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A Dynamic Causal Modeling Study on Category Effects:
Bottom-Up or Top-Down Mediation?
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Abstract

B In this study, we combined functional magnetic resonance
imaging (fMRI) and dynamic causal modeling (DCM) to
investigate whether object category effects in the occipital
and temporal cortex are mediated by inputs from early visual
cortex or parietal regions. Resolving this issue may provide
anatomical constraints on theories of category specificity—
which make different assumptions about the underlying
neurophysiology. The data were acquired by Ishai, Unger-
leider, Martin, Schouten, and Haxby (1999, 2000) and provided
by the National fMRI Data Center (http://www.fmridc.org). The
original authors used a conventional analysis to estimate
differential effects in the occipital and temporal cortex in
response to pictures of chairs, faces, and houses. We extended
this approach by estimating neuronal interactions that mediate
category effects using DCM. DCM uses a Bayesian framework
to estimate and make inferences about the influence that one
region exerts over another and how this is affected by
experimental changes. DCM differs from previous approaches

INTRODUCTION

In this study, we combined functional magnetic reso-
nance imaging (fMRI) and dynamic causal modeling
(DCM) to investigate neuronal interactions that mediate
the representation of objects in the human brain. In
recent years, several functional imaging studies have
shown that different categories of objects activate a
distributed system that includes bilateral fusiform, mid-
occipital, and inferior temporal regions. However, within
this network, there are areas that respond preferentially
to houses, chairs, faces, tools, vehicles, animals, and fruit
(e.g., see Haxby et al., 2001; Chao, Haxby, & Martin, 1999;
Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999,
2000; Cappa, Perani, Schnur, Tettamanti, & Fazio, 1998).
These differential effects appear to be relatively small;
however, they have been replicated using a number of
cognitive tasks (e.g., passive viewing, naming, and seman-
tic decision) and presentation formats (e.g., visual words,
photographs, and line drawings). Furthermore, the find-
ing that different regions in the occipital and temporal
cortex show preferential responses to different object
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to brain connectivity, such as multivariate autoregressive
models and structural equation modeling, as it assumes that
the observed hemodynamic responses are driven by exper-
imental changes rather than endogenous noise. DCM therefore
brings the analysis of brain connectivity much closer to the
analysis of regionally specific effects usually applied to
functional imaging data. We used DCM to estimate the
influence that V3 and the superior/inferior parietal cortex
exerted over category-responsive regions and how this was
affected by the presentation of houses, faces, and chairs. We
found that category effects in occipital and temporal cortex
were mediated by inputs from early visual cortex. In contrast,
the connectivity from the superior/inferior parietal area to the
category-responsive areas was unaffected by the presentation
of chairs, faces, or houses. These findings indicate that
category effects in the occipital and temporal cortex can be
mediated by bottom—up mechanisms—a finding that needs to
be embraced by models of category specificity.

categories is consistent with reports of category-specific
deficits in brain-damaged patients.

A number of hypotheses have been proposed to
explain category effects (see Devlin, Russell, et al.,
2002, for a review). For instance, Caramazza and Shelton
(1998) suggested that distinct regions may be responsi-
ble for evolutionarily important categories, such as
animals, plants, and tools. In contrast, several authors
have proposed that different categories are associated
with different types of information—which in turn may
lead to functional specialization. For instance, Warring-
ton and Shallice (1984) suggested that perceptual infor-
mation (i.e., what an object looks like) is more relevant
to living objects whereas functional information (i.e.,
how an object is used) is more relevant for manmade
items. Finally, Tyler, Moss, Durrant-Peatfield, and Levy
(2000) have proposed that damage to a unified semantic
system, undifferentiated by categories or types of infor-
mation, can still result in deficits that are specific to one
or more object categories. In short, the nature of the
category effects observed in functional neuroimaging
and brain-damaged patients is still debated.

In the present study, we investigate category effects
further by looking at the neuronal interactions that
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mediate the representation of objects in the human
brain. Specifically, we combine fMRI and DCM to test
whether the category effects observed in the occipital
and temporal cortex are mediated by bottom-up or
top—down mechanisms. This issue may shape anatom-
ical constraints on theories of category specificity—
which make different assumptions about the underly-
ing neurophysiology.

