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Abstract

& We investigated the influence of a categorization task on
the extraction and representation of perceptual features in
humans and monkeys. The use of parameterized stimuli
(schematic faces and fish) with fixed diagnostic features in
combination with a similarity-rating task allowed us to
demonstrate perceptual sensitization to the diagnostic
dimensions of the categorization task for the monkeys.
Moreover, our results reveal important similarities between

human and monkey visual subordinate categorization strat-
egies. Neither the humans nor the monkeys compared the
new stimuli to class prototypes or based their decisions on
conditional probabilities along stimulus dimensions. Instead,
they classified each object according to its similarity to
familiar members of the alternative categories, or with respect
to its position to a linear boundary between the learned
categories. &

INTRODUCTION

A basic cognitive capacity of primates, as well as of many
other species, is the ability to make sense of the
perceptual world by discriminating features and catego-
rizing objects. The goal of our experiments was to gain
insight into the mechanisms underlying this capacity.
Monkeys, whose visual system is similar to that of
humans (Van Essen, Drury, Joshi, & Miller, 1998) are
ideal subjects for such research, because they are adept
at a variety of visual discrimination tasks and are capable
of some stimulus generalization (Fabre-Thorpe, Richard,
& Thorpe, 1998; Neiworth & Wright, 1994). They are,
therefore, excellent models for combined behavioral
and electrophysiological approaches.

A few studies have systematically tried to elucidate the
ways that features are extracted and represented by
nonhuman primates in the context of a categorization
task (Delorme, Richard, & Fabre-Thorpe, 2000; Vogels,
1999a, 1999b; Sugihara, Edelman, & Tanaka, 1998;
Sands, Lincoln, & Wright, 1982). These studies have
shown that rhesus monkeys are capable of representing
natural objects at basic (e.g., trees vs. nontrees; Vogels,
1999a, 1999b) or superordinate (animals or food; De-
lorme et al., 2000; Fabre-Thorpe et al., 1998; Sands et al.,
1982) levels, and that they can recover a low-dimen-
sional configuration of a set of artificial objects built into
a high-dimensional parameter space, based on their
objective similarity (Sugihara et al., 1998). However,
the use of either uncontrolled stimulus sets or of stimuli

embedded in a very high-dimensional space hampers
the detailed investigation of fine discriminations. Con-
sequently, it still remains to be shown which features of
the objects are represented and how these representa-
tions are affected by categorization.

For a more detailed study of visual object categoriza-
tion and representation, we employed a subordinate
classification task. Subordinate categories are defined
by small changes in the perceptible details of the stimuli,
making them harder to distinguish than basic categories.
As such, a subordinate categorization task is suitable for
the study of feature extraction and representation. By
adopting a well-studied stimulus set (Brunswik faces;
Brunswik & Rieter, 1938) as well as a novel one (fish
outlines), we were able to compare our results from
humans and rhesus monkeys with those of influential
human psychophysical studies on categorization (Nosof-
sky, 1991; Reed, 1972).

RESULTS

Stimuli, Tasks, and Models of Categorization

The stimuli were line drawings of faces or fish. Each
schematic face consisted of an outline and four varying
dimensions: the eye height (EH), the eye separation
(ES), the nose length (NL), and the mouth height
(MH). Each dimension could take three discrete values
(34 = 81 possible combinations). The schematic fish also
had four variable dimensions, namely the shape of the
dorsal fin (DF), tail (T), ventral fins (VF), and mouth (M).
Figure 1a and b depicts the three different values that
each dimension could take for face and fish outlines,
respectively. The patterns on the left consist of the
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minimum feature values, the ones in the middle of the
intermediate values and the ones on the right of the
maximum values. (The size difference from minimum to
medium and from medium to maximum values for any
dimension of the face outlines corresponds to 0.38 in
visual angle). The 4-D vectors of parameters characteriz-
ing each stimulus were represented by their projections
onto two 2-D plots consisting of the first two dimensions
(EH, ES for faces; DF, T for fish) and the last two
dimensions (NL, MH for faces; VF, M for fish). Figure 1c
shows the projections of the left (1), middle (2), and
right (3) faces of Figure 1a.

The first task of the subjects was to rate 20 stimuli
from each set for their similarity following a protocol of
triad comparisons (see Methods). Three stimuli were
presented simultaneously (as in Figure 1a and b) and the
subjects had to compare the pattern in the middle with
the one on its right and on its left. They indicated which
one was more similar to it by pressing a corresponding
lever. The subjects’ responses were first converted to a

matrix of pairwise dissimilarities between the stimuli.
These dissimilarities were then used to find a 4-D
configuration of 20 vectors whose pairwise Euclidean
distances best approximated them (see Methods).
This psychophysical representation of the stimuli
could then be directly compared with the original,
physical one. Figure 2a illustrates the original, physical
configuration of 20 faces along 2 � 2 projections. The
labeling and colors are related to the design of the
following separate task that the subjects had to
perform.

