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Models of the Posterior Parietal Cortex Which
Perform Multimodal Integration and
Represent Space in Several Coordinate Frames
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Abstract

Bl Many neurons in the posterior-parietal cortex (PPC) have
saccadic responses to visual and auditory targets. The
responses are modulated by eye position and head position.
These findings suggest that PPC integrates multisensory inputs
and may provide information about saccadic targets repre-
sented in different coordinate frames. In addition to an eye-
centered output representation, PPC may also project to brain
areas which contain head-centered and body-centered repre-
sentations of the space. In this report, possible coordinate
transformations in PPC were examined by comparing several
sets of models of PPC, each having different representations in
the output layer: (i) an eye-centered map only; (i) a head-
centered map only; (iii) an eye-centered map and a head-
centered map; and (iv) an eye-centered map, a head-centered
map, and a body-centered map. These output maps correctly
encoded saccades to visual and auditory targets through
training. The units in the hidden layers of the models exhibited
the following properties: (1) The units had gain fields (GFs) for

INTRODUCTION

Physiological recordings and lesion studies have demon-
strated that the posterior-parietal cortex (PPC) is in-
volved in coordinate transformations for representing
spatial information (Andersen, Essick, & Siegel, 1987;
Mountcastle, Lynch, Georgopoulos, Sakata, & Acuna,
1975). By combining sensory information with extraret-
inal information, such as signals of eye position or head
position, the brain can form abstract representations of
the space interposed between the sensory input and the
motor output (Zipser & Andersen 1988; Andersen et al.,
1985). Increasingly experimental evidence demonstrates
that PPC is very important in such information combina-
tions. Neurons in PPC respond to saccades to visual or
auditory targets (Mazzoni, Bracewell, Barash, & Ander-
sen, 1996). Moreover, responses of PPC neurons to
visual or auditory targets are modulated by eye position
and head position, and such modulations are important
for coordinate transformations (Brotchie, Andersen,
Snyder, & Goodman, 1995; Stricanne et al., 1996; Syn-
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eye position, and also for head position if the model had a
body-centered output representation; (2) As the result of the
GF and the nonlinear activation function of the units, the
hidden layers often employed “intermediate” coding, e.g., the
hidden units coded targets partially in eye-centered coordi-
nates and, partially, in head-centered coordinates; (3) Different
types of coordinate transformations in these models were
carried out by different relationships between the receptive
fields (RFs) and the GFs of the hidden units; and (4) The
properties of PPC neurons are in better accordance with the
hidden units of the models that had multiple-output repre-
sentations than the models that had only one single-output
representation. In conclusion, the results show that the GF is
an effective mechanism for performing coordinate transforma-
tions. The models also suggest that neurons with intermediate
coding are to be expected in the process of coordinate
transformations. [l

der, Brotchie, & Andersen, 1993). For instance, an eye-
centered representation can be formed by subtracting
information about the eye position from the location of
an auditory target encoded in head-centered coordi-
nates; a head-centered representation can be formed
by adding information about the eye position and the
visual target location on the retinas; and a body-centered
representation can be formed by adding information
about the eye position, the head position, as well as
the retinal target location. Furthermore, experimental
data suggest that more than one representation of the
space may exist in the parietal cortex (Mazzoni &
Andersen, 1995; Synder et al., 1993). Psychological ex-
periments found that different coordinate references
were used for different motor tasks (Helms Tillery,
Flanders, & Soechting, 1991; Soechting, Flanders, &
Helms Tillery, 1990; Soechting & Flanders, 1989a, b).
Given that PPC neurons receive information about eye
position and head position, and possibly body position,
PPC may provide the motor system with multiple-repre-
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sentations of space. It is interesting to determine what
kinds of circuits are required for various coordinate
transformations.

A number of computational models have been pro-
posed to account for coordinate transformations. Zipser
and Andersen (1988) developed a network model, which
combined visual signals and eye position signals onto a
head-centered output layer. They found that visual sig-
nals and eye position signals interacted to form ‘gain
fields (GFs)” in which the amplitudes of visual responses
were modulated by the eye position. The GFs of the
hidden units in the model were similar to those found in
neurons of area 7a, a subregion of PPC. Krommenhoek,
Van Opstal, Gielen and Gisbergen (1993) trained a three-
layered network model to code motor errors of visual
targets topographically in the output layer. They found
that the hidden units encoded motor errors in a distrib-
uted fashion. A model developed by Xing, Stricanne and
Andersen (1994) performed visual-auditory integrations
and remapped visual and auditory target locations onto a
motor-error representation for saccades at the output
layer. The hidden units in this model were tuned to both
target location and motor error, similar to the neurons
reported in PPC (Stricanne, Andersen, & Mazzoni, 1996).
All these models were made on the assumption that the
cortex provides only one type of representation at the
output level. Pouget and Sejnowski (1995) used basis
functions to model PPC neurons. They demonstrated
that a set of basis functions could provide both eye-
centered and head-centered output representations. To
understand the role of PPC in sensorimotor integration,
we explored several possible models of coordinate trans-
formations, which might occur in PPC. Simulations in this
report were aimed at the following questions: (1) Can
PPC provide multiple representations of space? (2) Are
there any common principles involved in various trans-
formations? (3) What are the intrinsic differences be-
tween neurons involved in different transformations?