Functional Magnetic Resonance Imaging Data

The data set we used was originally acquired by Ishai et al.
(1999) and Ishai, Ungerleider, Martin, et al. (2000) and
was provided by the National fMRI Data Center (http://
www.fmridc.org). In this study, six subjects performed
passive viewing and delayed match-to-sample tasks on
gray-scale photographs of houses, faces, and chairs. In
the passive viewing task, subjects were presented with a
series of single stimuli. In the delayed matching task,
subjects were presented with a single-sample stimulus
followed by a pair of choice stimuli and were asked to
indicate which choice stimulus matched the sample
stimulus by pressing a button. The baseline for both
tasks involved scrambled pictures of houses, faces, and
chairs. The authors found that different categories of
objects activated a distributed system that included
bilateral fusiform, inferior occipital, midoccipital, and
inferior temporal regions. However, within this network,
there were distinct regions in the occipital and temporal
cortex that responded preferentially to faces, house, and
chairs (see Figure 1 and Table 2 in Ishai, Ungerleider,
Martin, et al., 2000, for details). In short, Ishai et al.
analyzed the data using classical inference to estimate the
differential effects of houses, faces, and chairs in the
occipital and temporal cortex. Here we extend this
approach by estimating neuronal interactions in a Bayes-
ian framework as implemented in DCM. In the remaining
part of the Introduction, we present DCM briefly and
then focus on its application to the data set.

Dynamic Causal Modeling

The aim of DCM is to estimate and make inferences
about the influence that one neural system exerts over
another and how this is affected by the experimental
context. The central ideal is to treat the brain as a
dynamic input-state—output system. The inputs corre-
spond to conventional stimulus functions that encode
the experimental manipulation. The state variables com-
prise mean synaptic activities and other biophysical
variables that determinate the outputs. The outputs
are the regional hemodynamic responses that are mea-
sured using fMRI. In DCM, an experiment is regarded as
a designed perturbation of neuronal dynamics that is
propagated throughout a network of interconnected
anatomical nodes. The coupling between regions is
therefore estimated by perturbing the system using a
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series of inputs and then measuring the changes in
regionally specific hemodynamic responses. This differs
from conventional approaches to brain connectivity,
such as multivariate autoregressive models and structur-
al equation modeling. In these models, there is no
designed perturbation as it is assumed that the observed
hemodynamic responses are driven by endogenous or
intrinsic noise.

In DCM, a reasonably realistic but simple neuronal
model of interacting neural regions is constructed.
This model is then supplemented with an hemodynamic
model of fMRI measurements that describes how synap-
tic activity is transformed into a hemodynamic response
(see Mechelli, Price, & Friston, 2001; Friston et al., 2000,
for details). The coupling parameters of the neuronal
model can thus be estimated from the measured hemo-
dynamic responses. In contrast, existing approaches to
brain connectivity usually make inferences by consider-
ing the statistical dependencies among hemodynamic
responses. However, interactions in the brain occur at
the synaptic level, not at the hemodynamic level. DCM
accommodates this by including hidden (i.e., unob-
served) neuronal and biophysical states when modeling
the observed data.

In DCM, three distinct sets of parameters are estimated.
A first set of parameters scales the direct and extrinsic
influence of inputs on brain states in any particular
region. These parameters are generally of little interest
in the context of DCM, but, of course, are the primary
focus in classical analyses of regionally specific effects. A
second set of parameters refers to the intrinsic connec-
tions that couple neuronal states in different regions.
These parameters allow one to estimate the impact that
one neural system exerts over another in the absence of
experimental perturbations. A third set of parameters, or
“bilinear terms,” refer to changes in the intrinsic cou-
pling between regions that are induced by experimental
manipulation. These parameters allow one to claim that
an experimental manipulation has activated a “‘pathway”
as opposed to a cortical region. By using bilinear terms,
DCM accommodates some important nonlinear and
dynamic aspects of neuronal interactions. In contrast,
multivariate autoregression models and their spectral
equivalents, such as coherence analysis, are restricted to
linear interactions. Structural equation modeling also
assumes that the interactions are linear and, further-
more, instantaneous.

Because dynamic causal models are not restricted to
linear or instantaneous systems, they need a large
number of free parameters to be estimated. This makes
successful estimation dependent upon prior constraints
that harness some natural properties of neuronal dy-
namics (e.g., neuronal activity cannot diverge exponen-
tially to infinite values). A natural way to embody the
requisite constraints is within a Bayesian framework.
Dynamic causal models are therefore estimated using
Bayesian estimators as described in Friston (2002). The
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estimation procedure provides the “posterior density,”
that is, the probability distribution of a connectivity
parameter in terms of its mean and standard deviation.
For a given posterior density, the probability that an
estimated parameter exceeds some specified threshold
can then be computed. Unlike structural equation mod-
eling, there are no limits on the number of connections
that can be modeled because the assumptions and esti-
mation procedures used by DCM are completely different,
relying upon known inputs.