For this second task, the subjects initially learned to
classify 10 stimuli (training exemplars) in two catego-
ries (see Methods for training protocol). In the next
phase, the subjects categorized another 10, and later
24, novel stimuli (test exemplars). The physical config-
uration of the training and of 10 (out of 24) test
exemplars can be seen in Figure 2a. The red circles
correspond to the training exemplars of one class and
the yellow circles to the training exemplars of the other
class. The first two test exemplars were the prototype
of each category (purple circles; labeled 1 and 2),
formed by averaging the dimension values of the five
corresponding training exemplars. The blue circles
illustrate eight further test exemplars chosen to span
a large area of the stimulus space between and around
the training exemplars. The categories were chosen to
be separable along two of the four dimensions of the
stimuli. Specifically, for Brunswik faces, they were
separable along the (EH, ES), but not along the (NL,
MH), dimensions (Figure 2a, solid line). For fish out-
lines, they were separable along (DF, T), but not along
(VF, M). Linear separability is a prerequisite for the
prototype and boundary models to operate, although
there is no evidence that natural categories conform to
linear separability (Medin & Schaffer, 1978), or that
linearly separable categories are learned more readily
than nonlinearly separable ones (Medin & Schwanen-
flugel, 1981). However, it has been argued that linear
classification may be a very natural decision strategy,
albeit not constraining for the human classification
ability (Ashby & Gott, 1988).

To evaluate the strategy used by subjects during
classification of stimulus patterns, a total of seven mod-
els were fitted to the experimental classification proba-
bilities. They can be broadly divided into prototype,
exemplar, boundary, and probability-based models (see
Methods for mathematical descriptions). Prototype
models postulate that subjects classify stimuli by com-
paring their similarity to the prototypes of each category
(Figure 2b). Two different prototype models were
tested. The weighted prototype similarity model (WPSM;
Nosofsky, 1991) assumes that similarity decays exponen-
tially with distance and that distance is weighted along
each stimulus dimension according to the attention that
it receives from the subject. The weighted prototype
model (WPM; Reed & Friedman 1973; Reed, 1972), on
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Figure 1. Parameterized variation of stimulus features. (a) The first
stimulus set consisted of Brunswik faces differing along four

dimensions: eye height (EH), eye separation (ES), nose length (NL),

and mouth height (MH). Each dimension took three discrete values.

Three examples are illustrated from left to right with minimal,
intermediate and maximal values for all four dimensions, respectively.

(b) The second stimulus set consisted of fish outlines and also varied

along four dimensions, namely the shape of the dorsal fin (DF), tail (T),

ventral fins (VF), and mouth (M). In this case also, each dimension
took three discrete values. From left to right: minimal, intermediate

and maximal value for all four dimensions, respectively. (c) Graphical

representation of the four dimensions characterizing the face stimuli.
Eye and mouth heights were measured from face center. Stimuli in (a)

labeled accordingly in (c). Grid intersection points represent all

possible stimuli (9 � 9 = 81) obtained from combinations of three

discrete values along each dimension.
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weighted distance.
Exemplar models postulate that subjects classify stim-

uli by computing their similarity to all category exem-
plars (Figure 2c). We tested the generalized context
model (GCM; Nosofsky, 1991) that assumes exponential
decay of similarity with weighted distance and the
average distance model (ADM; Reed, 1972; Reed &
Friedman, 1973), where similarity decays linearly with
weighted distance.

In boundary models, the stimuli are categorized ac-
cording to their position with respect to a boundary in
stimulus space (Figure 2d). The model tested was the
probit linear model (PBI; Ashby & Gott, 1988; Finney,
1971), which posits a hyperplane as boundary.

Finally, probability models assume that the subject
uses the conditional probability of category ownership
based on the stimulus values along each dimension
(Figure 2e). In the weighted cue validity model (WCVM;
Reed, 1972; Reed & Friedman, 1973), these conditional
probabilities are weighted by the attention assigned to
each dimension, while the weighted frequency cue
validity model (WFCVM; Reed, 1972; Reed & Friedman,

1973) takes in addition into account the relative fre-
quency of appearance of each stimulus dimension value
during the training session.

The that can be addressed by assessing
these models are: (1) How do the categorization data
of the two species compare? (2) Are there differences in
goodness of fit for the data between the broad classes of
models? (3) Is the exponential decrease of similarity with
distance necessary to explain the categorization per-
formance? (4) Do the scaled distances derived from
the subjects’ responses improve the fit of the models?

and After Categorization

To investigate how the subjects’ representation of the
stimuli was affected by categorization, we collected
similarity ratings before and after the categorization
task was performed. Figure 3a illustrates the resulting
psychophysical representation of face stimuli (triangles)
for one monkey prior to the categorization task. Pat-
terns perceived as more similar are closer on the
corresponding 2-D plots, while the ones that are per-
ceived as less similar are further apart. The relationship
between psychophysical (triangles) and physical
(circles) stimuli is indicated by the length of the line
segments connecting corresponding points. Clearly, this
monkey did not represent any of the dimensions in a
consistent way, resulting in a configuration that did not
capture the physical distinctiveness of the stimuli,
despite its well-above chance performance at the
matching control task (71%, chance: 50%, for a 2AFC
task). In contrast, the human subject illustrated in
Figure 3c was able to extract and represent the different
dimensions distinctly and veridically with respect to the
original configuration.

