorded dental caries (decayed/missing/filled teeth), malocclusion (Dental Aesthetic Index), and dental trauma. Participants completed the Brazilian version of the Child Perceptions Questionnaire (CPQ\textsubscript{11-14}), Impact Short Form, and their parents or guardians answered questions about socioeconomic status. Simple and multivariate linear regressions were performed to assess covariates for the overall CPQ\textsubscript{11-14} scores.

Results: Greater impacts on oral health–related quality of life were observed for girls ($P = 0.007$), children with a lower household income ($P = 0.016$), and those with more decayed/missing/filled teeth ($P = 0.001$). Malocclusion was also associated with oral health–related quality of life: the severity of malocclusion was significantly related to higher scores of CPQ\textsubscript{11-14} even after scores were adjusted for control variables. CPQ\textsubscript{11-14} increased by approximately 1 point for each increase in the severity of malocclusion.

Conclusions: Malocclusion has a negative effect on adolescents’ quality of life, independent of dental caries or traumatic dental injuries. Socioeconomic inequalities and clinical conditions are important features in adolescents’ quality of life. (Angle Orthod. 2013;83:512–518.)

KEY WORDS: Oral health–related quality of life; Malocclusion; Adolescent

INTRODUCTION

Malocclusion can play an important role in social acceptance and interactions for esthetic reasons and can also result in functional limitations in more severe cases.1-4 Data from the most recent national oral health survey in Brazil demonstrate the presence of malocclusion in 38.8% of 12-year-old children.5 In such studies, the assessment of malocclusion is commonly conducted using predefined criteria such as the Dental Aesthetic Index (DAI).6 The DAI is an orthodontic index based on socially defined esthetic standards.7 It has been used in epidemiological studies of orthodontic treatment need, and it was integrated into the International Collaboration Study of Oral Health Outcomes by the World Health Organization (WHO).8 The index links clinical and esthetic components mathematically to produce a single score that reflects physical and esthetic patterns of occlusion, including patients’ perceptions.9-11

A determination of oral health and treatment needs exclusively with normative indicators does not capture the full impact of oral abnormalities on a child’s oral health.12 Over the last two decades, increasing attention has been paid to the assessment of oral health–related quality of life (OHRQoL) in oral health investigations.13-18 The Child Perceptions Questionnaire (CPQ) is one of the instruments that was developed specifically to assess the perception of adolescents on how oral health conditions impact them physically and psychologically.15 Previous studies confirmed the validity and reliability of its original and short versions for the Brazilian population.19-21

Although studies have been published associating DAI scores with patients’ perceptions of treatment needs, there is scarce information regarding its
association with measurements of OHRQoL and well-being using validated instruments.1,11,22,23 Recently it was found that 8- to 10-year-old schoolchildren with malocclusion experienced 30\% more negative effects on OHRQoL than those without malocclusion.24 However, few studies have assessed the impact of malocclusion on OHRQoL and daily performance in adolescents, especially with regard to the possible confounding effects of other clinical and socioeconomic variables.25 This is important from a public health perspective, especially for a broader evaluation of treatment outcomes and for planning public health policies for prioritization of care.26

This study assessed and quantified the impact of malocclusion on OHRQoL in a representative sample of adolescents from Brazil. The study hypothesis is that adolescents (ages 11–14) with more severe forms of malocclusion will report higher scores on the Brazilian version of the CPQ – Impact Short Form than those without malocclusion.

MATERIALS AND METHODS

This cross-sectional study comprised 509 adolescents attending public schools in Osorio, a city in southern Brazil. The city has an estimated population of 40,000 inhabitants; 1996 of the 11- to 14-year-old children living in the city were enrolled in public schools in 2009, representing approximately 85\% of the population of this age group living in the city. Students with previous or current experience with orthodontic or orthopedic treatment and those who were not intellectually capable of responding to the questionnaire were excluded from the study.