We modeled sensorimotor integrations in PPC at
several levels: (1) Neurons receive visual or auditory
inputs and provide a single-output representation of
space; (2) Neurons receive both visual and auditory
inputs and provide a single-output representation; and
(3) Neurons receive bimodal inputs and provide multi-
ple-representations in different reference frames.
Although these may not include all the possible integra-
tions in PPC, the analysis of a subset of models at various
integration levels may highlight the intrinsic mechanisms
of coordinate transformations in PPC. Parts of this report
have been presented in abstract form (Xing et al., 1994).

Description of the Models
Structure of the Models

Since several models were examined in this report, we
first introduce the common structures for all the mod-
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els, then describe each model in detail. Each model
consists of three abstract layers: the 2-D input maps, the
middle layer (i.e., the hidden layer), and the 2-D output
maps. Physiologically, these layers correspond to inputs
to PPC, PPC, and the motor/premotor areas to which
PPC projects. Every unit in the input layer is connected
to all the hidden units, and every hidden unit is con-
nected to all the output units. The connection weights
are initially set to small random values and are adjusted
through training.

Input layer. The input layer contains a visual map
coding visual targets in eye-centered coordinates, an
auditory map coding acoustic targets in head-centered
coordinates, and eye position units, as well as head
position units, which linearly encode eye and head
positions. An 80° x 80° visual input map was mod-
eled using an 8 x 8 array of units. Receptive fields of
these units were represented by a Gaussian distribu-
tion with a 1/ width of 15°. The centers of the
receptive fields (RFs) were equally spaced over the 8
x 8 grid with 10° spacing. The auditory map was
modeled in the same way as the visual map, except
the auditory units code auditory targets in head-
centered coordinates. These input units may corre-
spond to a subset of sensory neurons in PPC (Maz-
zoni et al., 1996).

Most eye position neurons in PPC respond monoto-
nically to horizontal and vertical eye positions in head-
centered coordinates. This feature was modeled using
four sets of eight units. Two sets of these units linearly
encoded the horizontal component of eye position with
positive and negative slopes. The other two sets en-
coded the vertical component in a similar manner. The
slope and intercept for each unit’s response were cho-
sen randomly. Eye positions were, thus, encoded line-
arly in the activity of these units. Like eye position, head
position also modulates the responses of many PPC
neurons (Brotchie et al., 1995). Thus, we used four sets
of eight head position units to encode head position in a
similar manner as coding the eye position except head
position was encoded in body-centered coordinates.

Hidden layer. Twenty hidden layer units were
typically used in the simulations presented in this
report unless specified otherwise. The hidden units
received activities from input units of all input chan-
nels. The output activation of the hidden units was
calculated by first summing all inputs and then
calculating the output as a sigmoidal function of
the total input.

The activation in an output unit is:

Output = 1/[1 + exp(—net)]

where net = sum of weighted inputs + bias.
The sigmoid was chosen as an output function,
because it resembles the operation performed by
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actual neurons, which sum inputs, have a threshold,
and saturate with high levels of activity. The sig-
moid function limits output activity to a range
between 0 and 1. In the middle region of its
dynamic range, the sigmoid approximates a linear
function.

Output layer. The output layer contains several re-
presentations: an eye-centered map, a head-centered
map, and a body-centered map. The eye-centered and
head-centered maps are similar to the corresponding
input maps, with an 8 x 8 array of output units to
represent output signals topographically for each map.
The body-centered map was also modeled in a similar
manner with 8 x 8 units. Each of the output maps
covers an 80° x 80° space. The activation of output
units, like the hidden units, was governed by the
sigmoid function.

We use the following symbols in model descriptions:

V: retinal location of visual targets;

A: head-centered location of auditory targets;

E: position of the eyes in head-centered coordinates;

H: position of the head in body-centered coordinates;

ME: motor error in eye-centered coordinates (output
representation appropriate for eye movement):

HE: head-position error in head-centered coordinates
(output representation appropriate for head move-
ment):

BE: body-position error in body-centered coordinates
(output representation appropriate for body move-
ment)

For a given visual target V, the output maps are
specified with ME = V for the eye-centered map, HE
=V + E for the head-centered map, and BE =V + E +
H for the body-centered map. For an auditory target
location A, the output maps are specified with ME = A —
E, HE = A, and BE = A + H.

Models of Four Different Levels of Integration in PPC

We approached our goals by exploring models at
different integration levels. All the models have ac-
cess to eye position in the input layer. For the first
three levels, only the eye-centered and the head-
centered output maps were considered. Level-1 mod-
els are for unimodal neurons. Different sets of
hidden units receive inputs of either visual or audi-
tory target locations and project to one of the two
output maps, respectively (Figure 1A). Level-2 models
use bimodal inputs. Different sets of hidden units
receive both visual and auditory inputs and project
to one of the two output maps (Figure 1B). The
Level-3 model has bimodal inputs and multiple-out-
put representations. All the hidden units project to
both output maps simultaneously (Figure 1C). The
Level-4 model has additional access to head-position

Figure 1. The diagrams of the models. Each model is composed of
three layers: 2-D input maps, 2-D output maps, and a hidden layer.
Input maps are: V—Visual inputs, A—Auditory inputs, E—Eye
position, and H—Head position. Output maps are: ME—saccadic
motor error map (eye-centered), HE—head-centered map, and
BE—body-centered map. Each input unit is connected to every unit
in the hidden layer, each hidden unit projects to every output unit.
A, B, C, D show the models of the four different levels of
integration.

information, and its output layer contains an eye-
centered map, a head-centered map and a body-
centered map.

