
LETTER Communicated by Kenji Doya

Learning to Forget: Continual Prediction with LSTM

Felix A. Gers
Jürgen Schmidhuber
Fred Cummins
IDSIA, 6900 Lugano, Switzerland

Long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) can
solve numerous tasks not solvable by previous learning algorithms for
recurrent neural networks (RNNs). We identify a weakness of LSTM net-
works processing continual input streams that are not a priori segmented
into subsequences with explicitly marked ends at which the network’s in-
ternal state could be reset. Without resets, the state may grow indefinitely
and eventually cause the network to break down. Our remedy is a novel,
adaptive “forget gate” that enables an LSTM cell to learn to reset itself at
appropriate times, thus releasing internal resources. We review illustra-
tive benchmark problems on which standard LSTM outperforms other
RNN algorithms. All algorithms (including LSTM) fail to solve contin-
ual versions of these problems. LSTM with forget gates, however, easily
solves them, and in an elegant way.

1 Introduction

Recurrent neural networks (RNNs) constitute a very powerful class of com-
putational models, capable of instantiating almost arbitrary dynamics. The
extent to which this potential can be exploited is, however, limited by the
effectiveness of the training procedure applied. Gradient-based methods–
back-propagation through time (Williams & Zipser, 1992; Werbos, 1988) or
real-time recurrent learning (Robinson & Fallside, 1987; Williams & Zipser,
1992) and their combination (Schmidhuber, 1992)—share an important lim-
itation. The temporal evolution of the path integral over all error signals
“flowing back in time” exponentially depends on the magnitude of the
weights (Hochreiter, 1991). This implies that the backpropagated error
(Pearlmutter, 1995) quickly either vanishes or blows up (Hochreiter &
Schmidhuber, 1997; Bengio, Simard, & Frasconi, 1994). Hence standard
RNNs fail to learn in the presence of time lags greater than 5–10 discrete
time steps between relevant input events and target signals. The vanishing
error problem casts doubt on whether standard RNNs can indeed exhibit
significant practical advantages over time-window-based feedforward net-
works.

Neural Computation 12, 2451–2471 (2000) c© 2000 Massachusetts Institute of Technology

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2452 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

A recent model, long short-term memory (LSTM) (Hochreiter & Schmid-
huber, 1997), is not affected by this problem. LSTM can learn to bridge
minimal time lags in excess of 1000 discrete time steps by enforcing con-
stant error flow through constant error carousels (CECs) within special units
called cells. Multiplicative gate units learn to open and close access to the
cells. LSTM’s learning algorithm is local in space and time; its computational
complexity per time step and weight is O(1). It solves complex long-time-
lag tasks that have never been solved by previous RNN algorithms. (See
Hochreiter & Schmidhuber, 1997, for a comparison of LSTM to alternative
approaches.)

In this article, however, we show that even LSTM fails to learn to pro-
cess certain very long or continual time series correctly that are not a priori
segmented into appropriate training subsequences with clearly defined be-
ginnings and ends. The problem is that a continual input stream eventually
may cause the internal values of the cells to grow without bound, even if the
repetitive nature of the problem suggests they should be reset occasionally.
This article presents a remedy.

Although we present a specific solution to the problem of forgetting in
LSTM networks, we recognize that any training procedure for RNNs that
is powerful enough to span long time lags must also address the issue of
forgetting in short-term memory (unit activations). We know of no other
current training method for RNNs that is sufficiently powerful to have en-
countered this problem.

Section 2 briefly summarizes LSTM and explains its weakness in pro-
cessing continual input streams. Section 3 introduces a remedy called for-
get gates. Forget gates learn to reset memory cell contents once they are
not needed anymore. Forgetting may occur rhythmically or in an input-
dependent fashion. Section 4 derives a gradient-based learning algorithm
for the LSTM extension with forget gates. Section 5 describes experiments:
we transform well-known benchmark problems into more complex, con-
tinual tasks, report the performance of various RNN algorithms, and an-
alyze and compare the networks found by standard LSTM and extended
LSTM.

2 Standard LSTM

The basic unit in the hidden layer of an LSTM network is the memory
block, which contains one or more memory cells and a pair of adaptive,
multiplicative gating units that gate input and output to all cells in the
block. Each memory cell has at its core a recurrently self-connected linear
unit called the constant error carousel (CEC), whose activation we call the
cell state. The CECs solve the vanishing error problem: in the absence of new
input or error signals to the cell, the CEC’s local error backflow remains
constant, neither growing nor decaying. The CEC is protected from both
forward-flowing activation and backward-flowing error by the input and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2453

netc

sc

y net

y
net

y

=1.0 for Std. LSTM

CEC with self-connection
memorizing and forgetting

output squashing

output gating

input squashing

s

w net

w

w

w

y
ouput gate

input gate

forget gate

input gating

hy

g y
c

c

out
c

out

in

c

ϕ

out

ϕ ϕ

netout

inin

in

g()

h()

Figure 1: The standard LSTM cell has a linear unit with a recurrent self-
connection with weight 1.0 (CEC). Input and output gates regulate read and
write access to the cell whose state is denoted sc. The function g squashes the
cell’s input; h squashes the cell’s output. See the text for details.

output gates, respectively. When gates are closed (activation around zero),
irrelevant inputs and noise do not enter the cell, and the cell state does not
perturb the remainder of the network. Figure 1 shows a memory block with
a single cell. The cell state, sc, is updated based on its current state and three
sources of input: netc is input to the cell itself, while netin and netout are inputs
to the input and output gates.

