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In this article, we present an isotropic unsupervised algorithm for tempo-
ral sequence learning. No special reward signal is used such that all inputs
are completely isotropic. All input signals are bandpass filtered before
converging onto a linear output neuron. All synaptic weights change ac-
cording to the correlation of bandpass-filtered inputs with the derivative
of the output. We investigate the algorithm in an open- and a closed-loop
condition, the latter being defined by embedding the learning system
into a behavioral feedback loop. In the open-loop condition, we find that
the linear structure of the algorithm allows analytically calculating the
shape of the weight change, which is strictly heterosynaptic and follows
the shape of the weight change curves found in spike-time-dependent
plasticity. Furthermore, we show that synaptic weights stabilize auto-
matically when no more temporal differences exist between the inputs
without additional normalizing measures. In the second part of this study,
the algorithm is is placed in an environment that leads to closed sensor-
motor loop. To this end, a robot is programmed with a prewired retraction
reflex reaction in response to collisions. Through isotropic sequence or-
der (ISO) learning, the robot achieves collision avoidance by learning the
correlation between his early range-finder signals and the later occurring
collision signal. Synaptic weights stabilize at the end of learning as the-
oretically predicted. Finally, we discuss the relation of ISO learning with
other drive reinforcement models and with the commonly used temporal
difference learning algorithm. This study is followed up by a mathemat-
ical analysis of the closed-loop situation in the companion article in this
issue, “ISO Learning Approximates a Solution to the Inverse-Controller
Problem in an Unsupervised Behavioral Paradigm” (pp. 865–884).

1 Introduction

A central goal of every autonomous agent is to maintain homoeostasis
(Ashby, 1956), without which it will eventually disintegrate (“die”). A gen-
eric way to achieve this is by reacting to a disturbance of the homoeosta-
sis with a closed-loop negative feedback mechanism (a reflex), which will
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832 B. Porr and F. Wörgötter

compensate for the disturbance by means of a (motor) reaction. Thus, the
simplest form of sensible autonomous behavior can be obtained by design-
ing an agent whose (re-)actions are reflex based (Brooks, 1989). This type of
behavior is found even in rather primitive animals like amoebas, which re-
tract their philopodia when encountering a potentially damaging chemical
gradient.

Such sensor-motor reflex loops represent typical feedback reaction sys-
tems, because a reflex will always be elicited only after a sensor event has
already been encountered, as the word feedback implies. The reaction delay,
which is unavoidably associated with every reflex loop, can even lead to
fatal situations in the worst case. Thus, in any kind of improved behavior,
the acting agent will try to avoid reflexes, for example, by predicting one
sensor event from another earlier occurring event (at a different sensor).
This takes place when predicting pain from the heat that radiates from a hot
surface in order to prevent a retraction reflex by means of an anticipatory
avoidance reaction. In this example, heat radiation and pain are causally re-
lated. Many other similar causal relations exist during the life of an animal,
for example, between smell and taste when foraging or between vision and
touch when exploring. In all of these cases, a temporal sequence of sensor
events occurs, which needs to be learned in order to avoid reflex reactions
to the later event. Thus, temporal sequence learning is a dominant aspect
of animal behavior. It requires a late event, which serves as a reference to
which the earlier event temporally relates. The goal is to learn this specific
temporal relation and turn reactive into proactive behavior.

In artificial systems, temporal sequence learning can be achieved, for
example, by classical Hebbian learning (Hebb, 1949) in combination with
delays (Levy & Minai, 1993), by differential Hebbian learning (Kosco, 1986;
Klopf, 1986), or by the very influential temporal difference (TD) reinforce-
ment learning algorithm (Sutton, 1988; Montague, Dayan, & Sejnowski,
1993; Dayan & Sejnowski, 1994; Abbott & Blum, 1996; Dayan, Kakade, &
Montague, 2000; Rao & Sejnowski, 2001; Haruno, Wolpert, & Kawato, 2001;
Schultz & Suri, 2001). In TD learning, the “later event” is represented by
a designated reference signal (mostly a reward or punishment signal) to
which the prediction of the learner is explicitly compared. The reference
signal thus represents an explicitly defined so-called evaluative feedback
for the learning, which stops when prediction and reward match. This may
pose a problem, as pointed out by Klopf (1988), who had emphasized that
evaluative feedback cannot exist in autonomously acting agents, which nor-
mally cannot rely on any external, evaluative, (teacher-like) signal. Klopf’s
differential Hebbian algorithm is indeed nonevaluative and belongs to the
so-called class of drive reinforcement models. This issue, however, is still
rather controversial. Klopf’s arguments are convincing, yet evidence exists
that dopamine could indeed serve as such a possible reward-like reference
signal in the brains of higher mammals (Schultz, Dayan, & Montague, 1997;
Schultz & Suri, 2001), which can respond to complex learning situations
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Isotropic Sequence Order Learning 833

such as instrumental (operand) conditioning. Less complex forms of learn-
ing such as basic classical conditioning, however, can be observed even in
very simple creatures (for example, Aplysia), which do not have a reward
system (Kandel et al., 1983).