Models of Level-1. There are four models at this level,
as shown in Figure 1A. Model 1-1 remaps visual inputs
to eye-centered outputs: ME = V; Model 1-2 remaps
auditory inputs to the head-centered representation:
HE = A; Model 1-3 remaps auditory inputs to the eye-
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centered outputs: ME = A — E; Model 1-4 remaps visual
inputs to the head-centered representation: HE = V +
E. Model 1-1 and Model 1-2 simply remap input signals
onto the output layer in the same coordinate frame;
while Model 1-3 and Model 1-4 require coordinate
transformations.

Models of Level-2. The assumption for Level-2 models
is that neurons in PPC are bimodal, i.e., the neurons
receive both auditory and visual inputs. The neurons are
assumed to segregate into two sets: one set projects to a
ME map and the other to a HE map. Correspondingly,
two models are needed at this level, as shown in Figure
1B. Model 2-1 receives auditory and visual inputs and
remaps them to the eye-centered representation: ME =
Vand ME = A — E. Model 2-2 remaps visual and auditory
inputs to the head-centered representations: HE = V +
E and HE = A

The model of Level-3. The assumption is that indivi-
dual PPC neurons integrate visual and auditory inputs
and project to both eye-centered and head-centered
output representations. Therefore, as shown in Figure
1C, one model at this level is sufficient for all the
transformations in Level-1 and Level-2. Model 3 has
access to auditory and visual inputs. The two output

maps of Model 3 are: ME = V, ME = A — E and HE = A,
HE =V + E.

The model of Level-4. In addition to eye position,
head position also modulates the responses of many
PPC neurons (Brotchie et al., 1995). Head-position
information is necessary for a body-centered repre-
sentation. This is simulated in Model 4. Compared
to Model 3, Model 4 receives additional head-posi-
tion signals (H) and has one more output map, the
body-centered representation: BE = V + E + H,
BE = A + H. Figure 1D shows the diagram of
Model 4.

Training Method and Learning Algorithm

The process of training consists of repeatedly present-
ing input patterns to the network, comparing the
actual output with the desired output, and adjusting
synaptic weights accordingly. For each training cycle,
the location of either a visual or an auditory target,
and an eye position in the orbit or head position were
picked at random and were converted into the for-
mats used for the inputs to the model. These inputs
were propagated to the output units. The error
pattern was calculated as the difference between the

Figure 2. The measurements
of RF-GF direction difference
and RF shift. (A) The illustration
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Figure 3. Receptive fields shift
with eye position. (A, B) 1-D RE Model 1-1
curves of a typical hidden unit
in (A) Model 1-1 and (B) Model
1-2, measured as the unit’s
responses to targets presented
at different angular positions of
the input map. Different curves
were obtained at three eye
positions (—20°, 0% 0°, 0°; 20°,
0°). (C, D) Histograms of RF
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actual output pattern and the desired output pattern.
This error pattern was then used to modify the
connection weights of the model using the backpro-
pagation learning algorithm (Rumelhart, Hinton, &
Williams, 1986). Training was repeated until two con-
ditions were satisfied: (1) The mean square error
between the actual output pattern and the expected
output pattern could not be decreased with further
training; and (2) A performance error, defined as the
difference between the center of mass of the expected
output and the network output, is less than 4° for any
given combination of inputs within the modeled
space. Since an allowed performance error of 4° was
typically used for training monkeys to make saccades,
the second condition was to assure that a trained
model had comparable performance with behaving
monkeys. It also assured that all the models after
training have approximately the same performance
level.

Measurements

After the training was completed, the response
properties of the hidden units were examined and
compared across different models. The following are
the typical measurements made on the hidden
units.

Gain field (GF). The response amplitude of a unit
to a target is modulated by eye position. The GF of

a unit is the 2-D plot of the unit’s response to a
target presented in the unit’s RF measured against
the different eye positions. Figure 2A illustrates a
GF. The size of the squares is proportional to the
response measured at the corresponding eye posi-
tion.

Receptive field (RF). Most trained units responded
selectively to targets presented in a local area of the
input maps, as illustrated with the shaded area in Figure
2B. We defined the RF of a hidden unit as the input area
within which a target could evoke a response greater
than 50% of the unit’s maximal response. Unless other-
wise specified, RFs were measured when the eye posi-
tion and the head position pointed to the center of
fixation, i.e., E = 0 and H = 0.

GF-RF vrelationship. The direction of a RF was
calculated as the vector direction from the center of
the input map to the center of the RF, as illu-
strated in Figure 2B. The center of a RF was
computed as “the center of mass” of the unit’s 2-
D response across the input map. In the cases
when a RF center coincides with the center of
the input map, the unit is labeled as “nondirec-
tional”. The direction of a GF was calculated as the
best-tuned direction of the GF relative to the cen-
tral eye position, as illustrated in Figure 2A. The
GF-RF alignment of a unit was, thus, defined as the
direction difference of the GF and the RF of a unit,
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as shown in Figure 2C. The direction difference
varies between 0 and 180°.