A second set of similarity ratings was collected after
the subjects learned to categorize the stimuli. The
resulting psychophysical representations are illustrated
in Figure 3b and d for the same subjects as in Figure 3a
and c, respectively. The human subject’s representation
did not change and was again closely related to the
physical stimulus configuration along all four dimen-
sions. In contrast, the monkey’s representation became
closer to the physical configuration, particularly along

sions for the preceding categorization task. To quantify
this effect, the distances between psychophysical and
physical stimuli along Dimensions 1 and 2 (�12) and
Dimensions 3 and 4 (�34) were averaged over all stimuli
before and after categorization. They are reported in
Figure 4a (mean ± SEM) for the same monkey and
human subjects of Figure 3. As may be seen from the
figure, the psychophysical representation of the human
subject before categorization was more faithful to the
physical stimuli (corresponding to lower distance differ-
ences) than the monkey’s representation ( p < .005,
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Figure 2. Distribution of stimuli and models of categorization. (a) Plot

similarity and categorization tasks (see Figure 1c). Training exemplars

(labeled 1–5) for Category 1 and 2 are represented by red and yellow

circles, respectively. Note that the 2-D representation of two different

stimuli may overlap. The first two test exemplars (purple circles) were
prototypes for Categories 1 and 2 (labeled accordingly). Blue circles:

eight test exemplars used during the transfer phase of the categoriza-

tion task. Note that the two categories were linearly separable along
the (EH, ES) dimensions (solid line) but not along the (NL, MH)

dimensions (see Figure 1 for abbreviations). (b) Models of subject

categorization performance in terms of physical or psychophysical

stimulus dimension values. Prototype models (1) postulate that test
exemplars are categorized according to their similarity to class

prototypes whereas exemplar models (2) assume that similarity to each

that a decision boundary underlies categorization performance
whereas cue validity models (4) rely on diagnostic feature values along

each dimension.
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of dimension values taken by 20 schematic faces used both for

the other hand, assumes a linear decay of similarity with

Psychophysical Stimulus Representation Before
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Dimensions 1 and 2, which were the diagnostic dimen-

training exemplar is taken into account. Boundary models (3) assume
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cally significant change in the human representation monkey’s representation of the first two dimensions
significantly improved ( p < .005; Figure 4a, **) and
was indistinguishable from the human one ( p > .15). A
similar decrease in �12 but not in �34 after categoriza-
tion was observed in a second monkey. Similarly, �12

and �34 remained unchanged in data pooled from three
human subjects before categorization when compared
to five subjects pooled after categorization, confirming
the single subject result.

monkeys tested before and after categorization showed
the same improvement in the representation of the two
diagnostic dimensions ( p < .005; Figure 4b, **) while
the representation of Dimensions 3 and 4 was unaf-
fected ( p > .19; Figure 4b). In contrast, the human
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and human subjects as in Figure 3. (b) Average distance difference

along the (DF, T) and (VF, M) dimensions before and after
categorization for fish outlines. Data before and after categorization

taken from two different monkeys and a single human subject. See

Figure 1 for abbreviations. Significance levels (t test): ** corresponds to
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subject depicted in Figure 4b showed an increase in the
distance difference, �34, along Dimensions 3 and 4 ( p <
.01; Figure 4b, *) corresponding to a less faithful repre-
sentation of the ventral fin and mouth of the fish. A
similar result was observed in data pooled from four
human subjects tested before categorization of fish
stimuli when compared to five different subjects tested
afterwards. Thus, the humans showed a selective de-
crease in perceptual sensitivity to the nondiagnostic
dimensions of the fish stimuli.

To minimize the possibility that the stimulus config-
urations based on the subjects’ similarity ratings were
obtained by chance, we compared them to random
configurations generated in Monte Carlo simulations
(see Methods). For Brunswik faces, the monkey and
human configurations were on average 11 and 15 times
closer to the physical than to random configurations,
respectively. This supports the conclusion that they
reflect the subjects’ internal representation of the
stimuli.

Categorization of Face and Fish Stimuli by
Monkeys and Humans

The categorization strategies adopted by monkeys and
humans were investigated by fitting the parameters of
categorization models to experimental probabilities us-
ing maximum likelihood. Overall, the models performed
similarly for monkeys and humans for both stimulus size
sets (20 or 34). In Figure 5 each plot reports the
observed categorization probabilities versus the ones
predicted by the model. Thus, a perfect fit would
correspond to all points falling along the diagonal
(dashed lines in Figure 5) and, conversely, the worst
fits are those with the largest scatter of points around
the diagonal. For both monkeys and humans, the
exemplar models best fit the data, followed by the
boundary, prototype and probability models. Similar
results were obtained with 20 faces, as illustrated by
the log-likelihoods reported in Table 1. The higher
performance of the generalized context model was
corroborated in humans by pairwise comparisons of
model log-likelihoods pooled across different subjects
and face stimuli: The GCM performed significantly
better than the probability model (WFCVM; p < .002,
Wilcoxon signed rank test for paired observations, 19
experiments). It also performed significantly better than
the prototype model on the same data set ( p < .002).
To further rule out the WPSM, we considered more
closely the classification probabilities of the two proto-
types and of two test faces (7 and 8, Figure 2a) that had
similar distances to the exemplars but eccentric spatial
positions (Nosofsky, 1991; Reed, 1972). A bad fit of the
GCM probabilities for these faces would support a
prototype categorization strategy. The GCM, however,
predicted these classification probabilities as accurately
as the WPSM. Thus, it appears unlikely that humans or

monkeys relied on conditional probabilities of the
stimulus cues or on abstracted prototypes to categorize
the stimuli. In contrast to these results, the slightly
larger log-likelihood fit values of the boundary model
(PBI) were not significantly different from those of the
GCM ( p > .15, Wilcoxon signed rank test for paired
observations, n = 19). Thus, in our data set, humans
and monkeys most likely used either an exemplar-
based, or a boundary-based categorization strategy for
face stimuli.
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Figure 5. Model fit results for classifications of 34 faces. Each panel

reports the experimentally observed probability of correct categoriza-

tion in Class 1 versus the one predicted by the corresponding model
for 34 faces. (a) Data from two monkeys. (b) Data from six humans.