We consider discrete time steps t = 1, 2, A single step involves the
update of all units (forward pass) and the computation of error signals
for all weights (backward pass). Input gate activation yin and output gate
activation yout are computed as follows:

netoutj(t) =
∑

m
woutjm ym(t− 1), youtj(t) = foutj(netoutj(t)), (2.1)

netinj(t) =
∑

m
winjm ym(t− 1), yinj(t) = finj(netinj(t)). (2.2)

Throughout this article, j indexes memory blocks; v indexes memory cells
in block j, such that cv

j denotes the vth cell of the jth memory block; wlm is
the weight on the connection from unit m to unit l. Index m ranges over all
source units, as specified by the network topology. For gates, f is a logistic
sigmoid with range [0, 1]. Net input to the cell itself is squashed by g, a
centered logistic sigmoid function with range [−2, 2].

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2454 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

The internal state of memory cell sc(t) is calculated by adding the
squashed, gated input to the state at the previous time step sc(t− 1) (t > 0):

netcv
j
(t)=

∑
m

wcv
j m ym(t−1), scv

j
(t)=scv

j
(t−1)+yinj(t) g(netcv

j
(t)), (2.3)

with scv
j
(0) = 0. The cell output yc is calculated by squashing the internal

state sc via the output squashing function h and then multiplying (gating)
it by the output gate activation yout:

ycv
j (t) = youtj(t) h(scv

j
(t)). (2.4)

h is a centered sigmoid with range [−1, 1].
Finally, assuming a layered network topology with a standard input

layer, a hidden layer consisting of memory blocks, and a standard output
layer, the equations for the output units k are:

netk(t) =
∑

m
wkm ym(t− 1), yk(t) = fk(netk(t)), (2.5)

where m ranges over all units feeding the output units (typically all cells
in the hidden layer, the input units, but not the memory block gates). As
squashing function fk, we again use the logistic sigmoid, range [0, 1]. All
equations except for equation 2.3 will remain valid for extended LSTM with
forget gates.

Hochreiter and Schmidhuber (1997) provide details of standard LSTM’s
backward pass. Essentially, as in truncated backpropagation through time
(BPTT), errors arriving at net inputs of memory blocks and their gates do not
get propagated back further in time, although they do serve to change the
incoming weights. An error signal arriving at a memory cell output is scaled
by the output gate and the output nonlinearity h; it then enters the memory
cell’s linear CEC, where it can flow back indefinitely without ever being
changed (this is why LSTM can bridge arbitrary time lags between input
events and target signals). Only when the error escapes from the memory
cell through an opening input gate and the additional input nonlinearity g
does it get scaled once more, and then serves to change incoming weights
before being truncated. (Details of extended LSTM’s backward pass are
discussed in section 3.2.)

2.1 Limits of Standard LSTM. LSTM allows information to be stored
across arbitrary time lags and error signals to be carried far back in time. This
potential strength, however, can contribute to a weakness in some situations.
The cell states sc often tend to grow linearly during the presentation of a time
series (the nonlinear aspects of sequence processing are left to the squashing
functions and the highly nonlinear gates). If we present a continuous input

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2455

stream, the cell states may grow in unbounded fashion, causing saturation
of the output squashing function, h. This happens even if the nature of
the problem suggests that the cell states should be reset occasionally, such
as at the beginnings of new input sequences (whose starts, however, are
not explicitly indicated by a teacher). Saturation will make h’s derivative
vanish, thus blocking incoming errors, and make the cell output equal the
output gate activation; that is, the entire memory cell will degenerate into
an ordinary BPTT unit, so that the cell will cease functioning as a memory.
The problem did not arise in the experiments reported by Hochreiter and
Schmidhuber (1997) because cell states were explicitly reset to zero before
the start of each new sequence.

How can we solve this problem without losing LSTM’s advantages over
time-delay neural networks (TDNN) (Waibel, 1989) or NARX (nonlinear
autoregressive models with exogenous inputs) (Lin, Horne, Tiño, & Giles,
1996), which depend on a priori knowledge of typical time lag sizes? The
standard technique of weight decay, which helps to contain the level of
overall activity within the network, was found to generate solutions that
were particularly prone to unbounded state growth. Variants of focused
backpropagation (Mozer, 1989) also do not work well. These let the internal
state decay via a self-connection whose weight is smaller than 1. But there
is no principled way of designing appropriate decay constants. A potential
gain for some tasks is paid for by a loss of ability to deal with arbitrary,
unknown causal delays between inputs and targets. In fact, state decay does
not significantly improve experimental performance (see “state decay” in
Table 2).

Of course, we might try to “teacher force” (Jordan, 1986; Doya &
Yoshizawa, 1989) the internal states sc by resetting them once a new train-
ing sequence starts. But this requires an external teacher who knows how to
segment the input stream into training subsequences. We are precisely in-
terested, however, in those situations where there is no a priori knowledge
of this kind.