RF shift ratio. One of the main goals of this report is
to examine the coordinate frames in which PPC neurons
encode saccades. Ideally, if hidden units encode targets
in eye-centered frames, their RFs would shift with
changes in eye position; if neurons encode targets in
head-centered frames, then the RFs should not change
with eye position. The shift of RFs can, thus, be used as a
coordinate index. For a given hidden unit, the RF shift
was computed as the distance between the centers of
mass of the RF profiles measured at different eye posi-
tions. This is illustrated in Figure 2D. Since the eye
position was encoded in head-centered coordinates,
the RF shift was also computed in head-centered co-
ordinates. The RF shift ratio was then computed as the
shift of RF centers in head-centered coordinates divided
by the corresponding change in the eye position. For
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Figure 4. The receptive fields and gain fields of the hidden units in
Model 1-3. (A) The receptive field of a typical hidden unit in Model 1-3.
The gray level of the small squares is proportional to the evoked
responses of the hidden unit. (B) The gain field of the same unit. The
gain field is the responsiveness of the unit to a target in the same
location in the RF plotted against a 8 x 8 grid of eye positions, spaced
by 10°. The gray level and the size of the squares in the 2-D gain field
represent the activation of the unit. (C) The histogram of direction
differences of the gain field and the receptive field of all hidden units in
Model 1-3. The direction of a receptive field was calculated as the
vector direction from the center of the input map to the center of the
RF. The difference between the directions of the gain field and the RF
of a unit was computed for every hidden unit. Most units have
direction differences close to 180°, i.e., the “opposite” gain field
structure.
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Figure 5. An example of RF shifts induced by eye-position modula-
tion. The responses of a typical hidden unit in Model 1-3 are plotted
against five auditory target locations. The vertical axis represents
response magnitudes and the horizontal axis represents target
locations. Tuning curves of a unit obtained at three eye positions are
dashed differently. The tuning curves are distorted by eye-position
modulations producing apparent horizontal shifts.

each unit, we calculated RF shift ratios along the hor-
izontal and vertical axis, respectively.

RESULTS
Level-1: No Visual-Auditory Integration

Model 1-1 and Model 1-2—No Coordinate
Transformations

The hidden units exhibited localized RFs after the train-
ing was completed. The responses changed little with
eye position; no hidden units developed GFs. Thus, the
eye-position information was not combined with sen-
sory information in the hidden layer. These results are
the same for Model 1-1 and Model 1-2, since the two
models have similar structures.

In these two models, since eye position had little
effect on the hidden units, the VRFs should be anchored
to the eyes while the ARFs should be anchored to the
head-centered map. We examined the RF shift ratios for
ARFs and VRFs. Figure 3A, B shows examples of 1-D RF
tuning curves as a function of eye position. The RF
curves are the unit’s responses to targets presented at
different angular locations of the input map. Three
curves were obtained at the three eye positions (—20°,
0%, (0°, 0%, and (20°, 0%). Figure 3C, D shows histo-
grams of RF shift ratios for Model 1-1 and Model 1-2,
respectively. For each hidden unit, the RF shifts along
the horizontal axis with horizontal eye position displace-
ments and the RF shifts along the vertical axis with
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vertical eye position displacements were computed. The
horizontal shift ratio and the vertical shift ratio for a unit
are then plotted in the same histogram. Therefore, the
histograms of Figure 3C and D each contain 40 shift
ratios for the 20 hidden units. The same holds true for
all the shift ratio histograms throughout this report. The
mean VRF shift ratios for Model 1-1 is 0.97, whereas the
mean of ARF shift ratios for Model 1-2 is 0.19. The
deviation of shift ratios from zero or one is due to edge
effects of the large RFs.

Model 1-3—Head-Centered to Eye-Centered Coordinate
Transformation

This model transforms inputs of auditory target loca-
tions encoded in head-centered coordinates onto the
eye-centered representation. After approximately 2,000
training trials, the network learned to map target loca-
tions onto the eye-centered output correctly. The hid-
den units developed localized ARFs and GFs for eye
position. Figure 4 shows the RF and GF of an example
unit. The RF size is about a quarter of the modeled input
map (Figure 4A). The RF centers were all located at
peripheral locations in the input map. Thus, none of the
hidden units was nondirectional with the RF center
located in the center of the input map. The GFs mono-
tonically increased in a particular direction (Figure 4B).
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Figure 6. Receptive fields and gain fields of hidden units in Model 1-4.
The layout of the figure is the same as that of Figure 3. Most hidden
units have direction differences close to 0°, i.e., the “aligned” gain
fields.

A Model 1-3
O A
@
c <
35
©
O « -
i I
o-lll'l | 'l | I' |
00 02 04 06 08 10 12
RF shift ratio
B Model 1-4
w -
o “
c
5 4
©
o |
= l |II
O -l T T T T 1
00 02 04 06 08 10 1.2
RF shift ratio

Figure 7. Histograms of coordinate indices of all hidden units in (A)
Model 1-3 and (B) Model 1-4.

An interesting observation is that the unit had the GF
approximately opposite to the direction of the unit’s RF.
This is the case for the majority of the hidden units. The
histogram of the GF-RF direction differences for all
hidden units is shown in Figure 4C. About 80% of the
units have a direction difference close to 180°. Thus, the
hidden layer of Model 1-3 essentially employs an “‘op-
posite GF”” mechanism.