Abbreviations: GCM = generalized context model, WPSM = weighted

prototype similarity model, PBI = probit linear model, WFCVM =

weighted frequency cue validity model, �ln(L) = minus log-likelihood
of mean square fit.
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Fitting the same models to experimental probabilities
obtained from one monkey and six humans on a set of 20
fish stimuli yielded similar results to those described for

faces (Table 1). In human subjects, the exemplar model
performed statistically better than probability and proto-
type models ( p < .05, Wilcoxon signed rank test on

Table 1. Performance of Categorization Models [�ln(L)]

Exemplar Prototype Probability Based

Stimuli

Stimulus
Set Size GCM ADM WPSM WPM

Boundary
PBI WCVM WFCVM

Face outlines

Monkeys (n = 3) 20 49.4 50.4 60.5 60.2 53.4 73.0 73.0

Monkeys (n = 2) 34 69.9 70.5 75.1 75.0 73.0 116.4 116.1

Humans (n = 6) 20 58.6 58.8 86.0 85.9 71.4 117.5 119.3

Humans (n = 6) 34 95.4 104.7 144.2 144.2 129.4 243.5 250.9

Fish outlines

Monkey (n = 1) 20 25.5 26.1 28.7 28.0 26.3 36.6 36.6

Monkey (n = 1) 34 51.9 51.8 53.0 53.0 51.8 80.6 79.6

Humans (n = 6) 20 42.8 49.2 108.8 97.8 65.3 133.0 134.7

Humans (n = 3) 34 61.5 60.8 66.9 62.8 58.6 149.9 150.0

GCM = generalized context model; ADM = average distance model; WPSM = weighted prototype similarity model; WPM = weighted prototype
model; PBI = probit boundary model; WCVM = weighted cue validity model; WFCVM = weighted frequency cue validity model; �ln(L) = minus
log-likelihood of least square fit.

Table 2. Model Parameters and Summary Fits

Parameters Fits

Model c w1 w2 w3 w4 b s �ln(L) %Var

Face outlines

GCM Monkeys (n = 2) 5.321 0.654 0.042 0.197 0.108 0.362 0.415 69.9 95.9

WPSM 0.052 0.571 0.019 0.225 0.186 0.001 0.005 75.1 94.6

PBI – 7.720 �0.470 �2.152 �0.744 �2.369 1 73.0 94.8

GCM Humans (n = 6) 11.144 0.503 0.265 0.090 0.142 0.016 0.312 95.4 97.8

WPSM 0.018 0.427 0.175 0.239 0.160 0.000 0.001 144.2 91.4

PBI – 7.348 �2.203 �2.607 �0.959 �1.302 1 129.4 92.4

Fish outlines

GCM Monkey (n = 1) 0.012 0.360 0.514 0.123 0.003 0.010 0.010 51.9 95.2

WPSM 0.013 0.367 0.511 0.090 0.032 0.001 0.005 53.0 95.0

PBI – �0.626 1.462 �0.247 �0.034 0.161 1 51.8 95.4

GCM Humans (n = 3) 1.499 0.010 0.983 0.000 0.007 0.423 0.504 61.5 98.4

WPSM 1.239 0.001 0.999 0.000 0.000 0.095 0.257 66.9 97.6

PBI – 0.076 1.958 0.143 0.029 0.274 1 58.6 98.5

GCM = generalized context model; WPSM = weighted prototype similarity model; PBI = probit boundary model; %Var = percentage of variance
accounted for; �ln(L) = minus log-likelihood of least square fit. See Methods for a description of model parameters.
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paired observations, n = 6 subjects). The boundary
model (PBI), however, could not be distinguished from
the exemplar model on the basis of fit likelihood ( p >
.37). When the stimulus set size was increased to 34 fish
stimuli, the boundary model had a log-likelihood of fit
better than the exemplar model, with the largest im-
provement seen in human subjects (Table 1). This
increase in PBI performance paralleled a shift in the
classification strategy used both by monkeys and humans
from face to fish stimuli. Table 2 reports the normalized
attentional weights (w1, . . .w4;

PP4
i¼1 wi ¼ 1) associ-

ated with each stimulus dimension for the GCM and
WPSM as well as the corresponding (unnormalized)
vector of weights associated with the PBI. All models
were fitted on 34 face or fish stimuli. In both monkeys
and humans, the weights were distributed along all four
dimensions for face stimuli, with an emphasis on the first
dimension (EH). In contrast, for fish stimuli the largest
attentional weight was placed on the second dimension
(T) and this was essentially the only dimension taken into
account by human subjects during the categorization
task (Table 2, third line from bottom). Thus, the loss in
perceptual sensitivity along Dimensions 3 and 4 evident
after categorization in humans (Figure 4b) immediately
followed a task in which their attention was almost
exclusively focused on the second dimension. The
change of strategy of the human subjects could be
related to the fact that the fish outlines might have been
a more unfamiliar stimulus set for them than the face
outlines.