To summarize, DCM can be distinguished from extant
approaches to brain connectivity in that it (a) frames the
estimation problem in terms of ‘“designed perturba-
tions,” (b) makes inferences based on inferred neuronal
states rather than the measured BOLD signal, (¢) ac-
commodates the nonlinear and dynamic aspects of
neuronal interactions, and (d) uses a Bayesian frame-
work that places no limit on the number of connections
that can be modeled. DCM therefore represents a
fundamental departure from conventional approaches

to causal modeling in neuroimaging and brings the
analysis of brain connectivity much closer to the analysis
of regionally specific effects usually applied to neuro-
imaging data. For the operational details of DCM, see
Appendix and Friston, Harrison, and Penny (2003).

Combining Functional Magnetic Resonance
Imaging and Dynamic Causal Modeling

In the present study, we applied DCM to the fMRI data
originally reported by Ishai et al. (1999) and Ishai,
Ungerleider, Martin, et al. (2000). Specifically, we inves-
tigated whether category effects in the occipital and
temporal cortex are mediated by inputs from early visual
cortex or superior/inferior parietal area. Whereas Ishai
et al. (1999) and Ishai, Ungerleider, Martin, et al. (2000)
identified category effects in both hemispheres, we focused
on the left hemisphere for computational expediency.
First, we performed a conventional Statistical Para-
metric Mapping (SPM) analysis independently for each

Table 1. Regions that Showed Greater Activation for Object Stimuli Relative to Scrambled Pictures (Category-Unresponsive) and
Regions that Showed Greater Activation for Object Stimuli Relative to Scrambled Pictures and for One Object Category Relative to

the Others (Category-Responsive)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Category: Unresponsive
Houses, Faces, and Chairs > Scrambles
V3 —42,-88,—10 (8.5) —44,—84,—10 (8.8) —38,—80,—18 (6.8) —40,—86,—8 (8.0) —46,—86,—6 (7.7)

Superior parietal —30,—-62,72 (7.6) —28,—02,72

Inferior parietal

Category: Responsive

Chairs > Faces and Houses

(8.4) —36,—68,62 (7.8)

—32,-50,70 (8.0)
—34,—74,48 (8.7)

Middle occipital (posterior) —58,—74,—10 (4.2) —30,—82,—10 (3.3) —50,—80,—8 (5.0)

Superior occipital

Faces > Houses and Chairs

Middle occipital (posterior

Middle occipital (anterior) —42,—64,—6 (5.2)
Inferior temporal

Middle temporal

Houses > Chairs and Faces

Inferior fusiform

—54,-8814 (5.2) —35,—98,14 (3.6) —60,—82,10 (7.4)

~50,-92,~6 (7.7)
—46,-868  (3.6)

—58,—58,—18 (6.0) —48,—66,—22 (5.5)
—64,—-62,26  (6.0)

—24,-72,—12 (7.5) —38,—62,—8 (7.7) —34,—88,—4 (5.5) —30,—80,—2 (4.7) —26,—60,—12 (4.1)

Upper part: Regions that showed greater activation for object stimuli relative to scrambled pictures (i.e., chairs, faces, houses > scrambles) at p <
.05 (corrected for multiple comparisons)—Z scores are reported in parentheses. These regions did not show category effects, even when lowering
the statistical threshold to p < .05 (uncorrected). Lower part: Regions that showed greater activation for object stimuli relative to scrambled
pictures (p < .05 corrected for multiple comparisons) and for one object category relative to the others (p < .001 uncorrected)—Z scores for the
category effects are reported in parentheses. All regions were identified, independently for each subject, using SPM analysis. Z scores that survived
correction for multiple comparisons (p < .05) are reported in bold.
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subject. This analysis identified regions that showed
differential activity for object stimuli (i.e., houses, chairs,
and faces) relative to scrambled pictures and for one
object category relative to the others. V3 and the
superior/inferior parietal area showed greater activation
for object stimuli relative to scrambled pictures, but did
not show any category effect (in Subjects 1-5; see
upper part of Table 1). In contrast, a number of regions
in the occipital and temporal gyri showed greater
activation for object stimuli relative to scrambled pic-
tures and differential activation for houses, faces, and
chairs (in Subjects 1-5; see lower part of Table 1). The
category effects reported by the Ishai et al. at group
level were therefore replicated at an individual subject
level when using SPM.

Second, we constructed a series of subject-specific
dynamic causal models that comprised the house-, face-,
and chair-responsive regions in the occipital and tem-
poral cortex. V3 and the superior/inferior parietal area
were also included as they expressed greater activation
for houses, faces, and chairs relative to scrambled
pictures but did not show any category effect. As
represented in Figure 1, the dynamic causal model
comprised intrinsic connections from V3 to the parietal
cortex, from V3 to the category-responsive areas, and
from the parietal cortex to the category-responsive
areas. Bilinear terms were also specified to look at the
influence of object category on the intrinsic connections
from V3 to the category-responsive regions and from
the parietal cortex to the category-responsive regions.