The ARF centers of the hidden units shifted with eye
position. Figure 7A shows the histogram of ARF shift
ratios for all the hidden units. The histogram included
both horizontal and vertical shift ratios for each unit. The
distribution of the ratios was broad with the mean ratio at
0.5, indicating that the ARF shifts was smaller than the
shift of eye position. Further examinations showed that
the responses of these units were selective, in varying
degrees, for both eye-centered motor error and head-
centered target location. Therefore, hidden units in
Model 1-3 encode auditory inputs neither exclusively in
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eye-centered frames nor exclusively in head-centered
frames, but in intermediate coordinate frames.

The responses of nearly all the hidden units were
modulated by eye position. This modulation resulted in
distortions of ARF profiles, which lead to shifts of the RF
centers. Two factors contribute to the shifts. (1) The
sigmoidal integration of eye position and target location
causes nonlinear modulation of the responses. The eye-
position modulation is very effective when the response
is weak, and the modulation saturates when the re-
sponse is strong. These effects lead to the distortion of
ARFs. (2) Eye position modulation introduces RF shifts.
The RFs of the hidden units are usually very large so that
the modulation is usually asymmetric on the RFs. This is
because most RFs are located in the periphery and only
one flank of the RF is in the region tested. Figure 5
illustrates an example of an ARF shift. The three curves in
Figure 5 show the responses to target locations mea-
sured at three eye positions for a typical hidden unit,
with the horizontal axis indicating target locations in
head-centered coordinates and the vertical axis repre-
senting responsiveness. The response magnitudes are
modulated by eye position. The activity saturates at the
edge of the RF. The result of such nonlinear modulation
is a shift of the RF. GF modulation, thus, provides a
simple way to achieve a partial coordinate transformation
without requiring a complicated shift circuit.

Model 1-4—Eye-Centered to Head-Centered Coordinate
Transformation

This is the Zipser—Andersen model. The network
learned to map visual inputs onto the head-centered
output layer. Like those in Model 1-3, the hidden units in
Model 1-4 developed localized VRFs and GFs. In contrast
to Model 1-3, most hidden units of Model 1-4 had GFs
tuned for the same direction as the unit’s VRF. Figure
6A, B shows an example. The GF-RF direction differ-
ences for all hidden units are illustrated in the histogram
of Figure 6C. Most units had direction differences close
to zero. The VRFs of hidden units in Model 1-4 are not
strictly anchored to the eyes. The VRF shift ratios shown
in Figure 7B indicate that RF centers of most hidden
units have a shift ratio smaller than 1.0. The RF centers
of the hidden units were affected by the change of the
eye position because of the gain modulation.

The hidden units in Model 1-1 and Model 1-2 did not
exhibit GFs, because eye-position information is not
used for these models in which no coordinate transfor-
mation occurs. The GF-RF relationship of the units in
the Level-1 models can be classified into three cate-
gories: (i) opposite GF and RF directions, like those of
model-3 units; (ii) aligned GF and RF directions, like
those of Model 1-4 units; and (iii) GF and RF directions
are neither significantly aligned nor significantly oppo-
site. This type only constitutes a small portion of the
hidden units in the Level-1 models. Aligned GF-RF were
developed in order to transform signals from eye-cen-
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tered frames to head-centered frames, while opposite
GF-RF were to transform signals the other way around.
These results indicate that the GF plays a crucial role in
coordinate transformations.

Level 2: Integrated-Input Models

Model 2-1—Transformations of Visual and Auditory
Inputs to Eye-Centered Coordinates

For each training cycle, a pair of eye position and visual
target locations, or a pair of eye position and auditory
target locations, were chosen at random as the inputs to
the network. The expected output was the correspond-
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o
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Figure 8. Histograms of direction differences of the hidden units in
(A) Model 2-1 and (B) Model 2-2.
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Figure 9. Histograms of RF
shift ratios for Level-2 models. A
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ing eye motor error. The training process was stabilized
after approximately 2,000 cycles. The model learned to
map both visual and auditory inputs topographically
onto the motor-error representation of the output layer.

The hidden units in Model 2-1 had similar properties
to those in Model 1-3. (Both models perform the
coordinate transformation from head-centered frames
to eye-centered frames). After training, the hidden units
developed localized ARFs and VRFs. The ARF and VRF of
a unit usually aligned when the eye pointed to the
central position. Most hidden units, like those in Model
1-3, had opposite GF-RF directions. Figure 8A shows the
histogram of GF-RF direction differences for all the
hidden units. Approximately 70% of the hidden units
had direction differences close to 180°. These units were
well tuned for motor errors and head-centered target
locations. Among the six units whose GF-RF direction
differences were close to zero, two of them had little
response to any targets. The rest of the four units were
selective to target location, but not selective to motor
error. These results again demonstrate that the GF-RF
direction difference is directly correlated to the coordi-
nate transformation that the network performs.

The responses of the hidden units to auditory targets
were found to be selective for both eye-centered and
head-centered target location, suggesting ‘‘intermedi-

ate” coding of the hidden units. The ARF centers of
the units shifted with eye position, but the shift did not
completely compensate for the change of eye position,
as shown in the histogram in Figure 9A. The mean of
AREF shift ratios is about 0.5. Partial shifts of ARFs have
been reported in PPC neurons (Stricanne et al., 1996).