Additionally we tested the hypothesis that similarity
decays exponentially with the distance between the
stimuli, assumed in GCM and WPSM, by comparing their
performance to two models that assumed a linear decay,
ADM and WPM. Figure 6a illustrates the fit of exper-
imental categorization probabilities for 34 faces using
either the GCM or the ADM model and the physical
dimension values of the stimuli. As illustrated in Table 1,
neither the GCM nor the WPSM performed consistently
better than the ADM or WPM across different stimulus
sets. In humans, for both faces and fish the GCM did not
perform statistically better than the ADM ( p > .22, n =
19 and p > .18, n = 6, respectively; Wilcoxon signed
rank test on paired observations). The same held true
for the WPSM and the WPM. The performance of
exemplar and prototype models based on an exponen-
tial decay of similarity with distance will be equivalent to
the one of linear models when the exponential rate of
decay of similarity with distance is well approximated by
a linear function over the stimulus set. Table 2 gives the
values of the parameter, c, characterizing the rate of
exponential decay of similarity with distance. In general,
c took values that required at least two terms to
approximate the GCM or WPSM by a power expansion
of similarity as a function of the distance between
stimuli. Thus, in spite of the fact that the GCM and
WPSM were not equivalent to the ADM or WPM, their

predictions were similar, in both humans and monkeys,
for the categorization task considered.

Finally the effect of the psychologically scaled distan-
ces on the performance of the models was investigated.
Figure 6b illustrates the results obtained on a set of 20
Brunswik faces fitted with the GCM when either the
psychophysical or the physical stimulus representations
were used. No marked or consistent differences were
observed either for face or fish stimuli between these
two types of fits in the remainder of monkey categori-
zation experiments. In humans, the GCM fitted with
psychophysical dimension values did not significantly
outperform the GCM fitted directly with the physical
stimulus values for both faces and fish ( p > .15, n = 19
and p > .5, n = 6, respectively; Wilcoxon signed rank
test on paired observations). Furthermore, we com-
puted the average distance difference, �psy, between
psychophysical and physical stimuli as well as the differ-
ence, �LL, between log-likelihoods of the GCM model
fitted to psychophysical and physical stimulus represen-
tations. If categorization decisions depended on the
psychophysical rather than the physical stimulus repre-
sentation, one would expect a significant positive corre-
lation between �psy and �LL. Data pooled from 13
experiments with Brunswik faces on human subjects
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Figure 6. Comparison of exponential versus linear decay of similarity
with distance and of psychophysical versus physical distance. (a) Data

fit with exemplar models having exponential (GCM) versus linear

(ADM) relation between distance and similarity (34 faces; data from
two monkeys). (b) Data fit with models using psychophysical versus

physical stimulus parameterizations (20 faces; data from three

monkeys).
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yielded a modest positive correlation, r = .19, which
was, however, not significant ( p > .25, t test).

DISCUSSION

An important methodological difference between our
study and earlier ones (Reed, 1972) was that we gath-
ered complete similarity and categorization data from
single subjects instead of averaging partial data sets over
a large number of them. The disadvantages associated
with each of these alternatives have been discussed in
the literature (Nosofsky, 1992): The main issue in single
subject studies is to avoid memorization of test exem-
plars. To address this point, we introduced delays
between testing sessions and differences irrelevant to
the categorization task between the test exemplars
presented across sessions (see Methods). The results
were consistent across subjects, as illustrated by com-
parisons between single-subject data and averaging over
three to six subjects, and robust to changes in stimulus
set size, from 20 to 34 objects. Thus, a possible memo-
rization of test exemplars is unlikely to have played a
predominant role in the outcome of our experiments.
Besides the impracticability of averaging data from a
large number of monkeys, single subject studies are well
suited for subsequent comparisons with electrophysio-
logical data on object categorization.

The experiments presented here reveal many similar-
ities between the strategies used by monkeys and hu-
mans in a subordinate categorization task. In both
species, exemplar and boundary models clearly and
consistently outperformed prototype and probability
models in accounting for their categorization perform-
ance. Thus, it appears unlikely that either monkeys or
humans abstracted a prototype to categorize face or fish
objects, or used a strategy based on conditional proba-
bilities along each stimulus dimension, as postulated by
probability models. In contrast, boundary models could
not be ruled out as a plausible alternative to exemplar
models. This is in agreement with recent human psy-
chophysics results (Maddox & Ashby, 1998; Nosofsky,
1998) that emphasize the similarity in the predictions
made by these two types of models.

Furthermore, our results suggest that models assum-
ing exponential decay of similarity with distance (GCM,
WPSM) were not inferior to the models assuming linear
decay (ADM, WPM). A proper test of this hypothesis,
however, would require a task with stimuli that vary
along one dimension and with enough distinctive re-
sponses that would eliminate the occurrence of general-
ization errors (Shepard, 1958). Since that was not the
case in our experimental design, our results should not
be generalized outside the context presented.

Moreover, our results show that the psychophysical
stimulus representation was not necessary to explain the
categorization performance of both monkeys and hu-
mans. An exemplar model like the ADM, based on the

Euclidean distance across the physical stimulus repre-
sentation, was as successful as an exemplar model like
the GCM, based on the psychophysical stimulus repre-
sentations of humans or monkeys, to explain categori-
zation data. These results suggest that both monkeys
and humans are able to learn a surprisingly accurate
representation of the physical stimulus configuration
and use it directly to implement categorization deci-
sions. In the case of the monkeys, this is highly impor-
tant, since the number of the necessary similarity-rating
responses, from which the psychophysical representa-
tions derive, can be exorbitant.