One aspect of the current study, therefore, is to design an algorithm in
which sequence order learning takes place in a reward-free, unsupervised
way by means of a temporal Hebb learning rule that is isotropic with respect
to the inputs (hence the name ISO learning, which stands for isotropic se-
quence order learning).1 Thus, the algorithm is strictly based on the causal
relation between its inputs, which is in reality often given by the “properties
of the world,” as described by the examples above. The reference signal is
just the latest occurring signal (which often has the highest initial synaptic
weight), a situation that can change during learning.

The article is organized in the following way. First, we introduce the
algorithm in an open-loop paradigm. Its linear structure allows an analytical
treatment of some of its main characterizing features. More complex aspects
are addressed with simulations. In this part of the study, it will become
clear that all input lines are mathematically equivalent in our algorithm.
Furthermore, we will show that the algorithm performs strict heterosynaptic
learning. A detailed comparison of ISO learning with other algorithms is
given in appendix B.

In the second part of this study we embed our algorithm in a behavioral
loop by means of a robot experiment. This creates a self-referential system
and leads to stability. As a consequence of the fact that learning is heterosy-
naptic, we find that synaptic weights will self-stabilize as soon as the reflex
input becomes silent.

One central aspect of this and the companion article, “ISO Learning Ap-
proximates a Solution to the Inverse-Controller Problem in an Unsupervised
Behavioral Paradigm,” is to show that unsupervised open-loop ISO learn-
ing inherently turns into a reference-based system as soon as it is embedded
into a nonevaluative environment that leads to a closed sensor-motor loop.
This could be expected from the results of Klopf (1988), but we will show
analytically in the companion article that such a closed-loop system creates,
by means of the learning process, a forward model of its environment. Tem-
poral sequence learning using the ISO learning algorithm can therefore be
understood as finding a solution to the specific inverse controller problem
that replaces a reflex by its forward model.

1 The self-referential structure of this abbreviation is meant to hint at the self-referential
behavioral loop introduced in the second part of this article.
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Figure 1: The basic circuit in the time domain.

2 Open Loop: ISO Learning

First, we describe the algorithm itself and its characteristics without behav-
ioral feedback.

We consider a system of N + 1 linear filters h receiving inputs x and
producing outputs u. The filters connect with corresponding weights ρ to
one output unit v (see Figure 1).

In section 1, we emphasized that all input lines of our algorithm are
mathematically equivalent. It should be remembered, however, that func-
tionally, many times there are distinctive differences among them. As a
consequence, we will use x0 to denote the one unit that will later represent
the reflex pathway. This has no mathematical consequences and is done
only for convenience. The output v is then given as

v = ρ0u0 +
N∑

k=1

ρkuk. (2.1)

Learning (weight change) takes place according to a differential Hebb
rule,

d
dt

ρj = µujv′ µ � 1, (2.2)

where the weight change depends on the correlation between uj and the
derivative of v. An extensive discussion how this rule relates to TD learning
and to other differential Hebbian learning rules, as introduced by Klopf
(1986, 1988) and Kosco (1986), is given in section 4 and appendix B. Here,
we note only that other differential Hebbian learning rules use filtering and
derivates in different pathways as compared to ISO learning (see Figure 12
for circuit diagrams).

All weights can change (also ρ0). The constant µ is adjusted such that
all weight changes occur on a much longer timescale (i.e., very slowly) as
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Isotropic Sequence Order Learning 835

compared to the decay of the responses u. Thereby the system operates in
the steady-state condition.

In general, the system that we consider shall operate in continuous time
(e.g., with neuronal rate codes), and it shall be able to handle continuous
input functions x(t) of arbitrary shape.

The transfer function h shall be that of a bandpass that transforms a δ-
pulse input into a damped oscillation (see Figure 2A) and is specified in the
Laplace domain,

h(t) ↔ H(s) = 1
(s + p)(s + p∗)

, (2.3)

where p∗ represents the complex conjugate of the pole p = a + ib. It is
important to note that such a bandpass is stable only if its pole pair is
located on the left complex half-plane; otherwise, an amplified oscillation
is obtained.

Real and imaginary parts of the poles are given by

a := Re(p) = −π f/Q (2.4)

b := Im(p) =
√

(2π f )2 − a2, (2.5)

where f is the frequency of the oscillation. The damping characteristic of
the resonator is reflected by Q > 0.5. Small values of Q lead to a strong
damping.

The use of resonators (bandpass filters) is motivated by biology because
oscillatory neuronal responses (Traub, 1999) and bandpass-filtered response
characteristics (at virtually all sensory front ends, cell membranes [Shep-
herd, 1990], and ion channels like NMDA) are very prevalent in neuronal
systems. Several examples for the utilization of such bandpass-filtered re-
sponses provide Grossberg and Schmajuk (1989) with their spectral timing
model, which they have used in different applications (Grossberg, 1995;
Grossberg & Merrill, 1996).