Since visual targets were initially encoded in an eye-
centered frame, no coordinate transformation was
needed for visual signals. However, we found that re-
sponses of the hidden units to visual targets were not
strictly anchored to the eye. Figure 9B shows the histo-
gram of VRF shift ratios for all units. The mean of VRF shift
ratios is 0.75. The shift of VRFs was due to eye-position
modulation. Compared to the ARFs, the shift of VRFs was
weaker. The peak of VRF profiles essentially stayed with
eye position. This is because eye-position modulation was
weaker for visual targets than for auditory targets. Detail
examinations showed that slopes of the auditory GFs
were steeper than the slopes of the visual GFs.

Model 2-2—Transformations of Visual and Auditory
Inputs to Head-Centered Coordinates

This model is a mirror structure of Model 2-1. The
training process was the same as that of Model 2-1
except that the expected output pattern was the head-
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centered representation. The hidden units in Model 2-2
have similar features to those in Model 1-4 because both
models perform the coordinate transformation from
eye-centered frames to head-centered frames. As we
would expect from the results of Model 1-4, most hidden
units in Model 2-2 have aligned GF-RF directions. Figure
8B shows the histogram of GF-RF direction differences
for all the hidden units. Out of the 20 hidden units 15
(75%) had direction differences close to zero. The
remaining units either had little response to any inputs
or only exhibited tuning for motor error but not for
head-centered target location.

The inputs of auditory targets were encoded in the
head-centered frame; thus, no coordinate transforma-
tion was needed for auditory signals. However, the
responses of the hidden units to auditory targets were
still slightly shifted with eye position, like those VRFs in
Model 2-1. Figure 9C shows the histograms of ARF shift
ratios for all units. The mean of ARF shift ratios is 0.28.
The mean of VRF shift ratios is 0.6, as shown in Figure 9D.

In summary, the Level-2 models are capable of bring-
ing inputs from two different sensory modalities into the

same coordinate frame, either eye-centered (Model 2-1)
or head-centered (Model 2-2). The response properties
of the hidden units in Model 2-1 and Model 2-2 are
similar to those in Model 1-3 and Model 1-4. Most
hidden units encode inputs in intermediate coordinate
frames. The GFs play an important role in their inter-
mediate coding. Stricanne et al. (1996) found that many
PPC neurons indeed encoded auditory targets in inter-
mediate coordinates and the auditory RFs of these
neurons were partially shifted with eye position.

The Model of Level-3: Integrated Input—-Output
Model

At every training cycle, an eye position and either a
visual or auditory target location were chosen randomly.
There were two output patterns: the saccadic motor
error in the eye-centered output map and the target
location in the head-centered output map. The connec-
tion weights of the model were adjusted in order to
reduce the performance errors of both outputs. It took
about 5,000 training cycles for the training process to be

Figure 10. RF-GF relationship
and RF shift ratios for Model 3.
(A, B) Histograms of RE-GF
direction differences for ARFs
(A) and VRFs (B). (C, D) Histo-
grams of ARF shift ratios (C)
and VRF shift ratios (D).
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Figure 11. The gain fields for eye position and for head position of a
typical hidden unit in Model 4. Both gain fields are aligned to the same
direction; whereas the gain field for eye position (A) has a steeper
slope than the gain field for head position (B).

stablized. The network learned to map visual and audi-
tory inputs into both eye-centered and head-centered
frames.

After training, the hidden units developed localized
RFs and GFs. The RFs and GFs were similar to those in
the Level-1 and Level-2 models. However, as shown in
the histograms of Figure 10A and B, the RF-GF direction
differences for all the hidden units spread from 0° to
180°. No explicit relationship between RF and GF could
be derived. Since neurons with aligned RF and GF,
opposite RF and GF, and neurons whose RF and GF
direction differences are between 0° and 180° have all
been observed in PPC (Stricanne et al., 1996), the PPC
neurons were in better accordance with Model 3 units,
which had a more diverse distribution of RF-GF direc-
tion differences than with Model 2 units. Therefore, the
analysis of the population distribution of RF-GF rela-
tionship can provide information about what kinds of
target representations exist in PPC.

The hidden units encoded both visual and auditory
targets in intermediate reference frames. Figure 10C,
D illustrates the histograms of ARF and VRF shift
ratios. The ARF and VRF shifts of the hidden units
in Model 3 are similar to those in Model 2-1 and
Model 2-2. Thus, the measurement of RF shifts cannot
differentiate neurons that provide a single-output re-
presentation from neurons that provide multiple-out-
put representations.

The Model of Level-4: Integrated Input-Output
Model with Head Location Information

In this model, head-position information is added into
the input layer in the same manner as eye-position
information. Besides the eye-centered and the head-
centered output representations, the output layer of
Model 4 has one more output map, which is the body-
centered representation of targets: BE = H + E + Vand

BE = H + A. Thirty hidden units were used in Model 4.
At each training cycle, an eye position, a head position,
and a visual or an auditory target location were chosen
at random as the inputs to the model. The connection
weights of the model were adjusted according to the
differences between activations of the three output
maps and their expected outputs. After the training
was stabilized, the network learned to produce correct
output signals in eye-centered, head-centered and body-
centered coordinate frames, respectively.