Category

Effects

T

Visual Objects

Figure 1. The dynamic causal model—which included V3, a superior/
inferior parietal area, and the category-responsive regions in the
occipital and temporal cortex. The vector “visual objects” encoded
the presentation of visual objects (i.e., houses, faces, and chairs) and
entered the model through the “input area” V3.
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The stimulus function, which encoded the presentation
of visual objects (i.e., houses, faces, and chairs), was
entered into the dynamic causal model through the
sensory area V3. The resulting perturbation was then
allowed to propagate throughout the model via ana-
tomical interconnections between V3 and the remaining
regions.

DCM analysis estimated the intrinsic connections
specified by the model and how these were influenced
by the presentation of houses, faces, and chairs. The
influence of object category on the intrinsic connec-
tions, modeled by the bilinear terms, was the primary
focus of our DCM study. We hypothesized a significant
influence of object category on the intrinsic connections
that would account for the category effects observed in
the occipital and temporal cortex. One possibility was
that this influence would be expressed through
the connections from V3 to the category-responsive
areas—which would suggest bottom—-up modulation.
Another possibility was that the influence of object
category on the connectivity parameters was expressed
in the connections from parietal cortex to the category-
responsive areas—thereby indicating top—down modu-
lation. Finally, it was possible that object-specificity was
conferred by connections from both V3 and parietal
cortex.

RESULTS
Intrinsic Connections

The intrinsic connections from V3 to the category- re-
sponsive regions and the superior/inferior parietal area
were significantly greater than 0 in all five subjects. In
addition, the intrinsic connections from the superior/
inferior parietal area to some of the category-responsive
regions were significant in Subjects 3, 4, and 5. Results are
shown graphically in Figure 2; intrinsic connections sig-
nificant at 95% confidence are represented using solid
lines and their estimates are reported in bold.

Influence of Object Category on the
Intrinsic Connections

In all five subjects, category effects in the occipital and
temporal cortex were mediated by inputs from V3. In
other words, the intrinsic connectivity from V3 to the
chair-responsive regions was stronger during the pre-
sentation of chairs than any other category; the intrinsic
connectivity from V3 to the face-responsive regions was
stronger during the presentation of faces than any other
category; and the intrinsic connectivity from V3 to the
house-responsive regions was stronger during the pre-
sentation of houses than any other category. In contrast,
no subject showed an effect of object category on the
intrinsic connections from the superior/inferior parietal
area to the category-responsive regions. Results are
shown graphically in Figure 2; bilinear terms significant
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Figure 2. Results of the DCM analysis for each subject. Intrinsic connections and bilinear terms significant at 95% confidence are represented using
solid lines and their estimates are reported in bold. It can be seen that, consistently across subjects, the intrinsic connectivity from V3 to the house-,
face-, and chair-responsive regions was stronger during the presentation of houses, faces, and chairs, respectively. In contrast, the intrinsic

connectivity from the superior/inferior parietal area to the category responsive regions appeared to be unaffected by the presentation of houses,

faces, and chairs.

at 95% confidence are represented using solid lines and
their estimates are reported in bold.

DISCUSSION

The present investigation represents the first attempt to
explore the neuronal interactions that mediate category
effects in the left occipital and temporal cortex. The
study was motivated by the idea that functional special-
ization is not an intrinsic property of any region, but
depends on both forward and backward connections
(Friston & Price, 2001; McIntosh, 2000). Using the newly
developed analytical technique DCM, we showed that
the category effects reported by Ishai et al. (1999) and

Ishai, Ungerleider, Martin, et al. (2000) are associated
with greater connectivity from early visual cortex. This
finding indicates that category effects in the occipital and
temporal cortex can be mediated by bottom—up mech-
anisms. This had been hypothesized in a number of
earlier studies but had proved difficult to demonstrate
using conventional analyses of regionally specific effects.
In contrast, we found no evidence that the category
effects reported by Ishai et al. are associated with greater
connectivity from the parietal cortex. However, interpre-
tation of this finding should be qualified, as we discuss
below.