Thus, the main idea is to use a neuron that gets bandpass-filtered sen-
sor signals at its inputs and generates a motor output. Later, one of these
bandpasses (h0) has the special task of providing the input for a reflex-like
reaction. The other bandpass-filtered sensor signals are candidates for gen-
erating an earlier motor reaction through learning.

2.1 Analytical Findings: Open-Loop Condition.

2.1.1 Timing Dependence of Weight Change. Here we address the question
how the timing between the input signals influences the weight change.
In order to perform analytical calculations, we introduce two restrictions,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/4/831/815514/08997660360581921.pdf by guest on 17 O
ctober 2021
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Figure 2: Input functions and the initial weight change for t = 0 according to
equations 2.13 and 2.14. (a) The inputs x, the impulse responses u for a choice
of two different resonators h, and the derivative of the output v′. (b) The initial
weight change ρ1(T)t=0 for H1 = H0, Q = 1, f = 0.01 (arbitrary units) and (c) for
resonators with different frequencies f0 = 0.01, f1 = 0.02 but with the same
Q = 1. The solid lines in b and c represent the analytical solutions derived from
equations 2.13 and 2.14, and the dots the simulation results from the numerical
integration of equation 2.9 with the same parameters for f and Q. For that
purpose, the two filters H0 and H1 get two different inputs x1(t) = δ(t) and
x0(t) = δ(t − T). This pulse sequence was repeated every 2000 time steps. After
400,000 time steps, the weight ρ was measured and plotted against the temporal
difference T. The learning rate was set to µ = 0.001. (d) Schematic explanation
of the mutual weight change at a strong (A) and a weak synapse (B) with two
subsequent delta pulses at the inputs x1 and x0. For further explanations, see the
text.

which we use often throughout the theoretical parts of this article:

1. We will consider only two resonators, thus, N = 1.

2. Accordingly we have to deal with only two input functions x0, x1, and
we define them as (delayed) δ-pulses:

x0(t) = δ(t − T), T ≥ 0 (2.6)

x1(t) = δ(t). (2.7)

The first restriction is necessary because the analytical treatment of the
case N > 1 is very intricate and largely impossible. Concerning the second
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Isotropic Sequence Order Learning 837

restriction, we note that the theory of signal decomposition allows compos-
ing any causal input function from δ-pulses. Thus, the second constraint is
not really a restriction.

The delay T ensures a well-defined causal relation between both inputs,
where x0 (the latter of the two) is the timing reference (the reflex input). Espe-
cially the section on the robot implementation will show that the algorithm
(with N > 1) is very robust with respect to variations in T.

In general, we use as an initial condition ρ0 = 1 and ρ1 = 0. For the
analytical treatment, we consider only the weight change at ρ1. (In fact, we
later show that the algorithm normally operates always in a domain where
ρ0 changes very little.)

Because we assume steady state, we can rewrite the product in the learn-
ing rule (see equation 2.2) as a correlation integral between input and output:

ρ1 → ρ1 + �ρ1 (2.8)

�ρ1(T) = µ

∫ ∞

0
u1(T + τ)v′(τ ) dτ. (2.9)

Similar to other approaches (Oja, 1982), we compute the weight change for
the initial development of the weights as soon as learning starts, because
this is indicative of the continuation of the learning. Therefore, we assume
ρ1(t) = 0 for t = 0, and equation 2.9 turns into

ρ1(T)t=0 = µ

∫ ∞

0
u1(T + τ)u′

0(τ ) dτ. (2.10)

In simple cases (e.g., for h0 = h1), this integral can be solved directly.
A general solution, which can be extended to cover more than two inputs,
requires applying the Laplace transform using the notational convention
x(t) ↔ X(s) for a transformation pair of functions in the time and the Laplace
domain.

The linearity of our system allows solving the integral in equation 2.10
analytically, which is possible with the help of Plancherel’s theorem (see
appendix A for this rather unknown theorem). Applying it together with
the shift theorem x(t − t0) → X(s)e−t0s to equation 2.10, we get:

�ρ1 = µ
1

2π

∫ +∞

−∞
H1(−iω)[iωe−TiωH0(iω)] dω (2.11)

= µ
1

2π

∫ +∞

−∞
H1(iω)[−iωeTiωH0(−iω)] dω. (2.12)

Note that the symmetry of Plancherel’s theorem is broken due to the
exponential term. Equation 2.11 represents a Fourier transform, and equa-
tion 2.12 is its inverse. Both integrals can be evaluated with the method of
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838 B. Porr and F. Wörgötter

residuals. Equation 2.12, however, offers the advantage that we can neglect
the right complex half-plane, because it leads to contributions for negative
time (i.e., t < 0) only (McGillem & Cooper, 1984; Stewart, 1960). Thus, of the
four residuals (poles) for H1 and H0, only those of H1 need to be considered
because those of H0 have flipped their sign in equation 2.12 and appear now
on the right complex half-plane. We get as the final result,

ρ1(T)t=0 =µ
b1M cos(b1T)+(a1P+2a0|p1|2) sin(b1T)

b1(P+2a1a0+2b1b0)(P+2a1a0−2b1b0)
e−Ta1 T≥0 (2.13)

ρ1(T)t=0 =µ
b0M cos(b0T)+(a0P+2a1|p0|2) sin(b0T)

b0(P+2a0a1+2b0b1)(P+2a0a1−2b0b1)
e−Ta1 T<0,(2.14)

where M = |p1|2 − |p0|2 and P = |p1|2 + |p0|2. If we assume identical res-
onators H0 = H1 = H, we get

�ρ1(T)t=0 = µ
1

4ab
sin(bT)e−aT, (2.15)

which is identical to the impulse response of the resonator itself apart from
a different scaling factor.