For the sample size calculation, we considered the following parameters: 5\% standard error, 80\% power, confidence level of 95\%, and a mean CPQ\textsubscript{11–14} score of 15.5 (± standard deviation [SD] 12.2) in the unexposed group (those without treatment needs, as defined by the DAI) and 20.5 (± SD 16.9) in the exposed group (those with treatment needs, as defined by the DAI).27 The ratio of exposed to unexposed was 3:1, and a correction factor of 1.4 (effect design) was applied to increase precision. The minimum sample size to satisfy the requirements was estimated to be 498 children. Taking into consideration possible nonresponse attrition of 20\% and the fact that 10\% of adolescents have previous or current experience with orthodontic treatment, we determined that 700 adolescents should initially be assessed for eligibility.

To obtain a representative sample, a two-stage cluster sampling procedure was adopted, with all the public schools of Osorio considered as the primary survey unit. Five of the 12 schools were randomly selected after the schools were categorized as either large (n = 1 of 3), medium (n = 2 of 5), or small (n = 2 of 4).

The children’s parents were mailed consent documentation and a questionnaire with items regarding socioeconomic and demographic data, time since last dental visit, and whether the child had received orthodontic treatment. After consent was obtained, the children completed the CPQ at school, and a dental examination was then performed.

Socioeconomic and Demographic Data

Socioeconomic characteristics were provided via a structured questionnaire that was completed by the child’s parents or guardians. The questionnaire provided information on age, gender, ethnic group, family structure, the mother’s educational level, and household income. The mother’s educational level was measured in years of formal education; family structure compared those children living with both parents (nuclear) with those who lived with only one parent or neither of them (nonnuclear).

Household income was measured in terms of Brazilian minimum wage (BMW), which corresponded to approximately 240 US dollars per month. Regarding the variable “ethnic group,” children were classified by their parents as “white” (children of European descent) or “nonwhite” (black children of African and mixed descent). The feasibility of the questionnaire was assessed during the calibration process.

Oral Health–Related Quality of Life

OHRQoL was measured using the Brazilian version of the CPQ – Impact Short Form (ISF:16). The CPQ\textsubscript{11–14}/ISF:16 comprises 16 items distributed among four subscales: oral symptoms, functional limitations, emotional well-being, and social well-being. Each item addresses the frequency of events related to the teeth, lips, jaws, and mouth during the previous 3 months. Each question has five alternatives (never, once or twice, sometimes, often, almost every day, or every day), scaled from 0 to 4, with higher scores corresponding to poorer status. CPQ\textsubscript{11–14} scores are obtained by summing the scores for each domain. For domains with up to two missing responses, a score for the missing items would be imputed as an average of the remaining items for that section. Questionnaires with missing responses to more than two items would be excluded from the analysis. The overall score ranges from 0 to 64; a higher score indicates that oral conditions have a greater negative impact on the child’s QoL. The CPQ\textsubscript{11–14} was adapted cross-culturally and has been validated for use in Brazilian children; it exhibits satisfactory psychometric properties.21 The CPQ\textsubscript{11–14}
Clinical Data

One calibrated examiner carried out clinical examinations and recorded dental caries (decayed/missing/filled teeth [DMFT]), malocclusion (DAI), and dental trauma. The calibration process was performed prior to the survey in a group of 30 children, 11 to 14 years old. Theoretical and clinical training and calibration exercises were arranged for a total of 36 hours under the supervision of one benchmark examiner. The kappa values for intraexaminer reproducibility were 0.82, 0.92, and 1.00 for the DAI, DMFT, and traumatic dental injuries, respectively. The dental examination used international criteria standardized by the WHO for oral health surveys. The DAI includes 10 parameters of dento-facial anomalies related to both clinical and esthetic aspects: missing anterior teeth, midline diastema, incisal segment crowding, incisal segment spacing, largest anterior irregularity in the maxilla, largest anterior irregularity in the mandible, anterior maxillary overjet, anterior mandibular overjet, anterior open bite, and anteroposterior molar relation. The results were multiplied by the respective round coefficient (weight) and then summed; then, a constant value of 13 was added to the results. Four grades of malocclusion were established, with priorities and orthodontic treatment recommendations assigned to each grade:

- Grade 1 (DAI ≤25): normal or minor malocclusion/no treatment needed,
- Grade 2 (DAI 26–30): definite malocclusion/treatment is elective,
- Grade 3 (DAI 31–35): severe malocclusion/treatment is highly desirable, and
- Grade 4 (DAI ≥36): handicapping malocclusion/treatment is mandatory.