After training, the RF-GF relationship and coding
properties of the hidden units in Model 4 were similar
to those in Model 3. A new feature of Model 4 is that the
hidden units developed spatial GFs for head position.
Interestingly, the head-GF and eye-GF for the majority of
the hidden units were in the same direction. The eye-GF
and head-GF of a typical Model 4 unit are shown in
Figure 11A and B. For a given unit, the slope of the eye-
GF was, in general, slightly steeper than that of the head-
GF. The average ratio of head-GF slopes over eye-GF
slopes was 0.9. This agrees with the experimental results
(Brotchie et al., 1995). For comparison, we trained the
model to map inputs onto the body-centered output
representation only. We found that the eye-GF slopes
and the head-GF slopes were statistically the same.
Thus, the steeper slopes of eye-GFs in Model 4 might
reflect the fact that eye-position information was needed
for all the three output representations, while head-
position information was only needed for the body-
centered representation.

DISCUSSION

Sensory signals of different modalities are initially en-
coded in different reference frames. On the other hand,
the final actions of motor commands are also performed
in different coordinate frames. For instance, saccades are
made relative to the eyes, while the gaze shifts made
with head movement are made relative to the head.
Thus, the process of sensorimotor integration is in-
volved in various types of coordinate transformations.
How does the brain carry out these transformations? It is
hard to imagine that the brain has many different
circuits, each designed for one particular type of trans-
formation. Some common principles for neurons in-
volved in different types of transformations might
exist. In this report, we examined several sets of coordi-
nate-transformation models, which integrate inputs and
outputs differently. Although these models differ in their
structures and functions, we found that GF structure
and intermediate coding are the typical features of the
models for various types of coordinate transformations.

Structure of Models

Zipser and Andersen (1988) developed a model that
combined visual and eye position signals, and mapped
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them to a head-centered output layer. Krommenhoek
et al. (1993) trained a backpropagation model to map
input signals onto an eye-centered output layer. So far,
there is no experimental evidence to exclude either one
of these two output formats. Pouget and Sejnowski
(1995) used the product of a Gaussian function of retinal
location and a sigmoid function of eye position as a
model of neurons. They demonstrated that a large set of
such model parietal neurons could represent the posi-
tion of an object in head-centered and eye-centered
reference frames simultaneously. In this report, we
assume that multiple representations of visual and audi-
tory targets in different coordinates exist in the brain.
The required coordinate transformations can be carried
out by one or several groups of PPC neurons.

Four sets of models were analyzed in this report. We
first examined the models without the integration of
sensory inputs of different modalities. At this integration
level, four separate sets of units carried out the trans-
formations from visual or auditory inputs onto an eye-
centered or head-centered representation. The hidden
units in the four models of Level-1 received either visual
or auditory target locations, but not both. These simple
models allowed us to examine the nature of coordinate
transformations. GF structure did not develop for the
hidden units in Model 1-1 and Model 1-2, but did
develop for the units in Model 1-3 and Model 1-4 in
which coordinate transformations were required. Thus,
GF structure is essential for the transformations either
from eye-centered to head-centered coordinates or the
other way around. As a result, the hidden units encoded
inputs partially in eye-centered coordinates and partially
in head-centered coordinates. In the Level-2 models, the
hidden units received converging sensory inputs; two
groups of the hidden units projected to an eye-centered
or a head-centered output map, respectively. Simula-
tions showed that such bimodal units were capable of
bringing sensory information from different coding
frames into the same-output coding frame. In Model 3,
a single population of bimodal units combined visual,
auditory, as well as eye position, information, and
transformed target locations onto an eye-centered out-
put map and a head-centered output map at the same
time. The hidden units of this model developed gain-
modulated visual and auditory RFs. The hidden units, as
a population, have aligned, anti-aligned, and intermedi-
ate GF-RF direction differences. These properties are
similar to those of PPC neurons (Stricanne et al., 1996).
The similarities suggest that PPC is capable of proceed-
ing multiple representations of space simultaneously. In
Model 4, the hidden units had access to both eye
position and head position. The model was trained to
provide eye-centered, head-centered, and body-cen-
tered representations. After training, the hidden units
successfully combined eye position and head position by
having similar GFs for both of them. The experiments
have found that more than half of PPC neurons exhib-
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ited similar GFs for eye position and head position
(Brotchie et al., 1995), suggesting a possible body-cen-
tered representation of the space in PPC.

Coding Frame and RF Shift

PPC is involved in sensorimotor integration. This raises a
question: Do PPC neurons encode targets in the coordi-
nate frames of the sensory inputs or in the frames of
motor outputs? For example, if a neuron encodes an
auditory saccade target in the head-centered frame, its RF
should be anchored to the head and should not change
with eye rotation; if the neuron encodes motor errors of
saccades, its auditory RF should be anchored to the eyes
so that the RF shifts with the eyes. The RF shift ratio,
defined as the induced shift of a neuron’s RF divided by
the corresponding shift in eye position, is used as a
coordinate index throughout this report. Such a mea-
surement has been used in experiments by Jay and
Sparks (1987) and Stricanne et al. (1996).