Finally, our findings demonstrate the influence of
categorization on perception and provide further evi-
dence that perceptual features are adjusted in response
to experience and task demands. The use of well-con-
trolled stimuli with fixed diagnostic features in combi-
nation with a similarity-rating task allowed us to
demonstrate the direct influence of a supervised cate-
gorization task on the representation of the stimulus
dimensions. This is consistent with current research in
human psychophysics (Schyns & Rodet, 1997; Schyns,
Goldstone, & Thibaut, 1998; Goldstone, 1994). To the
best of our knowledge, this effect has not been shown
before in the nonhuman primate categorization litera-
ture. Additionally, the distribution of attentional weights
along the different dimensions during categorization
was similar in monkeys and humans for Brunswik faces,
but differed more markedly for fish. Human subjects, in
contrast to monkeys, relied almost exclusively on the
second stimulus dimension at the expense of the other
ones. This fact presumably explains their loss of percep-
tual sensitivity along the last two, nondiagnostic dimen-
sions after categorization. Under these circumstances,
the increase in fit performance observed for the PBI is
consistent with earlier human psychophysical observa-
tions that report better fits of the PBI when the decision
boundary follows one of the stimulus dimensions
(McKinley & Nosofsky, 1996).

Taken together, our results establish monkeys as a
good model to study the neural basis of subordinate
categorization. They also allow us to make certain
predictions regarding the activity of neurons in the
visual areas involved in object representation. Cells in
inferior temporal cortex have been reported to play an
important role in the representation of objects that
monkeys have been trained to identify (Kobatake, Wang,
& Tanaka, 1998; Logothetis, Pauls, & Poggio, 1995).
However, the exact mechanisms with which this feature
selectivity is achieved have not been studied. Our pre-
dictions are consistent with the so-called ‘‘functionality
principle’’ (Schyns & Murphy, 1994), which can be
summarized as follows: ‘‘If a fragment of a stimulus
categorizes objects (i.e., distinguishes members from
nonmembers), the fragment is instantiated as a unit in
the representational code of object concepts.’’ Our
working hypothesis is that the ability to distinctively
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represent the diagnostic dimensions is likely to be
reflected in an enhanced neuronal representation of
those dimensions and their combinations. Such an
enhancement may be the result of changes in the tuning
of neural responses, of an increase in the population of
cells exhibiting a response bias for the diagnostic fea-
tures, or of both. These predictions were recently shown
to hold in combined behavioral and electrophysiological
experiments. Specifically, recordings in the inferior tem-
poral cortex showed that neurons were selectively tuned
to the stimulus features that were diagnostic for the
categorization task (Sigala & Logothetis, in press).

METHODS

The study involved a total of 12 humans and 3 adult,
male rhesus monkeys (Macaca mulatta) weighing 12.0
to 15.0 kg. All studies were approved by the local
authorities and were in full compliance with the guide-
lines of the European Community (EUVD 86/609/EEC)
for the care and use of laboratory animals.

Surgery

After training, two of the three animals underwent
surgery to place a scleral eye search coil (Judge, Rich-
mond, & Chu, 1980) and a custom-made head post.

Stimulus Presentation and Data Collection

Schematic face line drawings were adapted from Nosof-
sky (1991). A second set of faces reduced by 50% in size
and a third one for which the role of dimensions (1,2)
and (3,4) in the categorization task were inverted were
also presented to some subjects (Ss). Fish stimuli were
designed by first fitting scanned fish outlines with cubic
spline curves. Four control points of the cubic splines
were then selected and moved along a line perpendic-
ular to the outline to obtain smooth deformations of the
fish shape. Stimuli were presented on a 21-in. monitor
placed at a distance of 97 cm from the Ss. The angular
size subtended by each face line drawing was 2.4 � 4.4
degrees and the angular size of the fish line drawings
was 3.5 � 2.4 degrees. Eye movements of the monkeys
were recorded by virtue of the scleral search coil tech-
nique and sampled at 200 Hz (CNC Engineering, Seattle,
WA).

Animal Training and Task Description

Categorization Task

The animals were trained to perform following standard
operant conditioning techniques with positive reinforce-
ment. They were seated in a custom-made primate chair
with two response levers mounted in front. During the
learning phase, the monkeys were presented with 10

exemplars in random order. Five of them belonged to
Class 1 and were assigned to one lever, and five of them
belonged to Class 2 and were assigned to the other
lever. Lever assignment was predetermined by the ex-
perimenter. The Ss received feedback for correct and
false responses in the form of low- and high-pitched
tones, respectively. After the monkeys reached a mini-
mum of 75% correct, they were trained with blocks of
presentations, and got a juice reward after five consec-
utive correct responses. The feedback for incorrect
responses was an auditory signal and a delay of 2 sec
before the next stimulus presentation. After Ss reached a
performance level of 85% correct for the 10 exemplars,
they were presented with these training exemplars as
controls, interleaved with another 10, and later 24 new
ones. The Ss got feedback for incorrect classification of
the training exemplars only. The new exemplars were
presented three times during this phase, while each
training exemplar was presented three times and an
additional time for each misclassification it received.
The Ss repeated this transfer task five times with a
1- to 2-day interval between sessions. The categorization
data consisted for each subject of 15 classifications per
stimulus. In addition to the delay introduced between
sessions to minimize possible memorization of test
exemplars, some stimulus characteristics not critical for
the categorization task (e.g., for the face line drawings,
shape of face outlines or of the eyes) were changed from
one session to the next.