Data Analysis

Statistical analyses were conducted using SPSS version 16.0 (SPSS, Chicago, IL). Descriptive, unadjusted analyses provided summary statistics assessing the association between the different levels of malocclusion and the overall and domain-specific CPQ_{11–14} scores using analysis of variance (ANOVA). The same test was performed to assess summary association between independent variables and the outcome. We also assessed the frequency of children with higher scores of CPQ_{11–14}, with the 75th percentile of scores considered as the cutoff point. Statistical differences were then assessed by the chi-square test.

Simple and multivariable linear regressions were performed to assess covariates for the overall CPQ_{11–14} scores. A backward stepwise procedure was used to include or exclude explanatory variables in the fitting of the model. Explanatory variables were selected for the final models only if they had a P value ≤ .05 after adjustment.

Sensitivity analysis compared the sample subjects’ ethnic groups and ages with those of all children enrolled in public schools of the city. These data were provided by the educational council of the City of Osorio. Selection bias was then assessed using chi-square tests and t-tests for independent samples.

Ethical Approval

The study was approved by the Human Research Ethics Committee of Lutheran University of Brazil. Informed consent was obtained prior to beginning data collection.

RESULTS

A total of 705 adolescents, all 11 to 14 years old, were evaluated for their eligibility to participate in the study; 73 were already receiving orthodontic treatment and were therefore excluded. Of the 632 eligible adolescents, 80.5% agreed to participate (n = 509; 57.2% girls and 42.8% boys). All 509 participants answered the QoL questionnaire completely, with no missing responses. Adolescents were predominantly white (90.8%), more than half were from nuclear families (62.3%), and 70% had a household income equal or smaller than two BMW. The mother’s level of formal education ranged from 0 to 16 years (mean, 6.9 ± 3.2 years). Of the 509 adolescents surveyed, 465 (91.4%) had already seen a dentist; of these, the time since the last dental visit ranged from 1 to 72 months (mean, 9.8 ± 10.8 months; median, 7 months).

The overall scores of CPQ_{11–14} showed a normal distribution, with a mean score of 12.8 ± 8.6 and a median of 11 (25% = 6; 75% = 18). Domain-specific scores showed large variations; the highest mean score was for “oral symptoms” (3.7 ± 2.4) and the lowest was seen for “social well-being” (2.5 ± 2.6) (Table 1).

The DAI ranged from 15 to 77 (mean, 29.0 ± 7.9); 24% of the sample had minor or no malocclusion and 24% had definite malocclusion. Severe malocclusion and disabling malocclusion were seen in 21.6% and 22% of the sample, respectively.

The overall and domain-specific scores of CPQ_{11–14} varied across the different categories of malocclusion. The severity of malocclusion was significantly associated with higher mean CPQ_{11–14} scores in the emotional and social well-being domains (Table 2).
Table 1. Descriptive Distribution of Overall and Domain-Specific CPQ11–14

<table>
<thead>
<tr>
<th>CPQ11–14 (overall scale)</th>
<th>No. of Items</th>
<th>Mean (SD)</th>
<th>Possible Range</th>
<th>Observed Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>12.8 (8.6)</td>
<td>0–64</td>
<td>0–49</td>
</tr>
<tr>
<td>Domains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral symptoms</td>
<td>4</td>
<td>3.7 (2.4)</td>
<td>0–16</td>
<td>0–12</td>
</tr>
<tr>
<td>Functional limitation</td>
<td>4</td>
<td>3.3 (2.7)</td>
<td>0–16</td>
<td>0–14</td>
</tr>
<tr>
<td>Emotional well-being</td>
<td>4</td>
<td>3.4 (3.2)</td>
<td>0–16</td>
<td>0–14</td>
</tr>
<tr>
<td>Social well-being</td>
<td>4</td>
<td>2.5 (2.6)</td>
<td>0–16</td>
<td>0–13</td>
</tr>
</tbody>
</table>

No significant differences were observed among the categories of malocclusion for the oral symptoms and functional limitation domains.