It may be interesting to consider the implications of our
findings, together with the results reported by Ishai et al.,
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for theories of category specificity. First, the representa-
tion of houses, faces, and chairs was not restricted to
regions of cortex that responded exclusively to one
category, rather activation was highly distributed across
the occipital and temporal cortex. This finding is incon-
sistent with the hypothesis of segregated regions for
different category-specific modules (see also Haxby
et al., 2000). Second, within this distributed network,
there were regions that responded preferentially to spe-
cific object categories, such as houses, faces, and chairs.
This finding appears to be inconsistent with the hypoth-
esis of an undifferentiated neural system for processing
different object categories. Third, category effects in the
occipital and temporal cortex were mediated by bottom—
up mechanisms. This finding is inconsistent with the idea
that category effects can be fully explained in terms of
top—down attentional mechanisms. Rather, it appears to
suggest that pictures of houses, faces, and chairs are
associated with different visual features—which in turn
may lead to functional specialization in the occipital and
temporal cortex. However, this does not imply that
category-related responses in the occipital and temporal
cortex are passively driven by the visual features of the
stimuli (see below).

In our investigation, we also found no evidence that
the category effects reported by Ishai et al. are depen-
dent on inputs from the parietal cortex. Interpretation of
this finding should be cautious however, as we used a
relatively simple dynamic causal model that comprised
V3, superior/inferior parietal, and category-responsive
regions only. The neural network that mediates category
effects in the occipital and temporal cortex is likely to
comprise a number of anatomical regions that were not
included in our simple model. Primary candidates are
the left prefrontal areas, which may be involved in
semantic retrieval (Noppeney & Price, 2002), and medial
anterior temporal areas, which may contribute to the
integration of simple semantic features into a single
object representation (Devlin, Moore, et al., 2002).
These regions were not included in our dynamic causal
model because Ishai et al. only acquired functional data
from the back of the brain (see Methods). It is possible,
however, that the prefrontal or the anterior temporal
areas were coupled with the category-responsive areas
in the occipital and temporal cortex, and that this cou-
pling was influenced by object category. A critica conse-
quence of these considerations is that, even if we found
no evidence that category effects are mediated by inputs
from the superior/inferior parietal area, we cannot dis-
card the possibility that top—-down mechanisms are in-
volved in the category effects reported by Ishai et al. In
fact, top—down modulation has been suggested by func-
tional imaging data demonstrating category-related re-
sponses during word naming (Chao et al., 1999) and visual
imagery (Ishai, Ungerleider, & Haxby, 2000). Further-
more, top—down modulation in category-responsive re-
gions is supported by a task-dependent double
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dissociation between animals and tools (Devlin, Moore,
et al., 2002).

In summary, it is likely that the bottom—up modula-
tion identified by our DCM analysis is not the only way
in which category effects in the occipital and temporal
cortex can be mediated. We suggest that category effects,
like those reported by Ishai et al.,, can be mediated
either by bottom-up or top—down mechanisms—de-
pending on the context. For instance, passive viewing
and visual imagery may well identify the same category
effects but these could be mediated by bottom—up and
top—down mechanisms, respectively. This hypothesis
can be tested empirically by applying our DCM analysis
to data sets obtained using a range of experimental
paradigms that do and do not rely on pictorial stimuli.
In other words, an experimental paradigm should be
used that involves explicit manipulation of top—down
mechanisms. An alternative possibility is that the bot-
tom-up modulation identified by our DCM analysis was,
in turn, mediated by inputs from frontal or anterior
temporal regions to early visual areas. This hypothesis
can also be tested empirically with DCM by using a data
set that includes functional information from these
regions.

Finally, the present study illustrates the use of DCM to
estimate the influence that one region exerts over
another and how this is affected by experimental manip-
ulation. By using a Bayesian framework, that places no
limits on the number of connections that can be mod-
eled, we were able to test models that would be
impossible to characterize using existing methods based
on multiple regression. Furthermore, by treating the
measured hemodynamic responses as evoked by known
experimental inputs, we avoided the assumption that
the measured hemodynamic responses are driven by
endogenous or intrinsic noise. Given that the vast
majority of functional imaging studies rely on designed
experiments, we consider DCM a potentially useful
complement to existing techniques.

METHODS
Experimental Design

Six healthy right-handed subjects performed passive
viewing and delayed match-to-sample tasks. In the pas-
sive viewing task, single stimuli (gray-scale photographs
of houses, faces, and chairs) were presented at a rate of
two per second. Scrambled pictures of houses, faces,
and chairs were also presented with the same temporal
sequence as a control. In the delayed matching task, a
single-sample stimulus (presented for 1.5 sec) was fol-
lowed by a pair of choice stimuli (presented for 2 sec).
Subjects indicated which choice stimulus matched the
sample stimulus by pressing a button with the right or
left thumb. In the control task, scrambled pictures of
houses, faces, and chairs were presented with the same
temporal sequence. Here subjects responded to the
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presentation of each pair of scrambled items by pressing
both right and left buttons simultaneously. See Ishai
et al. (1999) and Ishai, Ungerleider, Martin, et al. (2000)
for details.