In Model 1-1, where the hidden units simply relayed
eye-centered visual inputs to eye-centered outputs, the
coordinate indexes of the hidden units were close to 1.0.
In Model 1-2, where the hidden units relayed head-
centered auditory inputs to head-centered outputs, the
indexes clustered near zero. In these models, the hidden
units had no GFs. Therefore, the RFs did not shift with
eye position. These results indicated that the measure-
ment of the RF shift ratio was a reasonable estimate of a
unit’s coding frame. Figure 3 showed that the indexes of
some units in Model 1-1 and Model 1-2 were not exactly
equal to 0 or 1. The measurement errors were intro-
duced when a RF was close to the edge of the input map.

Except in Model 1-1 and Model 1-2, all other models
perform various types of coordinate transformations.
The hidden units had GFs, which often caused partial
shifts of RFs. The shift indexes of the hidden units did
not cluster to 0 or 1. Instead, the indexes of all the
hidden units in each model constituted various contin-
uous distributions between 0 and 1. Thus, a series of
intermediate frames were used by the hidden layer in
order to perform the required coordinate transforma-
tions. The units, thus, coded targets neither exclusively
in eye-centered coordinates nor exclusively in head-
centered coordinates. These units employed the inter-
mediate coding for targets, which is the result of the GF
modulation of RFs by eye position signals. The advan-
tage of such coding is that neurons contain information
required for the output representations and also pre-
serve information about the original sensory targets.

Throughout this report, intermediate coding was
found in all the models that performed coordinate
transformations, independent of specific transformation
tasks. Therefore, this coding format may be a common
feature of the sensorimotor systems. In fact, many
neurons in PPC appeared to be intermediate coding
neurons (Stricanne et al., 1996; Duhamel et al., 1997).
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The similarities between the hidden units and a subset
of PPC neurons suggests that PPC may be an intermedi-
ate stage in the process that brings different sensory
modalities into the same coordinate frames by combin-
ing sensory signals with extraretinal signals.

Gain Fields

It has been well documented that most saccade-related
neurons in PPC have retinotopic RFs that are gain-
modulated by eye position. Zipser and Andersen (1988)
showed that the hidden units combined eye position and
visual target location by the means of GFs to form a head-
centered output map. Results in our multimodel analysis
allowed us to examine the intrinsic relationships be-
tween GF structure and coordinate transformations. In
our simulations, only the hidden units of Model 1-1 and
Model 1-2 in which no coordinate transformation oc-
curred did not show GF modulation after training. Units
in all other models developed GFs. Therefore, the co-
ordinate transformations required by sensorimotor inte-
grations are carried out through a GF structure.

The systematic relationship between the GF and the
RF of a unit is very interesting. When the models were
trained to map head-centered inputs onto eye-centered
outputs, i.e., Output = A — E (Model 1-3 and Model 2-1),
the tuning directions of GFs were opposite to the RF
directions. These units would maximally respond to the
saccades that start from the favored GF area and end at
the RF location; a rough selectivity for motor error is,
thus, developed. On the other hand, the GFs and RFs of
the hidden units were approximately aligned when the
models mapped eye-centered inputs onto head-cen-
tered outputs, i.e., Output = V + E (Model 1-4 and
Model 2-1). These units roughly respond best to specific
head-centered target locations irrespective of the initial
eye position. Different types of coordinate transforma-
tions can, thus, be carried out by varying GF-RF relation-
ships. In Model 3, the network has to transform inputs
onto an eye-centered representation and a head-cen-
tered representation simultaneously, so that both oppo-
site and aligned GF-RF are needed. As the result, the
GF-RF direction differences of the hidden units fall into
a continuous distribution between 0° and 180°. In Model
4, the hidden layer has access to signals of eye position
and head position, and the output layer has three
representations in different coordinate frames. The hid-
den units developed GFs for both eye position and head
position. The head-GF and the eye-GF were often
aligned, preserving a linear relationship of these two
extraretinal signals. The aligned GFs for the eye position
and the head position have been observed in PPC
(Brotchie et al., 1995).

It is intriguing that different types of coordinate
transformations can be carried simply through a GF
mechanism. To achieve different coordinate transforma-
tions, all the network needs is to have different kinds of

GF-RF relationships. This hypothesis is worth further
investigation with electrophysiological experiments.
Krommenhoek, Van Opstal and Van Gisbergen (1996)
also showed that different combinations of the tuned
directions to visual signals and to oculomotor signals
yielded eye-centered or head-centered representations.
Comparisons between experimental data and modelling
results can highlight what kinds of coordinate transfor-
mations most likely occur in PPC. Experiments have
found PPC neurons with opposite, aligned and inter-
mediate GF-RF directions. These preliminary data are in
better accordance with the results of Model 3 and Model
4 than with the results of the Level-1 and Level-2 models,
suggesting the possibility of multiple representations in
PPC.

CONCLUSION

We analyzed various possible models of sensorimotor
integration in PPC. Our simulations showed that with GF
structure and intermediate coding, a single network is
capable of computing several representations of differ-
ent coordinate frames. Although the available experi-
mental results to date are not yet sufficient to be
compared directly with the modeling results, the com-
parisons between the models suggest that RF-GF rela-
tionship could be used as an effective measurement in
future experiments to examine the mechanisms of co-
ordinate transformations in PPC.
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