Unadjusted variables showed that CPQ11–14 scores were significantly higher for girls, lower household income, nonnuclear families, DMFT >3, and handi-capping malocclusion (Table 3).

Following adjustment for confounding variables, higher impacts on OHRQoL were observed for adolescents living in nonnuclear families (P < .001), for girls (P = .007), for those with lower household income (P = .016), and for adolescents with DMFT >3 (P = .001). The severity of malocclusion was significantly associated with poorer scores of CPQ11–14, even after the adjustment; mean scores of CPQ11–14 increased by approximately 1 for each change in severity of malocclusion (β = .85; 95% confidence interval [CI] 0.22–1.48) (Table 4).

No difference was found between children included in the study and those who were not with regard to ethnic group (respondents: 90.8% white, 9.2% nonwhite; nonrespondents: 89.1% white, 10.9% nonwhite; P = .291) and mean age (respondents: 12.4 ± 1.0 years; nonrespondents: 12.3 ± 1.0 years; P = .293).

DISCUSSION

This study assessed the effect of malocclusion on OHRQoL. Our findings demonstrated that OHRQoL progressively deteriorates as the severity of malocclusion increases. Previous studies have also reported that adolescents with disturbances in dental occlusion experienced severe impacts on their QoL.2,4,16 However, few studies have assessed the relationship between OHRQoL and malocclusion using predefined criteria and taking into account potential confounding variables within a representative sample.

The role of dentofacial abnormalities in psychosocial well-being and QoL is well established. Theoretical explanations of the link between malocclusion and OHRQoL are based on the effect of this condition on dissatisfaction with self-image as well as on its impact on adolescents’ daily performance.4,29 There is evidence that malocclusion can reduce chewing and speech capability, thus affecting an individual’s perceptions of oral health.3,22,30 Nevertheless, the primary impact of malocclusion on the QoL has been reported as being in the domains of emotional and social well-being, which comprise issues related to esthetic components and self-esteem.1,14,16

In the present study, the association between increased malocclusion and CPQ11–14 scores was significant mainly for the domains of social and emotional well-being. Questions in this domain address adolescents’ social relations, including avoidance of showing their teeth, laughing, and talking with other children at school or with people at home.31 Thus, a disturbance of normal occlusion may reduce social acceptance and induce low self-esteem and poor QoL by psychosocial pathways.14,32 Unesthetic occlusal traits may induce unfavorable social responses among adolescents, such as nicknames and teasing by schoolmates.33,34 Others have found that the presence of some occlusal traits is a significant indicator of self-reported bullying among adolescents.29 Taken together, these findings suggest that the impact of malocclusion on QoL is a result of psychosocial features, rather than oral or functional problems.35 Future studies should be conducted to investigate whether orthodontic treatment in patients with malocclusion can improve OHRQoL.

This study also confirmed the negative impact of dental clinical status and socioeconomic position on

Table 2. Descriptive Distribution of Domain-Specific CPQ11–14 Scores by Severity of Malocclusion