Data Acquisition

A 1.5-T General Electric Signa scanner was used to
acquire blood oxygen level-dependent T2*-weighted
MRI signal (TR = 3 sec) and high-resolution full-volume
structural images. Each functional image comprised 18
contiguous, 5-mm thick coronal slices to cover occipital,
parietal, and posterior temporal cortex. See Ishai et al.
(1999) and Ishai, Ungerleider, Martin, et al. (2000) for
details.

Data Analysis
Statistical Parametric Mapping

SPM analysis (Friston, Holmes, et al., 1995) was per-
formed using SPM2 software (Wellcome Department of
Imaging Neuroscience, London, UK; http:/www fil.ion.
ucl.ac.uk), running under Matlab 6 (Mathworks, Sher-
bon, MA). Functional images were realigned with
an iterative method and coregistered to the individual
T1l-weighted structural images. The T1-weighted struc-
tural images were normalized in the space of Talairach
and Tournoux (1988) using nonlinear basis functions
(Friston, Ashburner, et al.,, 1995) and the resulting
“warp” parameters were then applied to the functional
images. These were spatially smoothed with a Gaussian
filter of 3.75. After preprocessing, a series of subject-
specific models were created to characterize the hemo-
dynamic response under each experimental condition.
The data were high-pass filtered using a set of discrete
cosine basis functions with a cutoff period of 128 sec.
The analysis used the general linear model to identify
regions that showed differential activity (a) for object
stimuli (i.e., houses, chairs, and faces) relative to scram-
bled pictures and (b) for houses, chairs, and faces (e.g.,
houses > chairs and faces, etc.). To maximize sensitivity
to category effects in the occipital and temporal cortex,
results are reported at p < .001 (uncorrected for mul-
tiple comparisons) with an extent threshold for each
cluster of 5 voxels.

Dynamic Causal Modeling

DCM (Friston et al., in press) was also performed using
SPM2 software running under Matlab 6. DCM was per-
formed on subjects 1-5 only, as SPM did not detect
any significant effects in subject 6. A series of subject-
specific dynamic causal models was constructed that com-
prised V3, a superior/inferior parietal area, and category-
responsive regions in the left hemisphere. Regions (8 mm
radius) were selected independently for each subject
using maxima of the SPM{7T} obtained using the conven-

tional SPM analysis. Principal eigenvariates were extracted
from all regions and entered into the DCM analysis to
estimate intrinsic connections and how these were influ-
enced by the presentation of houses, faces, and chairs.
Bayesian inferences were based upon the probability that
the coupling parameters exceeded 0. Inferences were
made at 95% confidence. It should be noted that correc-
tion for multiple comparisons is not required in DCM as
there are no null hypotheses tested in a classical sense.
Rather, the probability that an estimated connectivity
parameter lies in a certain range of values (e.g., 0—00)
is computed.

APPENDIX

Here we present the operational details upon which
DCM rests (also see Friston et al., 2003). In brief, DCM is
a fairly standard nonlinear system identification proce-
dure using Bayesian estimation of the parameters of
deterministic input—state—output dynamic systems. The
estimation conforms to the posterior density analysis
under Gaussian assumptions described in Friston (2002).
This posterior density analysis finds the most likely
coupling parameters given the data by performing a
gradient assent on the log posterior. The log posterior
requires both likelihood and prior terms. The likelihood
obtains from Gaussian assumptions about the errors in
the observation model implied by the DCM. This likeli-
hood or forward model is described in the next subsec-
tion. The priors on the coupling and hemodynamic
parameters obtain using a fully Bayesian approach as
described in the second subsection. In the third subsec-
tion, we show that, by combining the likelihood with the
priors, one can form an expression for the posterior
density that is used in the estimation. Finally, we con-
sider the relationship between DCM and conventional
analyses.

Dynamic Causal Models

A dynamic causal model is a multiple-input-multiple-
output system that comprises 7 inputs and / outputs
with one output per region. The m inputs correspond to
designed causes (e.g., a stick stimulus function) and are
the same as those used to form design matrices in
conventional analyses of fMRI data. The / outputs cor-
respond to the observed BOLD signal and would nor-
mally be taken as the average or first eigenvariate of key
regions, selected on the basis of a conventional analysis.
Each region in a dynamic causal model has five state
variables. Central to the estimation of effective connec-
tivity or coupling parameters is the average neuronal
activity. This state variable is a function of the neuronal
states of other brain regions. The remaining state vari-
ables are of secondary importance and correspond to
the biophysical states of the hemodynamic model pre-
sented in Mechelli et al. (2001) and Friston et al. (2000).
These biophysical states are required to compute the
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BOLD response from the average neuronal activity and
are not influenced by the neuronal states of other brain
regions. We will deal first with the equations for the
neuronal state variable and then briefly reprise the
hemodynamic model for each region.