The corresponding weight change curves are plotted in Figures 2b and
2c. The curves show that synaptic weights are strengthened if the presy-
naptic signal arrives before the postsynaptic signal, and vice versa. The
biological relevance of the learning curves becomes especially clear in the
case H0 = H1. This learning curve with identical resonators is similar to the
curves obtained in neurophysiological experiments exploring spike-timing-
dependent synaptic plasticity (STDP or temporal Hebb; Markram, Lübke,
Frotscher, & Sakman, 1997; Bi & Poo, 1998; Zhang, Tao, Holt, Harris, & Poo,
1998; Abbott & Nelson, 2000; Fu et al., 2002).2 Furthermore we find for this
case (see Figure 2b) that the location of the maximum of the learning curve
Topt falls in the interval

λ

2π
< Topt <

λ

4
,

1
2

< Q < ∞, (2.16)

where λ = 1/f is the wavelength of the resonator.
The isotropic setup of the algorithm in principle also leads to weight

changes at ρ0. It is, however, evident that the change in ρ0 is (very) small
when the contribution from the other inputs ρk, k ≥ 1 is small. This is most
easily seen when considering Figure 2d, which shows a situation that arises

2 In order to reproduce STDP in a biophysical model, the signals x and u require
a different interpretation involving NMDA conductances and backpropagating action
potentials. This is the topic of a follow-up study currently in preparation (Saudargiene,
Porr, & Wörgötter, 2003).
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Isotropic Sequence Order Learning 839

after some learning by using the standard initial conditions. The size of
the synapses depicts the momentarily existing weight values. The input
sequence is such that a weight increase arises at synapse B from the influence
of input line A onto line B (+T in learning curve), whereas weight decrease
occurs at synapse A due to the inverse causal (−T) influence of input line B
onto line A. The degree of change is depicted by the plus and minus signs,
showing that the decrease of A is smaller than the increase of B. For two
similar inputs, a simple rule of thumb is that the weight change �ρ roughly
follows the weight value of the other input scaled by the learning rate µ,
while the sign of the change depends on the temporal sequence of events:

�ρlate input ≈ µρearly input (2.17)

�ρearly input ≈ −µρlate input. (2.18)

As a result, the strong input roughly maintains its strength while the con-
tributions from the other inputs are small. This is the typical case when
learning is guided by a strong reflex and the organism has the task of build-
ing up predictive pathways that should be weaker but more precise in order
to prevent the disturbance.

We note that the above analytical results can be extended to cover the
most general system structure as represented in Figure 1 with N > 1. Equa-
tion 2.1 turns into

V(s) =
N∑

k=0

ρkUk(s), (2.19)

keeping it in the Laplace domain, because then we can directly obtain

�ρj(T) = µ
1

2π

∫ +∞

−∞
−iωV(−iω)Uj(iω) dω, (2.20)

which is the general form of equation 2.9 in the Laplace domain. It should
be noted that for all �ρj, this integral can still be evaluated analytically in
the same way as in the special case with two resonators. In the following
equations, we will always use the index j for the input weights and k for the
summation of the output signal v.

2.1.2 Weight Change When x0 Becomes Zero. In this section, we address
the question of weight development when the reference input (reflex) be-
comes silent (x0 = 0) at some point during learning. This is motivated by
the cases discussed in section 1, where the goal of learning is to avoid (late,
painful, damaging) reflex reactions. Thus, setting x0 = 0 corresponds to the
condition when the reflex has successfully been avoided. Note that we are
now left with just one input (x1) asking if its synaptic weight will continue
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840 B. Porr and F. Wörgötter

to change. This would correspond to a situation of homosynaptic learning
(e.g., homosynaptic long-term potentiation; Guo-Quing & Poo, 1998). This
section will show that our algorithm does not perform homosynaptic learn-
ing. Instead, the synaptic weight of x1 stabilizes as soon as x0 = 0. Thus,
ISO learning is purely heterosynaptic learning.

We use the same two restrictions as above and start with equation 2.20,
inserting equation 2.19 into it. We set x0 = 0 ↔ X0 = 0, and the weight
change becomes

�ρj = µ
1

2π

N∑
k=1

ρk

∫ +∞

−∞
−iωHk(−iω)Hj(iω) dω. (2.21)

For N = 1, we get

�ρ1 = µ
1

2π
ρ1

∫ +∞

−∞
−iωH1(−iω)H1(iω) dω (2.22)

= −µ
i

2π
ρ1

∫ +∞

−∞
ω|H1(iω)|2 dω. (2.23)

H1(iω)H1(−iω) = |H(iω)|2 is valid since the transfer functions can al-
ways be expressed as products of complex conjugate pole pairs. Multiply-
ing H1(iω) with H1(−iω) leads to products of a complex number with its
conjugate counterpart, which renders its absolute value.