3 Solution: Forget Gates

Our solution to the problem above is to use adaptive forget gates, which
learn to reset memory blocks once their contents are out of date and hence
useless. By resets, we do not mean only immediate resets to zero but also
gradual resets corresponding to slowly fading cell states. More specifically,
we replace standard LSTM’s constant CEC weight 1.0 by the multiplicative
forget gate activation yϕ . (See Figure 1.)

3.1 Forward Pass of Extended LSTM with Forget Gates. The forget
gate activation yϕ is calculated like the activations of the other gates (see

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2456 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

equations 2.1 and 2.2):

netϕj(t) =
∑

m
wϕjm ym(t− 1); yϕj(t) = fϕj(netϕj(t)). (3.1)

Here netϕj is the input from the network to the forget gate. We use the logistic
sigmoid with range [0, 1] as squashing function fϕj . Its output becomes the
weight of the self-recurrent connection of the internal state sc in equation 2.3.
The revised update equation for sc in the extended LSTM algorithm is (for
t > 0):

scv
j
(t) = yϕj(t) scv

j
(t− 1)+ yinj(t) g(netcv

j
(t)), (3.2)

with scv
j
(0) = 0. Extended LSTM’s full-forward pass is obtained by adding

equations 3.1 to those in section 2 and replacing equation 2.3 by 3.2.
Bias weights for LSTM gates are initialized with negative values for input

and output gates (see Hochreiter & Schmidhuber, 1997, for details) and
positive values for forget gates. This implies (compare equations 3.1 and
3.2) that in the beginning of the training phase, the forget gate activation
will be almost 1.0, and the entire cell will behave like a standard LSTM cell.
It will not explicitly forget anything until it has learned to forget.

3.2 Backward Pass of Extended LSTM with Forget Gates. LSTM’s
backward pass (see Hochreiter & Schmidhuber, 1997, for details) is an ef-
ficient fusion of slightly modified, truncated BPTT (e.g., Williams & Peng,
1990) and a customized version of real time recurrent learning (RTRL) (e.g.,
Robinson & Fallside, 1987). Output units use BPTT; output gates use slightly
modified, truncated BPTT. Weights to cells, input gates, and the novel for-
get gates, however, use a truncated version of RTRL. Truncation means that
all errors are cut off once they leak out of a memory cell or gate, although
they do serve to change the incoming weights. The effect is that the CECs
are the only part of the system through which errors can flow back forever.
This makes LSTM’s updates efficient without significantly affecting learn-
ing power: error flow outside cells tends to decay exponentially anyway

(Hochreiter, 1991). In the equations that follow, tr= will indicate where we
use error truncation; unless otherwise indicated, we assume for simplicity
only a single cell per block.

We start with the usual squared error objective function based on tar-
gets tk,

E(t) = 1
2

∑
k

ek(t)2; ek(t) := tk(t)− yk(t), (3.3)

where ek denotes the externally injected error. We minimize E via gradient
descent by adding weight changes1wlm to the weights wlm (from unit m to

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2457

unit l) using learning rate α:

1wlm(t) = −α ∂E(t)
∂wlm

= −α ∂E(t)
∂yk(t)

∂yk(t)
∂wlm

= α
∑

k

ek(t)
∂yk(t)
∂wlm

tr= α
∑

k

ek(t)
∂yk(t)
∂yl(t)

∂yl(t)
∂netl(t)

∂netl(t)
∂wlm︸ ︷︷ ︸
=ym(t−1)

= α ∂yl(t)
∂netl(t)

(∑
k

∂yk(t)
∂yl(t)

ek(t)

)
︸ ︷︷ ︸

=:δl(t)

ym(t− 1). (3.4)

For an arbitrary output unit (l = k), the sum in equation 3.4 vanishes. By
differentiating equation 2.5, we obtain the usual backpropagation weight
changes for the output units:

∂yk(t)
∂netk(t)

= f ′k(netk(t)) H⇒ δk(t) = f ′k(netk(t)) ek(t). (3.5)

To compute the weight changes for the output gates1woutjm, we set (l = out)
in equation 3.4. The resulting terms can be determined by differentiating
equations 2.1, 2.4, and 2.5:

∂youtj(t)
∂netoutj(t)

= f ′outj
(netoutj(t)),

∂yk(t)
∂youtj(t)

ek(t) = h(scv
j
(t))wkcv

j
δk(t).