Neuronal State Equations

Restricting ourselves to the neuronal states z = [z, ...,
z]" one can posit any arbitrary form or model for
effective connectivity:

z=F(z,u,0) (1)

where F is some nonlinear function describing the
neurophysiological influences that activity in all / brain
regions z and inputs u# exert upon changes in the others.
0 are the parameters of the model whose posterior
density (i.e., the probability distribution in terms of its
mean and standard deviation) we require for inference.
The bilinear approximation of equation 1 provides a
natural and useful reparameterization in terms of
effective connectivity:

z ~ Az + > uBz+Cu

= (A+ Y wB/)z + Cu

_OF _ 0%

A=5."6: (2)
_ 9F _ 0 0

B = 500 = 04 0-
_OF

C=%

The Jacobian or connectivity matrix A represents the
first-order connectivity among the regions in the
absence of input. In DCM, a response is defined in
terms of a change in activity with time 2. Effective
connectivity is the influence that one neuronal system
exerts over another in terms of inducing a response
0z/0z. This first-order connectivity can be thought of as
the intrinsic coupling in the absence of experimental
perturbations. This state depends on the experimental
design and therefore the intrinsic coupling is specific to
each experiment. Matrix B’ is effectively the change in
intrinsic coupling induced by the jth input. They encode
the input-sensitive changes in 0z/0z or, equivalently, the
modulation of effective connectivity by experimental
manipulations. Because B’ is a second-order derivative,
this term is referred as bilinear. Finally, the matrix C
embodies the extrinsic influences of inputs on neuronal
activity. The parameters 8° = {A, B/, C} are the
connectivity or coupling matrices that we wish to
identify and define the functional architecture and
interactions among brain regions at a neuronal level.
In DCM, the units of connections are per unit time and
therefore correspond to rates. Because we are in a
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dynamical setting, a strong connection means an
influence that is expressed quickly or with a small time
constant. The neuronal activity in each region causes
changes in volume and deoxyhemoglobin to engender
the observed BOLD response y as described next.

Hemodynamic Model

The remaining state variables of each region are bio-
physical states engendering the BOLD signal and medi-
ate the translation of neuronal activity into hemodynamic
responses. These biophysical states {s, f, v, g} comprise
a vasodilatory signal, normalized flow, normalized ve-
nous volume, and normalized deoxyhemoglobin con-
tent. These state variables are a function of, and only of,
the neuronal state of each region. The equations have
been described previously (Mechelli et al., 2001; Friston
et al., 2000) and constitute a hemodynamic model that
embeds the Balloon-Windkessel component (Mande-
ville et al., 1999; Buxton, Wong, & Frank, 1998). Addi-
tional biophysical parameters 6" = {k, v, T, o, p} in the
hemodynamic model comprise rate of signal decay, rate
of flow-dependent elimination, hemodynamic transit
time, Grubb’s exponent (Grubb, Rachael, Euchring, &
Ter-Pogossian, 1974), and resting oxygen extraction
fraction.

Combining the neuronal states with the biophysical
states gives us a full forward model

x = flx,u,0)
3)
y = Nx)

with state variables x = {z, s, f, v, ¢} and parameters
6 = {6, 8"}. For any set of parameters and inputs, the
state equation can be integrated and passed through
the output nonlinearity to give the predicted response
b(u, 8). This integration can be made quite expedient
by capitalizing on the sparsity of stimulus functions
commonly employed in fMRI designs (see Friston,
2002).

The forward model can be made into an observation
model by adding error and confounding or nuisance
effects X(¢) to give y = h(u, 8) + XB = e. Here B is the
unknown coefficient of the confounds. Following the
approach described in Friston (2002), we note

y—h(u,ngy,) ~ JAO+XB+e
A6
= [/,X] +e
B (4)
A6 = 0- 779‘},
_ 319(14,776‘»‘,)
J B Jo

Volume 15, Number 7

B5B6/0SEE6 TEERLIS | /3PE-mpe)pooknpe Ry2enp)16HY LIaKLPIFRAIAP@IO |} Papeo [umog

120z AaN 8T uo | ZeNBakeIded FZ1.8Y 15008 /6068a262000L620HT6



This local linear approximation then enters an EM
scheme as described previously

Until convergence {

E-step
_ Or(nyy)
J B 0o
y=hlmy)| [J X]| 2ANQ 0
Yy = J= , Ce =
Mo — Moy 1 0 0 Cy
Cﬁ\y = (jTag_lj)il
Aﬁe\y 7T 715
= cy('C'y)
gy

oy < Moly + Aoy

M-step
P = ' -Clc, e
9 = 1y {PQ;} +1yTPTQPY
(3) - -triroro)