Since all transfer functions are symmetrical in relation to the real axis, the
frequency response |H(iω)|2 is also symmetrical, which leads to symmetri-
cal responses in equation 2.23 at |H1(iω)|2. Due to ω in equation 2.23, the
entire integral becomes antisymmetrical and thus zero.3 Thus, the weights
stabilize if only x1 is active.

This result can be summarized in a rather intuitive way: With N = 1 and
x0 = 0, there is an input signal only at x1. The weight change in that case is
a correlation of a damped sine wave with its derivative, which is a damped
cosine wave. The correlation of a sine with a cosine is always zero.

We have not attempted to calculate the behavior of the weights for N > 1,
which is very tedious, if not impossible. Instead, we will show simulation
results for this later. However, the above argument can be extended by the
Fourier theorem of wave decomposition to more inputs because each sine
wave from a resonator is multiplied by its cosine counterpart. Thus, we also
expect for N > 1 a zero correlation and a stop of the weight development
as soon as x0 = 0.

3 In a practical application (e.g., a digital infinite impulse response filter), this is true
only if the frequency responses of the input X1 and the transfer function H1 vanish for
high frequencies to avoid the integral’s becoming ill defined (∞ − ∞). In other words,
the transfer functions must contain a low-pass term. This reflects the aspect that the time
course of the input functions must be predictable (Kalman filter property).
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Figure 3: Simulation results with a circuit with two inputs, hence N = 1 (see
Figure 1). Input pulse sequences were repeated every 100 time steps, the first
starting at zero. Both resonators had values of Q0,1 = 1 and f0,1 = 0.1. The other
parameters were µ = 0.01 and T = 2. Results for (a) t = 0 and (b) t = 900.

2.2 Simulations: Open-Loop Condition. In this section, we perform
simulations with the neuronal circuit from Figure 1. The simulations have
the purpose of validating the theoretical results from the previous section
and exploring more complex situations (especially N > 1) that are not ana-
lytically treatable.

The simulations were performed under Linux on an Athlon processor us-
ing C++. The resonators were implemented as time-discrete infinite impulse
response filters in the z-domain. We used the impulse invariant transforma-
tion from the s-plane to the z-plane and calculated the coefficients for the
filters according to McGillem and Cooper (1984). We used normalized time
steps resulting in normalized filter frequencies in the range f = [0, . . . , 0.5].
In all applications, we used frequencies less than or equal to fmax = 0.1 in
order to avoid sampling artifacts.

2.2.1 One Filter in the Predictive Pathway: N = 1. As before, we begin with
the simplest case, N = 1: one resonator in the reflex pathway x0 and one
resonator in the predictive pathway x1, and use both restrictions (1,2) noted
previously.

Signal shape. Figure 3a shows for t = 0 the δ-pulses at x0,1 and the re-
sponses u0 and u1 from the resonators H0 and H1, respectively. Before learn-
ing, the output v is identical to the signal u0 because the weights were
set to ρ0 = 1 and ρ1 = 0. The actual weight change of ρ1 is caused by
repeated pairing of the δ-pulses at x0 and x1. The result after nine pair-
ings is depicted in Figure 3b. The comparison between Figures 3a and 3b
shows that the onset of the output v has shifted toward the earlier event
x1. Before learning, it was identical to the resonator response u0 in the re-
flex pathway. After learning, the output is a superposition of both signals
u0,1, which leads to an onset that occurs together with the early onset of u1.
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842 B. Porr and F. Wörgötter

Thus, the circuit is able to “detect” the δ-pulse at x1 as a predictor of the
δ-pulse x0.

Learning curve. Using the same setup, we can vary the interval T and
plot the change of ρ1 in dependence of T for the initial learning step (i.e., for
t = 0 after one correlation). This was simulated using identical resonators
H0 = H1 but also with different resonators H0 �= H1. The results are shown
together with the analytical findings in Figures 2b and 2c, having used
the same parameters in both the simulation and the analytical calculation.
Thus, the analytically calculated weight change curves are reproduced by
the simulation results.

Development of ρ0. In all cases discussed so far, both weights were al-
lowed to change, and substantial changes in ρ1 were found for about 10
to 50 pairings, while we have claimed that ρ0 remains stable. An easy in-
tuition why this basically holds can be gained by using the rule of thumb
defined in equations 2.17 and 2.18. From this, it is clear that the change of
ρ0 remains tiny for a prolonged time in our setup because ρ1 equals zero at
the beginning and µ is very small. In simulations, we found that ρ0 starts to
change by more than 1% only after about 50,000 learning steps when using
a standard learning rate of µ = 0.001 and ρ1 = 0, ρ0 = 1 as the usual initial
conditions. Note that in the robot experiments shown later, the learning goal
is reached after not more than 20 pairings. During this time, the change in
ρ0 is minuscule.