Inserting both terms in equation 3.4 gives δv
outj

, the contribution of the block’s
vth cell to δoutj . Because every cell in a memory block contributes to the
weight change of the output gate, we have to sum over all cells v in block j
to obtain the total δoutj of the jth memory block (with Sj cells):

δoutj(t) = f ′outj
(netoutj(t))

 Sj∑
v=1

h(scv
j
(t))

∑
k

wkcv
j
δk(t)

 . (3.6)

Equations 3.4 through 3.6 define the weight changes for output units and
output gates of memory blocks. Their derivation was almost standard BPTT,
with error signals truncated once they leave memory blocks (including its
gates). This truncation does not affect LSTM’s long time lag capabilities
but is crucial for all equations of the backward pass and should be kept in
mind.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2458 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

For weights to cell, input gate, and forget gate, we adopt an RTRL-
oriented perspective by first stating the influence of a cell’s internal state scv

j

on the error and then analyzing how each weight to the cell or the block’s
gates contributes to scv

j
. So we split the gradient in a way different from the

one used in equation 3.4:

1wlm(t) = −α ∂E(t)
∂wlm

tr= −α ∂E(t)
∂scv

j
(t)︸ ︷︷ ︸

=:−escv
j
(t)

∂scv
j
(t)

∂wlm
= α escv

j
(t)
∂scv

j
(t)

∂wlm
. (3.7)

These terms are the internal state error escv
j

and a partial
∂scv

j

∂wlm
of scv

j
with

respect to weights wlm feeding the cell cv
j (l = cv

j) or the block’s input gate
(l = in) or the block’s forget gate (l = ϕ), as all these weights contribute to
the calculation of scv

j
(t). We treat the partial for the internal states error escv

j

analogously to equation 3.4 and obtain:

escv
j
(t) := − ∂E(t)

∂scv
j
(t)

tr= − ∂E(t)
∂yk(t)

∂yk(t)

∂ycv
j (t)

∂ycv
j (t)

∂scv
j
(t)
= ∂ycv

j

∂scv
j
(t)

∑
k

∂yk(t)

∂ycv
j (t)

ek(t)︸ ︷︷ ︸
=wcv

j
lδk(t)

.

Differentiating the forward pass equation, 2.4, ∂y
cv
j

∂scv
j
(t) = youtj(t) h′(scv

j
(t), we

obtain:

escv
j
(t) = youtj(t) h′(scv

j
(t))

(∑
k

wkcv
j
δk(t)

)
. (3.8)

This internal state error needs to be calculated for each memory cell. To

calculate the partial
∂scv

j

∂wlm
in equation 3.7, we differentiate equation 3.2 and

obtain a sum of four terms:

∂scv
j
(t)

∂wlm
=
∂scv

j
(t− 1)

∂wlm
yϕj(t)︸ ︷︷ ︸

6=0 for all l∈{ϕ,in,cv
j }

+ yinj(t)
∂g(netcv

j
(t))

∂wlm︸ ︷︷ ︸
6=0 for l=cv

j (cell)

+ g(netcv
j
(t))

∂yinj(t)
∂wlm︸ ︷︷ ︸

6=0 for l=in (input gate)

+ scv
j
(t− 1)

∂yϕj(t)
∂wlm︸ ︷︷ ︸

6=0 for l=ϕ (forget gate)

. (3.9)

Differentiating the forward pass equations 2.3, 2.2, and 3.1 for g, yin, and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2459

yϕ , we can substitute the unresolved partials and split the expression on
the right-hand side of equation 3.9 into three separate equations for the cell
(l = cv

j), the input gate (l = in), and the forget gate (l = ϕ):

∂scv
j
(t)

∂wcv
j m
=
∂scv

j
(t− 1)

∂wcv
j m

yϕj(t)+ g′(netcv
j
(t)) yinj(t) ym(t− 1), (3.10)

∂scv
j
(t)

∂winjm
=
∂scv

j
(t− 1)

∂winjm
yϕj(t)+ g(netcv

j
(t)) f ′inj

(netinj(t)) ym(t− 1), (3.11)

∂scv
j
(t)

∂wϕjm
=
∂scv

j
(t− 1)

∂wϕjm
yϕj(t)+ scv

j
(t− 1) f ′ϕj

(netϕj(t)) ym(t− 1). (3.12)

Furthermore the initial state of network does not depend on the weights, so
we have

∂scv
j
(t = 0)

∂wlm
= 0 for l ∈ {ϕ, in, cv

j }. (3.13)

Note that the recursions in equations 3.10 through 3.12 depend on the actual
activation of the block’s forget gate. When the activation goes to zero, not
only the cell’s state but also the partials are reset (forgetting includes for-
giving previous mistakes). Every cell needs to keep a copy of each of these
three partials and update them at every time step.

We can insert the partials in equation 3.7 and calculate the corresponding
weight updates, with the internal state error escv

j
(t)given by equation 3.8. The

difference between updates of weights to a cell itself (l = cv
j) and updates

of weights to the gates is that changes to weights to the cell 1wcv
j m depend

on only the partials of this cell’s own state:

1wcv
j m(t) = αescv

j
(t)
∂scv

j
(t)

∂wcv
j m
. (3.14)

To update the weights of the input gate and the forget gate, however, we
have to sum over the contributions of all cells in the block:

1wlm(t) = α
Sj∑

v=1

escv
j
(t)
∂scv

j
(t)

∂wlm
for l ∈ {ϕ, in}. (3.15)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2460 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

The equations necessary to implement the backward pass are 3.4 through
3.6, 3.8, and 3.10 through 3.15.

The appendix summarizes the complete LSTM algorithm (forward and
backward pass) in pseudocode.