<table>
<thead>
<tr>
<th>Malocclusion</th>
<th>Oral Symptoms</th>
<th></th>
<th>Functional Limitation</th>
<th></th>
<th>Emotional Well-Being</th>
<th></th>
<th>Social Well-Being</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>P*</td>
<td>Mean (SD)</td>
<td>P*</td>
<td>Mean (SD)</td>
<td>P*</td>
<td>Mean (SD)</td>
<td>P*</td>
</tr>
<tr>
<td>Minor/none</td>
<td>3.55 (2.58)</td>
<td>.636</td>
<td>3.12 (2.62)</td>
<td>.455</td>
<td>2.92 (3.01)</td>
<td>.035</td>
<td>2.16 (2.29)</td>
<td><.001</td>
</tr>
<tr>
<td>Definite</td>
<td>3.72 (2.22)</td>
<td></td>
<td>3.20 (2.64)</td>
<td>.375</td>
<td>3.37 (3.15)</td>
<td></td>
<td>3.10 (2.37)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>3.82 (2.30)</td>
<td></td>
<td>3.63 (3.08)</td>
<td></td>
<td>3.48 (3.38)</td>
<td></td>
<td>2.45 (2.51)</td>
<td></td>
</tr>
<tr>
<td>Handicapping</td>
<td>3.91 (2.66)</td>
<td></td>
<td>3.15 (2.66)</td>
<td></td>
<td>4.04 (3.15)</td>
<td></td>
<td>3.45 (3.03)</td>
<td></td>
</tr>
</tbody>
</table>

* ANOVA.
OHRQoL. It is well established that higher levels of dental disease are found in areas with a lower socioeconomic status. After adjusting for covariates, it was found that being female, living in a nonnuclear family with a low household income, and having a high DMFT index are significantly associated with high mean CPQ \(_{11-14}\) scores. Disadvantaged individuals are more likely to engage in deleterious behaviors that could affect their health. These results support previous studies that found that related socioeconomic inequalities and clinical conditions were important for OHRQoL.

This study followed a cross-sectional design, and the temporal relationship between the outcome and predictors could not be defined. Nevertheless, the main exposure identified in this study as associated