Several other relevant cases could occur.

• Another interesting initial condition would be setting the weights to
the same initial values (e.g., ρ0 = ρ1 = 0.5). This will still lead to a
weight growth at ρ1 (until about learning step 100,000), but now ρ0
will drop from the beginning. Functionally, this could be interpreted
as a situation where the reflex input becomes weaker, while the antic-
ipatory pathway continues to take over. This could reflect a situation
where the reflex has not been used for a long time, because then it is
reasonable to allow the reflex to disappear, leading to ρ0 = 0. The only
measure that has to be taken is to stop the weight from changing its
sign by keeping it at zero.

• In conditions where the reflex saves the organism from life-threatening
situations, the weight ρ0 can always be set to a fixed value.

• In conditions where we have multiple synaptic weights of similar
strength (i.e., N > 1), we can expect that the system’s development
will be dominated by stimulus-sequence-induced symmetry-breaking
effects. This can lead to rather complex patterns, which would require
a more detailed analysis (and is beyond the scope of this article).
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Figure 4: Simulated development of the weight ρ1 for the case of two inputs
(N = 1). Parameters were f0,1 = 0.01 and Q0,1 = 1. The inputs are triggered
at a temporal difference of T = 15: x0 = δ(t − T) and x1 = δ(t). The pairing
of the delta pulses is repeated every 2000 time steps. The learning rate is set to
(a) µ = 0.001 and (b) µ = 0.01.

Weight stabilization for x0 = 0. The analytical results (see equation 2.22)
predict that ρ1 should stabilize as soon as x0 = 0. This, however, also
requires that the learning rate µ is zero, which in reality cannot be ulti-
mately achieved. The following simulation results show the effect of the
learning rate on the development of the weights and compare the ana-
lytically obtained result with those obtained for more realistic situations.
The simulation to test this was performed in the following way. First, we
triggered the two resonators with paired δ-pulses. Then the input x0 was
switched off (i.e., x0 = 0) at t = 400,000 and only the input x1 was still
active.

Figure 4 shows the weight development of ρ1 over time for two different
learning rates µ. With a low learning rate, the weight ρ1 approximately
stabilizes when the input x0 is switched off (see Figure 4a), whereas with
a higher learning rate, the weight continues to grow. Weight stabilization
can be very desirable during learning, but so is a high learning rate. These
conflicting demands therefore lead to a trade-off, which needs to be taken
care of in practical applications (like the robot application).

2.2.2 More Than One Filter in the Predictive Pathway. The setup with only
one resonator (N = 1) in the predictive pathway has the disadvantage
that there is only one specific temporal interval Topt where learning (weight
change) is at the maximal rate. The use of an array of resonators with differ-
ent frequencies in the predictive pathway removes this disadvantage (see
the inset in Figure 5). The system should now be able to learn more than
only one time interval properly. We have set up such a system with an array
of 10 resonators in the predictive pathway. We triggered this array with the
same δ-pulse (x1 = δ(t)). The reflex pathway was triggered by a delayed
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δ-pulse (x0 = δ(t − T); T = 10). The initial condition for learning was set to
ρ0 = 1; ρk = 0; k ≥ 1 as before.

Signal shape. Figure 5 shows the resonator responses uk scaled with their
momentarily existing weights ρk (top) at time t = 390,000 during learning.
The scaled response of u0 (a, dashed line) is still the biggest at this time.
The diagram also shows the output signal v and its derivative during the
learning process (also t = 390,000, bottom). Additionally, the output signal
generated when silencing the input x0 is shown (c, dotted line, bottom,
t = 400,000).

The output v is a superposition of all resonator outputs. It can be seen that
it has a first and a second maximum (marked with 1 and 2 in Figure 5). The
second maximum is due to the resonator response from the reflex pathway
u0 and vanishes when the input x0 is switched off (see the dotted curve in c).

The first maximum is generated by superposition of the responses ρkuk,

k > 0 (i.e., all except u0). In general, we have observed that this superpo-
sition process will always try to generate the first maximum as close as
possible to x0. This can be understood by the ongoing amplification of an
initially existing asymmetry in the system in the following way. At the first
learning step, the derivative of v is zero before x0 and then follows the shape
of the v′ curve, as shown in the diagram. Thus, there is one resonator re-
sponse whose shape matches the v′ curve best (best positive correlation).
Obviously, it is that particular resonator that has its maximum at (or closest
to) the maximum of the v′ curve (second cusp; the first is still zero). For this
resonator, we get the highest correlation result (see equation 2.9) and, thus,
the strongest weight growth at the beginning of learning. The other weights
grow less strong, and their growth rate is approximately (inversely) related
to the distance of their resonator maximum from x0. As a consequence, we
get a distribution of weight values that follows the shape outlined by the
y-position of the resonator maxima, as shown in the top panel by the dots
on the curves. Superposition of these weighted responses thus leads to a
maximum of v at x0. This line of argumentation continues to hold for the
following learning steps, because the theoretical results suggest that the con-
tribution of the correlation of the first part of the v′ curve (first cusp) with
the uk, k > 0, which would correspond to homosynaptic learning, is zero in
all cases (see equations 2.21–2.23), thereby not affecting the weight change.
Thus, weight change continues to follow the distribution of the maxima
in Figure 5a. The resonator with the lowest frequency ( fl) determines the
longest delay Tmax = 1