3.3 Complexity. To calculate the computational complexity of extended
LSTM, we take into account that weights to input gates and forget gates
cause more expensive updates than others, because each such weight di-
rectly affects all the cells in its memory block. We evaluate a rather typical
topology used in the experiments (see Figure 3). All memory blocks have the
same size; gates have no outgoing connections; output units and gates have
a bias connection (from a unit whose activation is always 1.0); other con-
nections to output units stem from memory blocks only; the hidden layer is
fully connected. Let B,S, I,K denote the numbers of memory blocks, mem-
ory cells in each block, input units, and output units, respectively. We find
the update complexity per time step to be:

Wc = (B · (S+ 2S+ 1)) · (B · (S+ 2))+ B · (2S+ 1)︸ ︷︷ ︸
recurrent connections and bias

+ (B · S+ 1) · K︸ ︷︷ ︸
to output

+ (B · (S+ 2S+ 1)) · I︸ ︷︷ ︸
from input

. (3.16)

Hence LSTM’s update complexity per time step and weight is of order O(1),
essentially the same as for a fully connected BPTT recurrent network. Stor-
age complexity per weight is also O(1), as the last time step’s partials from
equations 3.10 through 3.12 are all that need to be stored for the backward
pass. So the storage complexity does not depend on the length of the input
sequence. Hence, extended LSTM is local in space and time, according to
Schmidhuber’s definition (1989), just like standard LSTM.

4 Experiments

4.1 Continual Embedded Reber Grammar Problem. To generate an
infinite input stream, we extend the well-known embedded Reber gram-
mar (ERG) benchmark problem, Smith & Zipser 1989; Cleeremans, Servan-
Schreiber, & McClelland, 1989; Fahlman, 1991; Hochreiter & Schmidhuber,
1997). Consider Figure 2.

4.1.1 ERG. The traditional method starts at the left-most node of the
ERG graph and sequentially generates finite symbol strings (beginning with
the empty string) by following edges and appending the associated symbols

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2461

B P E
S

X

T
X

V
V

T

S

P

T
EB

P

T

P
Grammar

Reber

Grammar
Reber

recurrent connection for continual prediction

Figure 2: Transition diagrams for standard (left) and embedded (right) Reber
grammars. The dashed line indicates the continual variant.

to the current string until the right-most node is reached. Edges are chosen
randomly if there is a choice (probability = 0.5).

Input and target symbols are represented by seven-dimensional binary
vectors, each component standing for one of the seven possible symbols.
Hence the network has seven input units and seven output units. The task
is to read strings, one symbol at a time, and to predict continually the next
possible symbol(s). Input vectors have exactly one nonzero component.
Target vectors may have two, because sometimes there is a choice of two
possible symbols at the next step. A prediction is considered correct if the
mean squared error at each of the seven output units is below 0.49 (error
signals occur at every time step).

To predict correctly the symbol before the last (T or P) in an ERG string, the
network has to remember the second symbol (also T or P) without confusing
it with identical symbols encountered later. The minimal time lag is 7 (at the
limit of what standard recurrent networks can manage); time lags have no
upper bound, though. The expected length of a string generated by an ERG
is 11.5 symbols. The length of the longest string in a set of N nonidentical
strings is proportional to log N (Gers, Schmidhuber, & Cummins, 1999). For
the training and test sets used in our experiments, the expected value of the
longest string is greater than 50.

Table 1 summarizes the performance of previous RNNs on the standard
ERG problem (testing involved a test set of 256 ERG test strings). Only LSTM
always learns to solve the task. Even when we ignore the unsuccessful trials
of the other approaches, LSTM learns much faster.

4.1.2 CERG. Our more difficult continual variant of the ERG problem
(CERG) does not provide information about the beginnings and ends of
symbol strings. Without intermediate resets, the network is required to
learn, in an on-line fashion, from input streams consisting of concatenated
ERG strings. Input streams are stopped as soon as the network makes an
incorrect prediction or the 105th successive symbol has occurred. Learning
and testing alternate: after each training stream, we freeze the weights and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2462 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

Table 1: Standard Embedded Reber Grammar (ERG): Percentage of Successful
Trials and Number of Sequence Presentations until Success.

Number of Number of Learning % Success Success
Algorithm Hidden Units weights Rate After

RTRL 3 ≈ 170 0.05 “Some fraction” 173,000
RTRL 12 ≈ 494 0.1 “Some fraction” 25,000
ELM 15 ≈ 435 0 >200,000
RCC 7–9 ≈ 119–198 50 182,000
Standard 3 memory blocks,
LSTM size 2 276 0.5 100 8440

Sources: RTRL: Results from Smith and Zipser (1989); ELM results from Cleeremans et al.
(1989); RCC results from Fahlman (1991); and LSTM results from Hochreiter and Schmid-
huber (1997).
Note: Weight numbers in the first four rows are estimates.

feed 10 test streams. Our performance measure is the average test stream
size; 100,000 corresponds to a so-called perfect solution (106 successive cor-
rect predictions).