Human Ss also performed the task under conditions
that resembled those implemented during the psycho-
physical testing of the monkeys.

Similarity Judgment Task

To directly compare data from humans and monkeys,
similarity ratings were obtained for a subset of 20 stimuli
using a protocol of triad comparisons. The monkeys
were trained with a plethora of stimuli ranging from
colored squares to simple line drawings before they
were presented the final set of schematic faces and fish.
Initially they viewed ‘‘control’’ trials, where the middle
stimulus was identical either to the one on its right or on
its left. The monkeys were trained to press the lever
corresponding to the stimulus matching the middle one
(left or right) to obtain juice. After the monkeys reached
a criterion of 80% correct, they were trained with blocks
of presentations, and got juice reward after five consec-
utive correct responses. The feedback for incorrect
responses was an auditory signal and a delay of 2 sec
before the next stimulus presentation. The data used to
rate stimulus similarity were collected after 80% correct
was reached on blocks of trials. The similarity data came
exclusively from the trials where all three stimuli were
different, so-called ‘‘test’’ trials. These trials are the only
ones that human Ss saw. In these trials, the Ss reported
their subjective judgment of similarity, and their re-
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sponse was considered correct. To evaluate the mon-
keys’ performance, test trials were always presented
among twice as many control trials randomly intermixed
in the blocks of presentations. Half (1710) of the 3420
triads of 20 stimuli that had the largest Euclidean
distances between the left and right stimuli were se-
lected. This criterion effectively excluded triads for
which the left and right stimuli were more closely
related to each other than to the middle stimulus. For
monkeys, a total of 5130 triads (including control triads)
were presented per stimulus set. The monkeys’ perform-
ance on the control triads for the data presented here
was over 78% correct, except for the data presented in
Figure 3a, where it was 71% correct.

Data Analysis

Psychophysical Stimulus Configuration

The responses to triad stimuli were used to build a
symmetric dissimilarity matrix, (dij

exp)i,j = 1,. . .,20, where
the indices i and j run over the set of presented stimuli.
For each triad (i,j,k), dij

exp was incremented by 1 and
djk

exp by 2 when the subject chose i to be closer to j than
k and vice versa. In parallel, a symmetric Euclidean
dissimilarity matrix, (dij

eucl)i,j = 1,. . .,20, was obtained by
incrementing dij

eucl by 1 and djk
eucl by 2 when the Eucli-

dean distance, deucl(i,j), between the physical parameter
configurations of stimuli i and j was smaller than
deucl( j,k) and vice versa. In case of a tie, deucl(i,j) =
deucl( j,k), both dij

eucl and djk
eucl were incremented by 1.5.

The experimental ‘‘distance’’ matrix dexp(i,j) was ob-
tained from dij

exp, dij
eucl, and deucl(i,j) as follows:

dexpði; jÞ ¼
d

exp
ij

deucl
ij

deuclði; jÞ

Note that dexp(i,j) = deucl(i,j) if the Ss’ assessment of
similarity matches the one obtained from the Euclidian
distance between the stimuli. Next, a 4-D configuration
of 20 vectors x1,. . .,x20 where xi = (xi1,xi2,xi3,xi4)0,
which best fitted the experimental ‘‘distances’’, was
obtained by minimizing the normalized stress, sn =
ss/h

2, where

ss ¼ ssðx1; . . . ; x20Þ

¼ 1

2

X20

i;j¼1

ðdexpði; jÞ � deuclðxi; xjÞÞ2 ð1Þ

and h2 ¼
P20

i; j¼1
dexpði; jÞ2. Iterative numerical methods to

solve this least squares problem were adapted from a
technical report of J. de Leeuw (available at http://
home.stat.ucla.edu/�deleeuw/work/papers/130.ps.gz).
Each solution was checked to be a local minimum of
Equation 1 and a candidate global minimum was
searched by repeatedly applying the algorithm to at
least 10 different starting configurations or by tunneling
(Groenen & Heiser, 1996).

The normalized stress, sn, is invariant under scaling,
reflection, rotation, and translation. Thus, the configu-
ration closest (in the mean square sense) to the physical
configuration was obtained by a combination of such
transformations (Procrustes transformation; Borg &
Groenen, 1997) and is called the psychophysical stim-
ulus representation (Figure 3). To verify that the Ss’
psychophysical configurations were not obtained by
chance, random configurations were generated by
Monte Carlo simulation and Procrustes transformed to
match the physical configuration as closely as possible.
Let �psy denote the residual squared distance between
physical and psychophysical stimulus representations
and let �rand, srand denote the corresponding mean
and standard deviation for random configurations. We
used ����psy �

����rand ��psy

������
srand

as a measure of the relative difference in distance
between the psychophysical and physical representa-
tions on the one hand and the psychophysical and
random configurations on the other hand.