fl
, which can be learned. Equivalently, the shortest de-

lay is Tmin = 1
fh

, where fh is the resonator with the highest frequency. Within
the range [Tmin, Tmax], any T causes an output with a maximum that always
coincides with the location of x0, provided there are enough resonators to
allow for a sufficiently accurate superposition process.
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Figure 5: Multiple filters (N = 10) in the predictive pathway: (a) Filter responses,
(b) the neuronal circuit, and (c) its output during learning and after learning.
The neuronal circuit (b) consists of a filter bank where the filter frequencies are
set to fk = 5 f0

k ; k ≥ 1 and f0 = 0.01. The learning rate was set to µ = 0.0005 and
Q = 1. The filter bank gets two different inputs: x0(t) = δ(t) (reflex pathway)
and x1(t) = δ(t − T) (predictive pathway), T = 10. The delta pulses are repeated
every 2000 time steps. After 400,000 time steps, x0 is set to zero. The contribution
of the signals ukρk to the output v triggered by x1(t) is called HV and is marked
by the shaded box in b. The weighted resonator responses ρkuk after learning
are shown in a. The output signals during learning (time step 390,000) and after
learning (after time step 400,000) are shown in c.

Learning curve. As in the case of only two resonators, the dependence
of the weight change on the temporal distance T can be explored. Now,
however, we have to monitor N changeable weights. For this experiment, we
have chosen the same standard setup using paired δ-pulses with a temporal
delay of T, but now we use 15 resonators (N = 15) in the predictive pathway.
Their frequencies are chosen such that 10 resonators have a frequency that
is higher and 5 resonators one that is lower than f0 (see Figure 6). Every
second weight change curve is shown in Figure 6 for t = 0, where we varied
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Figure 6: Weight changes ρj dependent on the temporal distance T with a filter
bank of resonators (N = 15) set up as in Figure 5b. The filter frequencies are set to
fk = 5 f0

k ; k ≥ 1 with f0 = 0.01 and Q = 1. The learning rate was set to µ = 0.0001
and Q = 1. The case f0 = fk is marked with a thick line and reproduces the curve
in Figure 2b. The filter bank gets two different inputs: x1(t) = δ(t) (predictive
pathway) and x0(t) = δ(t − T) (reflex pathway). The delta pulses are repeated
every 2000 time steps. After 400,000 time steps, the weight ρj was measured and
plotted against the temporal difference T. Only every second curve is plotted.

T from −150 to 150. Every curve in this diagram represents one weight
ρk of a specific resonator hk in dependence of T. The curve plotted with
the thick line belongs to the resonator hk, which has the same frequency as
the resonator h0, hence, fk = f0. The other weight change curves belong
to resonators in the predictive pathway, which have different frequencies
compared to f0. It can be seen that every weight change curve has a specific
T where weight change is maximal, or (in support of the argument used to
explain the first maximum in Figure 5) the other way around: for specific
values of T and large N, there always exists one particular resonator that
shows maximum weight change.

Another interesting result is that the weight change curve with fk = f0 is
identical to the weight change curve with only one resonator (see Figure 6).
The fact that both weight change curves are the same is due to the linearity
of our model.
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Figure 7: Weight change of multiple resonators N = 10 in dependence of the
learning rate. The neuronal circuit (see Figure 5b) consists of a filter bank where
the filter frequencies are set to fk = 0.1

k ; k ≥ 1, where the index k is also used as a
label for the different curves in this figure (Q = 1 in both cases). The filter bank
gets two different inputs: x1(t) = δ(t) (predictive pathway) and x0(t) = δ(t − T)

(reflex pathway) with T = 10. The delta pulses are repeated every 2000 time
steps. After 400,000 time steps, x0 was set to zero. The learning rate was set to
(a) µ = 0.0001 and (b) µ = 0.001.

In summary, in an array of different resonators, every resonator is re-
sponsible only for a specific and limited range of temporal intervals so that
such an array is able to cover a wide range of different temporal intervals.
The weight change curves for the different weights give precise informa-
tion as to which resonator yields the maximum contribution to the output
signal.

Weight stabilization for x0 = 0. Next, we ask whether the weights also
stabilize in a multiresonator setup if the reflex pathway x0 becomes zero
(compare to Figure 7). We use the same setup as before (N = 10 and paired
δ-pulses with T = 10). The test was performed in the same way as above
by setting x0 to zero at time t = 400,000. Figure 7 shows that the weights
stabilize in the limit of µ → 0. Thus, we find again that the crucial parameter
for an approximate weight stabilization is the learning rate µ, which is too
high in Figure 7b.