4.2 Network Topology and Parameters. The seven input units are fully
connected to a hidden layer consisting of four memory blocks with 2 cells
each (8 cells and 12 gates in total). The cell outputs are fully connected
to the cell inputs, all gates, and the seven output units. The output units
have additional “shortcut” connections from the input units (see Figure 3).
All gates and output units are biased. Bias weights to input and output
gates are initialized blockwise: −0.5 for the first block, −1.0 for the sec-
ond, −1.5 for the third, and so forth. In this manner, cell states are ini-
tially close to zero; as training progresses, the biases become progressively
less negative, allowing the serial activation of cells as active participants
in the network computation. Forget gates are initialized with symmetric
positive values: +0.5 for the first block, +1 for the second block, and so
on. Precise bias initialization is not critical, though; other values work just
as well. All other weights including the output bias are initialized ran-
domly in the range [−0.2, 0.2]. There are 424 adjustable weights, which
is comparable to the number used by LSTM in solving the ERG (see
Table 1).

Weight changes are made after each input symbol presentation. At the
beginning of each training stream, the learning rate α is initialized with 0.5.
It either remains fixed or decays by a factor of 0.99 per time step (LSTM with
α-decay). Learning rate decay is well studied in statistical approximation
theory and is also common in neural networks (e.g., Darken, 1995). We
report results of exponential α-decay (as specified above), but also tested
several other variants (linear, 1/T, 1/

√
T) and found them all to work as

well without extensive optimization of parameters.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2463

2 4 5 6 7
In
1 3

In In In In In In

Cell Cell Cell Cell

BlockBlock Block Block
2211

21 1 2

4 6
Out
1

Out Out
32

Out Out
5

Out Out
7

Forget Gate 1

In Gate 1

Out Gate 1 Out Gate 2

In Gate 2

Forget Gate 2

MemoryMemoryMemoryMemory

Figure 3: Three-layer LSTM topology with recurrence limited to the hidden
layer consisting of four extended LSTM memory blocks (only two are shown)
with two cells each. Only a limited subset of connections are shown.

4.3 CERG Results. Training was stopped after at most 30,000 training
streams, each of which was ended when the first prediction error or the
100,000th successive input symbol occurred. Table 2 compares extended
LSTM (with and without learning rate decay) to standard LSTM and an
LSTM variant with decay of the internal cell state sc (with a self-recurrent
weight < 1). Our results for standard LSTM with network activation re-
sets (by an external teacher) at sequence ends are slightly better than those
based on a different topology (Hochreiter & Schmidhuber, 1997). External
resets (noncontinual case) allow LSTM to find excellent solutions in 74% of
the trials, according to our stringent testing criterion. Standard LSTM fails,
however, in the continual case. Internal state decay does not help much ei-
ther (we tried various self-recurrent weight values and report only the best
result). Extended LSTM with forget gates, however, can solve the continual
problem.

A continually decreasing learning rate led to even better results but had
no effect on the other algorithms. Different topologies may provide better
results too. We did not attempt to optimize topology.

Can the network learn to recognize appropriate times for opening and
closing its gates without using the information conveyed by the marker
symbols B and E? To test this, we replaced all CERG subnets of the type
T\P−→ • E−→ • B−→ • T\P−→ by

T\P−→ • T\P−→. This makes the task more difficult,
as the net now needs to keep track of sequences of numerous potentially
confusing T and P symbols. But LSTM with forget gates (same topology)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2464 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

Table 2: Continuous Embedded Reber Grammar (CERG).

Algorithm % Solutionsa % Good Solutionsb % Restc

Standard LSTM with external reset 74 (7441) 0 〈−〉 26 〈31〉
Standard LSTM 0 (-) 1 〈1166〉 99 〈37〉
LSTM with state decay (0.9) 0 (-) 0 〈−〉 100 〈56〉
LSTM with forget gates 18 (18,889) 29 〈39,171〉 53 〈145〉
LSTM with forget gates
and sequential α decay 62 (14,087) 6 〈68,464〉 32 〈30〉
aPercentage of “perfect” solutions (correct prediction of 10 streams of 100,000 symbols
each). The number of training streams presented until a solution was reached is shown
in parentheses.

bPercentage of solutions with an average stream length > 1000. The mean length of
error-free prediction is given in angle brackets.

cPercentage of “bad” solutions with average stream length ≤ 1000. The mean length of
error-free prediction is given in angle brackets.

Notes: The results are averages over 100 independently trained networks. Other algo-
rithms like BPTT are not included in the comparison, because they tend to fail even on
the easier, noncontinual ERG.

was still able to find perfect solutions, although less frequently (sequential
α decay was not applied).

4.4 Analysis of the CERG Results. How does extended LSTM solve the
task on which standard LSTM fails? Section 2.1 already mentioned LSTM’s
problem of uncontrolled growth of the internal states. Figure 4 shows the
evolution of the internal states sc during the presentation of a test stream.
The internal states tend to grow linearly. At the starts of successive ERG
strings, the network is in an increasingly active state. At some point (here,

-50

0

50

100

0 T T T T T P P T T T T P 130

In
te

rn
al

 C
el

l S
ta

te

Symbol

-9- -10- -14- -10- -10- -9- -10- -10- -12- -10- -9- -9-

Figure 4: Evolution of standard LSTM’s internal states sc during presentation
of a test stream stopped at first prediction failure. Starts of new ERG strings are
indicated by vertical lines labeled by the symbols (P or T) to be stored until the
next string start.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2465

-10

0

10

20

680 T P P T T P P T T T T T 850

In
te

rn
al

 C
el

l S
ta

te
-12- -20- -11- -15- -11--10- -15- -14- -9- -19- -10- -9- -9-

3.Block, 1.Cell
3.Block, 2.Cell

0

0.5

1

680 T P P T T P P T T T T T 850F
or

ge
t G

at
e

A
ct

iv
.