Categorization Models

All the models categorized a stimulus i by computing the
evidence that it belonged to Category 1 (E1) or Category
2 (E2). When the difference, E1(i)�E2(i), exceeded a
certain threshold value, t, i was classified in Category 1
(C1). Zero mean Gaussian noise independent of the
stimuli and identically distributed across trials was as-
sumed to contribute to the decision process so that the
actual decision rule was

E1ðiÞ � E2ðiÞ þ n > t ) i 2 C1: ð2Þ

Both the standard deviation of the noise, s, and the
threshold, t, were free parameters adjusted to best fit
the experimental data. Each model had three or four
additional free parameters that are described separately
below. The evidence difference, E1(i)�E2(i), was com-
puted for each stimulus i from the vector xi =
(xi1,xi2,xi3,xi4)0 composed either of the physical dimen-
sion values or the psychophysical ones obtained from
similarity ratings (see above).

Probit Linear Model (PBI; Ashby & Gott, 1988; Nosofsky,
1986)

This model assumes that categorization relies on the
position of the stimulus xi = (xi1,xi2,xi3,xi4)0 with respect
to a hyperplane boundary described by a vector w =
(w1,w2,w3,w4)0 orthogonal to it. The evidence difference
is given by the scalar product w0�xi. Thus, the magnitude
of the components of w characterize the weighting of
each stimulus dimension. Note that since Equation 2 is
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homogeneous, only five out of the six parameters
(w1,w2,w3,w4,s,t) are effectively needed to specify the
model. s was therefore set equal to 1 following usual
conventions (Table 2).

Generalized Context Model (GCM; Nosofsky, 1991)

The model assumes that the evidence for stimulus i is
obtained by computing its similarity to category exem-
plars. Let {y1,. . .y5} and {z1,. . .z5} be the exemplars
defining Category 1 and 2, respectively. First, the
weighted Euclidian distance between stimulus i and
category exemplars was computed,

dwðxi; yjÞ ¼
X4

k¼1

wkðxik � yjkÞ2

 !1=2

dwðxi; zjÞ ¼
X4

k¼1

wkðxik � zjkÞ2

 !1=2

The factors wk (0 � wk � 1,
P4
k¼1

wk ¼ 1) reflect the

relative weight given by the subject to each dimension k.
Similarity was assumed to depend exponentially on
distance,

sðxi; yjÞ ¼ e�cdwðxi;yjÞ; sðxi; zjÞ ¼ e�cdwðxi;zjÞ

and the evidence was obtained by summing similarity
over all category exemplars

E1ðiÞ ¼
X5

k¼1

sðxi; ykÞ;E2ðiÞ ¼
X5

k¼1

sðxi; zkÞ

Average Distance Model (ADM; Reed, 1972; Reed &
Friedman, 1973)

This model is identical to the GCM, except that the
weighted Euclidian distance dw(xi,yj) is taken as a meas-
ure of dissimilarity between the stimulus and category
exemplars. The evidence is obtained by summing the
dissimilarity over all exemplars:

E1ðiÞ � E2ðiÞ ¼
X5

j¼1

dwðxi; zjÞ �
X5

j¼1

dwðxi; yjÞ

Weighted Prototype Similarity Model (WPSM; Nosofsky,
1991)

In this model, similarity between the stimulus and class
prototypes p1, p2 is assumed to underlie classification
performance: E1(i) = s(xi,p1), E2(i) = s(xi,p2), where

p1 ¼ 1

5
�5

i¼1 yi and p2 ¼ 1

5
�5

i¼1 zi

Weighted Prototype Model (WPM; Reed, 1972; Reed &
Friedman, 1973)

This model is identical to the WPSM except that the
weighted Euclidean distance dw(xi,pj) is taken as a
measure of dissimilarity between the stimulus and exem-
plars, E1(i)�E2(i) = dw(xi,p2)�dw(xi,p1).

The remaining two models were defined only in terms
of the physical stimulus dimension values.

Weighted Cue Validity Model ( WCVM; Reed, 1972)

This model assumes that the value taken by each
stimulus dimension is used as an ideal cue to category
ownership,

c1mðiÞ ¼ pðC1jximÞ

where p(C1jxim) is the conditional probability of
Category 1 membership given the value taken by
dimension m for stimulus i. The evidence is a weighted
sum over all cues,

E1ðiÞ ¼
X4

m¼1

wmc1mðiÞ;
X4

m¼1

wm ¼ 1

where the wms reflect the relative weight given by the
subject to each dimension.

Weighted Frequency Cue Validity Model (WFCVM; Reed,
1972)

This model is identical to the WCVM, except that a cue is
affected by its frequency of appearance during the train-
ing session,

c1mðiÞ ¼
1

2
p þ pðC1jximÞ � ð1 � pÞ

where p = 1/(1+F(xim)) and F(xim) is the number of
class exemplars yi, zj having the same value along
dimension m as xi. In other words, it is assumed that
when a cue recurs more often during training, the
subject will pay more attention to it.

Optimal model parameters were obtained by minimiz-
ing the negative log-likelihood of the model given the
experimental classification probabilities using a simplex
algorithm. Model fit performance was assessed by com-
puting their deviance relative to expected chi-squared
distributions (Finney, 1971), as well as by comparing two
different models’ deviances and log-likelihoods of fit
across Ss using a Wilcoxon signed rank test on paired
observations. All data analysis was performed with Mat-
lab5 (The Mathworks, Natick, MA).
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