The M step updates error covariance parameters A. The
prediction and observations encompass the entire ex-
periment. They are therefore large /n x 1 vectors whose
elements run over regions and time. Although the
response variable could be viewed as a multivariate time
series, it is treated as a single observation vector, whose
error covariance embodies both temporal and interre-
gional correlations. C. = V @) (\) = Y NQ,. This
covariance is parameterized by some covariance param-
eters N. These correspond to region-specific error var-
iances assuming the same temporal correlations Q; = V
®Y;in which Y ;is a / x [ sparse matrix with the ith
leading diagonal element equal to 1.

Equation 5 enables us the estimate the conditional
moments of the coupling parameters (and the hemody-
namics parameters) plus the parameters controlling
observation error. However, to proceed we need to
specify the priors.

Priors

Here we use a fully Bayesian approach because (a) there
are clear and necessary constraints on neuronal dynam-
ics that can be used to motivate priors on the coupling
parameters and (b) empirically determined priors on the

biophysical hemodynamic parameters are relatively easy
to specify. We will deal first with priors on the coupling
parameters.

Priors on the Coupling Parameters

It is self-evident that neuronal activity cannot diverge
exponentially to infinite values. Therefore, we know
that, in the absence of input, the dynamics must to
return to a stable mode. This means the largest real
component of the eigenvalues of the intrinsic coupling
matrix cannot exceed zero. We use this constraint to
establish a prior density on the coupling parameters A
that ensures the system is dissipative.

If the largest real eigenvalue (Lyapunov exponent) is
less than zero, the stable mode is a point attractor. If the
largest Lyapunov exponent is zero, the system will con-
verge to a periodic attractor with oscillatory dynamics.
Therefore, it is sufficient to establish a probabilistic
upper bound on the interregional coupling strengths;
imposed by Gaussian priors that ensures the largest
Lyapunov exponent is unlikely to exceed zero. If the
prior densities of each connection are independent, then
the prior density can be specified in terms of a variance
for the off-diagonal elements of A. This variance can then
be chosen to render the probability of the principal
exponent exceeding zero, less than some suitably small
value (see Friston et al., 2003, for details).

Hemodynamic Priors

The hemodynamic priors are based on those used in
Friston (2002). In brief, the mean and variance of
posterior estimates of the five biophysical parameters
were computed over 128 voxels using the single-word
presentation data presented in the next section. These
means and variances were used to specify Gaussian
priors on the hemodynamic parameters.

Combining the prior densities on the coupling and
hemodynamic parameters allows us to express the prior
probability of the parameters in terms of their prior
expectation mg and covariance Cy. Having specified the
priors, we are now in a position to form the posterior
and proceed with estimation using equation 5.

Inference

As noted above, the estimation scheme is a posterior
density analysis under Gaussian assumptions (see Fris-
ton, 2002, for details). In short, the estimation scheme
provides the approximating Gaussian posterior density
of the parameters ¢(8) in terms of its expectation g,
and covariance Cy|,. The expectation is also known as
the posterior mode or maximum a posteriori (MAP)
estimator. The marginal posterior probabilities are then
used for inference that any particular parameter or
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contrast of parameters cTneLy (e.g., average) exceeded a
specified threshold .

_ CTUQ{/ -
p=9N (ﬁ) (6)

¢y is the cumulative normal distribution. The units of
these parameters are hertz or per second (or adimen-
sional if normalized) and the thresholds are specified as
such. In dynamical modeling, strength corresponds to a
fast response with a small time constant.

Relationship to Conventional Analyses

Conventional analyses of fMRI data using linear convolu-
tion models are a special case of dynamic causal models
using a bilinear approximation. This is important because
it provides a direct connection between DCM and classi-
cal models. If we allow inputs to be connected to all
regions and discount interactions among regions by
setting the prior variances on A and B to zero we produce
a set of disconnected brain regions or voxels that respond
to and only to extrinsic input. The free parameters of
interest reduce to the values of C, which reflect the ability
of input to excite neural activity in each voxel. By further
setting the prior variances on the self-connections (i.e.,
scaling parameter) and those on the hemodynamic pa-
rameters to zero, we end up with a single-input—single-
output model at each and every brain region that can be
reformulated as a convolution model as described in
Friston (2002). The key point here is that the general
linear models used in typical data analyses are special
cases of bilinear models that embody more assumptions.
These assumptions enter through the use of highly
precise priors that discount interactions among regions
and prevent any variation in biophysical responses.
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