Symbol

Figure 5: (Top) Internal states sc of the two cells of the self-resetting third mem-
ory block in an extended LSTM network during a test stream presentation. The
figure shows 170 successive symbols taken from the longer sequence presented
to a network that learned the CERG. Starts of new ERG strings are indicated by
vertical lines labeled by the symbols P or T, to be stored until the next string
start. (Bottom) Simultaneous forget gate activations of the same memory block.

after 13 successive strings), the high level of state activation leads to satu-
ration of the cell outputs, and performance breaks down. Extended LSTM,
however, learns to use the forget gates for resetting its state when neces-
sary. Figure 5 (top) shows a typical internal state evolution after learning.
We see that the third memory block resets its cells in synchrony with the
starts of ERG strings. The internal states oscillate around zero; they never
drift out of bounds as with standard LSTM (see Figure 4). It also becomes
clear how the relevant information gets stored: the second cell of the third
block stays negative, while the symbol P has to be stored, whereas a T is
represented by a positive value. The third block’s forget gate activations are
plotted in Figure 5 (bottom). Most of the time, they are equal to 1.0, thus
letting the memory cells retain their internal values. At the end of an ERG
string, the forget gate’s activation goes to zero, thus resetting cell states to
zero.

Analyzing the behavior of the other memory blocks, we find that only
the third is directly responsible for bridging ERG’s longest time lag. Figure 6
plots values analogous to those in Figure 5 for the first memory block and its
first cell. The first block’s cell and forget gate show short-term behavior only
(necessary for predicting the numerous short time lag events of the Reber

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2466 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

-10

0

10

680 T P P T T P P T T T T T 850

In
te

rn
al

 S
ta

te
-12- -20- -11- -15- -11--10- -15- -14- -9- -19- -10--9- -9-

1.Block, 1.Cell

0

0.5

1

680 T P P T T P P T T T T T 850F
or

ge
t G

at
e

A
ct

iv
.

Symbol

Figure 6: (Top) Extended LSTM’s self-resetting states for the first cell in the first
block. (Bottom) Forget gate activations of the first memory block.

grammar). The same is true for all other blocks except the third. Common to
all memory blocks is that they learned to reset themselves in an appropriate
fashion.

4.5 Continual Noisy Temporal Order Problem. Extended LSTM solves
the CERG problem; standard LSTM does not. But can standard LSTM solve
problems that extended LSTM cannot? We tested extended LSTM on one
of the most difficult nonlinear long time lag tasks ever solved by an RNN:
noisy temporal order (NTO) (task 6b taken from Hochreiter & Schmidhuber
1997).

4.5.1 NTO. The goal is to classify sequences of locally represented sym-
bols. Each sequence starts with an E, ends with a B (the “trigger symbol”),
and otherwise consists of randomly chosen symbols from the set {a, b, c, d}
except for three elements at positions t1, t2, and t3 that are either X or Y. The
sequence length is randomly chosen between 100 and 110, t1 is randomly
chosen between 10 and 20, t2 is randomly chosen between 33 and 43, and
t3 is randomly chosen between 66 and 76. There are eight sequence classes,
Q,R,S,U,V,A,B,C, which depend on the temporal order of the Xs and
Ys. The rules are: X,X,X → Q; X,X,Y → R; X,Y,X → S; X,Y,Y → U;
Y,X,X → V; Y,X,Y → A; Y,Y,X → B; Y,Y,Y → C. Target signals oc-
cur only at the end of a sequence. The problem’s minimal time lag size
is 80. Forgetting is harmful only because all relevant information has to

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2467

Table 3: Continuous Noisy Temporal Order (CNTO).

Algorithm % Perfect Solutiona % Partial Solutionb

Standard LSTM 0 (-) 100 〈4.6〉
LSTM with forget gates 24 (18,077) 76 〈12.2〉
LSTM with forget gates
and sequential α decay 37 (22,654) 63 〈11.8〉
aPercentage of perfect solutions (correct classification of 1000 successive NTO sequences
in 10 test streams). In parentheses is the number of training streams presented.

bPercentage of solutions and average stream size (value in angular brackets) ≤ 100.
Notes: All results are averages over 100 independently trained networks. Other algorithms
(BPTT, RTRL, etc.) are not included in the comparison, because they fail even on the easier,
noncontinual NTO.

be kept until the end of a sequence, after which the network is reset any-
way.

We use the network topology described in section 4.2 with eight input
and eight output units. Using a large bias (5.0) for the forget gates, extended
LSTM solved the task as quickly as standard LSTM (recall that a high forget
gate bias makes extended LSTM degenerate into standard LSTM). Using
a moderate bias like the one used for CERG (1.0), extended LSTM took
about three times longer on average, but did solve the problem. The slower
learning speed results from the net’s having to learn to remember everything
and not to forget.

Generally we have not yet encountered a problem that LSTM solves while
extended LSTM does not.

