Matrix C defined in Appendices C and D is singular and hence expressions containing the inverse of C cannot be used as such. The singularity is a consequence of the chosen organization of the matrix-vector differential equation in these appendices. The field vector \(\mathbf{u} \) contains nine stress components of which only six are independent. By removing the three redundant stress components from \(\mathbf{u} \) and reorganizing the matrix-vector equation accordingly, we obtain a matrix \(\mathbf{C} \) that is invertible. The redefined matrices \(\mathbf{A} = \mathbf{C}^{-1} \mathbf{A} \) and \(\mathbf{B} = \mathbf{C}^{-1} \mathbf{B} \) in Appendices C and D obey symmetry relations (9) and (13) in the body of the paper. Hence, the unified reciprocity theorems (12) and (14) are valid for the modified matrix-vector differential equation in these appendices. Explicit expressions for the modified matrices and vectors can be found at http://geodus1.ta.tudelft.nl/PrivatePages/C.P.A.Wapenaar/4_Journals/J.Appl.Mech/AppM_04.pdf.

We take this opportunity to indicate some printing errors in the paper. The tildes below \(\mathbf{A} \) and \(\mathbf{u} \) in Eq. (1) should be removed. Circumflexes should be added above all vectors \(\mathbf{u} \) and \(\mathbf{s} \) in Eqs. (10) and (11). A right-bracket \(] \) should be inserted after the first \(\mathbf{u}_B \) at the right-hand side of Eq. (10). Right-parentheses \() \) should be inserted after \(\mathbf{u}_A \) at the left-hand side of Eq. (11) and after the first \(\mathbf{u}_B \) at the right-hand side of Eq. (11).

We thank Stefan Stijlen for bringing the singularity of matrix \(\mathbf{C} \) to our attention.