<table>
<thead>
<tr>
<th>Variable</th>
<th>CPQ(_{11-14}) Mean (SD)</th>
<th>(P^a)</th>
<th>(>75% (CPQ_{11-14} > 18))</th>
<th>(P^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 y</td>
<td>133 (26.6) 13.08 (8.45)</td>
<td>.980</td>
<td>32 (24.1)</td>
<td>.824</td>
</tr>
<tr>
<td>12 y</td>
<td>154 (30.3) 12.69 (8.84)</td>
<td></td>
<td>42 (27.3)</td>
<td></td>
</tr>
<tr>
<td>13 y</td>
<td>122 (24.0) 12.72 (8.71)</td>
<td></td>
<td>31 (25.4)</td>
<td></td>
</tr>
<tr>
<td>14 y</td>
<td>100 (19.6) 12.95 (8.66)</td>
<td></td>
<td>26 (26.0)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>218 (42.8) 11.54 (8.16)</td>
<td>.004</td>
<td>43 (19.7)</td>
<td>.007</td>
</tr>
<tr>
<td>Female</td>
<td>291 (57.2) 13.81 (8.89)</td>
<td></td>
<td>88 (30.2)</td>
<td></td>
</tr>
<tr>
<td>Ethnic group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>462 (90.8) 13.02 (8.68)</td>
<td>.184</td>
<td>121 (26.2)</td>
<td>.463</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>47 (9.2) 11.26 (8.25)</td>
<td></td>
<td>10 (21.3)</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother's education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5 y primary school</td>
<td>122 (24.0) 13.62 (8.93)</td>
<td>.521</td>
<td>38 (31.1)</td>
<td>.144</td>
</tr>
<tr>
<td>5–8 y primary school</td>
<td>242 (47.5) 12.57 (8.80)</td>
<td></td>
<td>59 (24.4)</td>
<td></td>
</tr>
<tr>
<td>Completed primary school</td>
<td>143 (28.1) 12.64 (8.10)</td>
<td></td>
<td>33 (23.1)</td>
<td></td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 BMW</td>
<td>153 (30.1) 14.93 (9.20)</td>
<td>.001</td>
<td>57 (37.3)</td>
<td>< .001</td>
</tr>
<tr>
<td>1–2 BMW</td>
<td>195 (38.3) 12.41 (8.56)</td>
<td></td>
<td>45 (23.1)</td>
<td></td>
</tr>
<tr>
<td>>2 BMW</td>
<td>151 (29.7) 11.23 (7.62)</td>
<td></td>
<td>26 (17.2)</td>
<td></td>
</tr>
<tr>
<td>Familiar structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>317 (62.3) 11.50 (8.07)</td>
<td>< .001</td>
<td>62 (19.6)</td>
<td>< .001</td>
</tr>
<tr>
<td>Nonnuclear</td>
<td>192 (37.7) 15.08 (9.12)</td>
<td></td>
<td>69 (35.9)</td>
<td></td>
</tr>
<tr>
<td>Time since last dental visit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><6 mo</td>
<td>185 (36.3) 12.84 (8.64)</td>
<td>.492</td>
<td>48 (25.9)</td>
<td>.312</td>
</tr>
<tr>
<td>6–12 mo</td>
<td>206 (40.5) 12.43 (8.57)</td>
<td></td>
<td>47 (22.8)</td>
<td></td>
</tr>
<tr>
<td>>12 mo</td>
<td>118 (23.2) 13.62 (8.84)</td>
<td></td>
<td>36 (30.5)</td>
<td></td>
</tr>
<tr>
<td>Clinical status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental caries experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMFT 0</td>
<td>281 (55.2) 11.64 (8.54)</td>
<td>< .001</td>
<td>59 (21.0)</td>
<td>.001</td>
</tr>
<tr>
<td>DMFT 1–3</td>
<td>142 (27.9) 13.35 (8.05)</td>
<td></td>
<td>37 (26.1)</td>
<td></td>
</tr>
<tr>
<td>DMFT >3</td>
<td>86 (16.9) 15.98 (9.18)</td>
<td></td>
<td>35 (40.7)</td>
<td></td>
</tr>
<tr>
<td>Dental trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>450 (88.4) 12.75 (8.46)</td>
<td>.516</td>
<td>113 (25.1)</td>
<td>.373</td>
</tr>
<tr>
<td>Yes</td>
<td>59 (11.6) 13.54 (10.06)</td>
<td></td>
<td>18 (30.5)</td>
<td></td>
</tr>
<tr>
<td>Malocclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor/none</td>
<td>165 (32.4) 11.75 (8.42)</td>
<td>.047</td>
<td>36 (21.8)</td>
<td>.012</td>
</tr>
<tr>
<td>Definite</td>
<td>122 (24.0) 12.30 (8.57)</td>
<td></td>
<td>26 (21.3)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>110 (21.6) 13.39 (8.55)</td>
<td></td>
<td>30 (27.3)</td>
<td></td>
</tr>
<tr>
<td>Handicapping</td>
<td>112 (22.0) 14.55 (8.97)</td>
<td></td>
<td>39 (34.8)</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) ANOVA.

\(b\) Chi-square test.

OHRQoL. It is well established that higher levels of dental disease are found in areas with a lower socioeconomic status. After adjusting for covariates, it was found that being female, living in a nonnuclear family with a low household income, and having a high DMFT index are significantly associated with high mean CPQ\(_{11-14}\) scores. Disadvantaged individuals are more likely to engage in deleterious behaviors that could affect their health. These results support previous studies that found that related socioeconomic inequalities and clinical conditions were important for OHRQoL.