4.5.2 CNTO. Now we take the next obvious step and transform the
NTO into a continual problem that does require forgetting, just as in sec-
tion 4.1, by generating continual input streams consisting of concatenated
NTO sequences. Processing such streams without intermediate resets, the
network is required to learn to classify NTO sequences in an on-line fashion.
Each input stream is stopped once the network makes an incorrect classi-
fication or 100 successive NTO sequences have been classified correctly.
Learning and testing alternate; the performance measure is the average size
of 10 test streams, measured by the number of their NTO sequences (each
containing between 100 and 110 input symbols). Training is stopped after
at most 105 training streams.

4.5.3 Results. Table 3 summarizes the results. We observe that standard
LSTM again fails to solve the continual problem. Extended LSTM with for-
get gates, however, can solve it. A continually decreasing learning rate (α
decaying by a fraction of 0.9 after each NTO sequence in a stream) leads to
slightly better results but is not necessary.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2468 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

5 Conclusion

Continual input streams generally require occasional resets of the stream-
processing network. Partial resets are also desirable for tasks with hierar-
chical decomposition. For instance, reoccurring subtasks should be solved
by the same network module, which should be reset once the subtask is
solved. Since typical real-world input streams are not a priori decomposed
into training subsequences and typical sequential tasks are not a priori de-
composed into appropriate subproblems, RNNs should be able to learn to
achieve appropriate decompositions. Our novel forget gates naturally per-
mit LSTM to learn local self-resets of memory contents that have become
irrelevant.

Extended LSTM holds promise for any sequential processing task in
which we suspect that a hierarchical decomposition may exist but do not
know in advance what this decomposition is. The model has been suc-
cessfully applied to the task of discriminating languages from very limited
prosodic information (Cummins, Gers, & Schmidhuber, 1999) where there is
no clear linguistic theory of hierarchical structure. Memory blocks equipped
with forget gates may also be capable of developing into internal oscillators
or timers, allowing the recognition and generation of hierarchical rhythmic
patterns.

Acknowledgments

This work was supported by SNF grant 2100-49’144.96, “Long Short-Term
Memory,” to J. S. Thanks to Nici Schraudolph for providing his fast exponen-
tiation code (Schraudolph, 1999) employed to accelerate the computation
of exponentials.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2469

Appendix: Summary of Extended LSTM in Pseudocode

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

2470 Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins

References

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157–166.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state
automata and simple recurrent networks. Neural Computation, 1, 372–381.

Cummins, F., Gers, F., & Schmidhuber, J. (1999). Language identification from
prosody without explicit features. In Proceedings of EUROSPEECH’99 (Vol. 1,
pp. 371–374).

Darken, C. (1995). Stochastic approximation and neural network learning. In
M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 941–
944). Cambridge, MA: MIT Press.

Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-
time backpropagation learning. Neural Networks, 2(5), 375–385.

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems, 3 (pp. 190–196). San Mateo, CA: Morgan Kauf-
mann.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual
prediction with LSTM (Tech. Rep. No. IDSIA-01-99). Lugano, Switzerland:
IDSIA.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Technische Universität München. Available online at www7.
informatik.tu-muenchen.de/˜hochreit.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Com-
putation, 9(8), 1735–1780.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist se-
quential machine. In Proceedings of the Eighth Annual Cognitive Science Society
Conference. Hillsdale, NJ: Erlbaum.

Lin, T., Horne, B. G., Tiño, P., & Giles, C. L. (1996). Learning long-term de-
pendencies in NARX recurrent neural networks. IEEE Transactions on Neural
Networks, 7(6), 1329–1338.

Mozer, M. C. (1989). A focused backpropagation algorithm for temporal pattern
processing. Complex Systems, 3, 349–381.

Pearlmutter, B. A. (1995). Gradient calculation for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation
network. (Tech. Rep. No. CUED/F-INFENG/TR.1). Cambridge: Cambridge
University Engineering Department.

Schmidhuber, J. (1989). The neural bucket brigade: A local learning algorithm
for dynamic feedforward and recurrent networks. Connection Science, 1(4),
403–412.

Schmidhuber, J. (1992). A fixed size storage O(n3) time complexity learning algo-
rithm for fully recurrent continually running networks. Neural Computation,
4(2), 243–248.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

Learning to Forget 2471

Schraudolph, N. (1999). A fast, compact approximation of the exponential func-
tion. Neural Computationx, 11(4), 853–862.

Smith, A. W., & Zipser, D. (1989). Learning sequential structures with the real-
time recurrent learning algorithm. International Journal of Neural Systems, 1(2),
125–131.

Waibel, A. (1989). Modular construction of time-delay neural networks for
speech recognition. Neural Computation, 1(1), 39–46.

Werbos, P. J. (1988). Generalisation of backpropagation with application to a
recurrent gas market model. Neural Networks, 1, 339–356.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural Computation, 2(4), 490–501.

Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Y. Chauvin &
D. E. Rumelhart (Eds.), Back-propagation: Theory, architectures and applications.
Hillsdale, NJ: Erlbaum.

Received March 3, 1999; accepted November 7, 1999.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf by guest on 20 Septem
ber 2021