This study followed a cross-sectional design, and the temporal relationship between the outcome and predictors could not be defined. Nevertheless, the main exposure identified in this study as associated
Increased severity of malocclusion is associated with
Coefficient 95% CI
6 mo) 0.317 0.001 3.151 1.622, 4.680
2
2
2
2
2
2
J Dent Res
2
2
2
2
2
Community Dent Oral Epidemiol
b
5
Sociodental measures may contribute to the identi-
J Public Health Dent
Simple and Adjusted Linear Regression Analysis for the Severity of Impacts (CPQ 11–14)
5, 5, 5, 5
Qual Life Res
5
Eur J Orthod
.001
Int J Dent Hyg
.001
Community Dent Oral Epidemiol
.005
.850 0.217, 1.483 .009
Int J Paediatr Dent
International Collabora-
J Dent
with OHRQoL—malocclusion—possibly preceded the
outcome and cannot be considered to represent
reverse-causality bias. Approximately 20% of the
adolescents eligible for the study refused to partici-
pate. Nonrespondents may have exhibited character-
istics associated with higher risks of different diseases.
However, selection bias is unlikely to have occurred,
since the sample subjects did not differ from the
source population with regard to age or ethnic group.
CONCLUSIONS
• Increased severity of malocclusion is associated with
higher impact on OHRQoL, independent of dental
caries or traumatic dental injuries.
• Socioeconomic inequalities and clinical conditions
represent important features of OHRQoL.
• Sociodental measures may contribute to the identifi-
cation of groups with higher levels of need, thus
yielding a better cost-effectiveness ratio of oral
health policies.
REFERENCES
1. de Paula DF Jr, Santos NC, da Silva ET, Nunes MF, Leles
CR. Psychosocial impact of dental esthetics on quality of life in
Malocclusion: esthetic impact and quality of life among
3. Onyeaso CO, Aderinokun GA. The relationship between
dental aesthetic index (DAI) and perceptions of aesthetics,
function and speech amongst secondary school children in
4. Peres KG, Barros AJ, Anselmi L, Peres MA, Barros FC.
Does malocclusion influence the adolescent’s satisfaction
with appearance? A cross-sectional study nested in a
2008;36:137–143.
quisa Nacional de Saúde Bucal: Resultados Principais.
6. World Health Organisation (WHO). Oral Health Surveys:
7. Jenny J, Cons NC, Kohout FJ, Jakobsen J. Predicting
handicapping malocclusion using the Dental Aesthetic
8. World Health Organisation (WHO). International Collabora-
Study of Oral Health Outcomes (ICS II). Document 2:
Data Collection and Examination Criteria. Geneve:
WHO; 1989.
9. Cons NC, Jenny J, Kohout FJ, Songpaisan Y, Jotikastira D.
Utility of the dental aesthetic index in industrialized and
166.
10. Jenny J, Cons NC. Establishing malocclusion severity levels
on the Dental Aesthetic Index (DAI) scale. Aust Dent J.
1996;41:43–46.
11. Hamamci N, Basaran G, Uysal E. Dental Aesthetic Index
scores and perception of personal dental appearance
among Turkish university students. Eur J Orthod. 2009;31:
168–173.
12. Gherunpong S, Tsakos G, Sheiham A. Developing and
evaluating an oral health-related quality of life index for
children: the CHILD-OIDP. Community Dent Health. 2004;
13. Barbosa TS, Gaviao MB. Oral health-related quality of life
in children: part II. Effects of clinical oral health status. A
14. Foster Page LA, Thomson WM, Jokovic A, Locker D.
Validation of the Child Perceptions Questionnaire (CPQ 11–
Guyatt G. Validity and reliability of a questionnaire for
measuring child oral-health-related quality of life. J Dent
16. Piovesan C, Antunes JL, Guedes RS, Ardeghi TM. Impact
of socioeconomic and clinical factors on child oral health-
related quality of life (COHRQoL). Qual Life Res. 2010;19:
1359–1366.
17. Vargas-Ferreira F, Piovesan C, Praetzel JR, Mendes FM,
Allison PJ, Ardeghi TM. Tooth erosion with low severity
does not impact child oral health-related quality of life.
Caries Res. 2010;44:531–539.
18. Locker D, Allen F. What do measures of “oral health-related
adaptation of the Child Perceptions Questionnaire 11–14
(CPQ11–14) for the Brazilian Portuguese language. Health
20. Traebert J, de Lacerda JT, Thomson WM, Page LF, Locker
D. Differential item functioning in a Brazilian-Portuguese
language version of the Child Perceptions Questionnaire