Because of the complexity of the mathematics, we were not able to give
robust analytical arguments for weight stabilization in the multiresonator
case. We could argue only that the individual resonator responses (sine
waves) should be orthogonal to the derivative of the output (cosine wave)
as soon as x0 = 0 (see the dashed curve in Figure 6), leading to zero value of
the correlation integral. The experimental findings in Figure 7 support this
notion. Thus, in the multiresonator case, we obtain the desired property of
weight stabilization in the limit of µ → 0. Homosynaptic learning does not
take place even with more than two resonators.
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Let us in the context of N > 1 also briefly consider more than one pre-
dictive pathway with several sensors that operate independently. In this
case, the isotropy of the algorithm leads to the situation that learning will
continue between those sensor inputs even after the reference (reflex) input
x0 has become silent. Weight changes of the other (nonreflex) weights, how-
ever, will normally remain small because after learning, the absolute values
of them are small, which leads only to minor cross influences, as will be
shown in the robot example (see Figure 11). Thus, even in such a situation,
weights will be (approximately) stable.

Another stabilizing factor arises if we place the learning algorithm in
a closed behavioral loop (see also the next section). In the closed-loop
paradigm analyzed in our companion article, we found that a perturba-
tion of the weight ρ1 (which disturbs the final condition x0 = 0) leads to a
counterforce that reestablishes the original weight. Taken together, these ar-
guments show that weights might indeed undergo small drifts after removal
of the reflex, but these drifts do not lead to a divergence. This is supported
by the robot experiments, where we never observed weight divergence even
after prolonged runs.

3 Closed Loop: The Robot Experiment

The task in this robot experiment is collision avoidance. The built-in reflex
behavior is a retraction reaction after the robot has hit an obstacle (see Fig-
ure 8, solid pathway). This represents a typical feedback mechanism with
the desired state that the signal at the collision sensor should remain zero.
In order to prevent the robot from leaving the desired state, it can use other
sensor modalities that can predict a looming collision. In our case, this is
achieved with range finders (see Figure 8, dashed pathway). The learning
algorithm has the task of learning the existing temporal correlation between
the range finder and the collision sensor signals. After learning, the robot can
generate a motor reaction in response to the range finder signals and thereby
avoid the retraction reflex. Functionally, the reflex will be eliminated, and
the “predictive pathway” takes over after learning.

Up to this point, the algorithm had been treated in a pure open-loop con-
dition, where learning was entirely unsupervised. The robot experiments
create a situation where the behavioral reaction influences the sensor in-
puts, thereby creating a closed-loop situation (see Figure 8). Unsupervised
learning thereby turns into something that we would call self-referenced
learning in order to distinguish it from reinforcement learning, which re-
quires an explicitly defined reference signal (punishment or reward), which
is not present in closed-loop ISO learning. The theoretical treatment of this
situation in our companion article will clarify that these two situations are
fundamentally different.

The robot’s circuit diagram is shown in Figure 9; a detailed descrip-
tion, which includes a list of the robot’s control parameters, is given in
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Figure 8: Simple sensor motor feedback with prediction that is made explicit
with the example of collision avoidance. The solid lines depict a prewired reflex
loop that exists before learning. This reflex loop performs a reflex reaction—in
this case, a retraction reaction (motor response) when the collision sensor (reflex
eliciting signal) has been triggered. The task is to learn that the earlier range
finder signal (predictive signal, dashed pathway) can be used to generate an
earlier motor reaction to prevent the collision (reflex).

appendix C. The robot has three collision sensors and two range finders.
All signals are filtered by bandpass filters and converge onto two neurons,
which generate two different motor outputs: one controls the robot’s speed
and the other the robot’s steering angle. The speed of the robot is set to
a fixed value and its steering to zero so that the undisturbed robot drives
straight forward. The built-in retraction behavior is generated by the dotted
pathways where the collision sensors trigger highly damped sine waves in
the corresponding resonators. This signal is sign inverted and directly trans-
mitted to the motors. Essentially, it consists of just a single half-wave, which
leads to the retraction reaction. The weights are initially set to minus one and
effectively do not change during learning, so that the retraction behavior
always remains the same. The dotted collision sensor pathways with their
strong weights that determine the motor output are, together with the aris-
ing behavioral feedback, equivalent to the reflex loop discussed in Figure 8.

The range finder signals (solid lines) react at a distance of about 15 cm
from an obstacle and are therefore able to predict a collision. However, the
temporal delay between the range finder signal and the collision signal is
variable and depends on the actual motion trajectory of the robot. In order
to cope with a rather wide range of temporal delays, we used the same
approach as in section 2.2.2 and implemented two resonator filter banks,
which get their signals from the two range finders. Filter banks consist of 10
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Figure 9: Robot circuit: The robot consists of three collision sensors (CS), two
range finders (RF), and two output neurons for speed (ds) and steering angle
(dφ). These output neurons represent simple summation circuits (indicated by∑

). The robot has a reflex behavior established by the signals from the collision
sensors (dotted lines), which are fed into four bandpass filters H0 with f0 = 1 Hz
and Q0 = 0.6. The output of the bandpass filters is summed at the neurons for
speed (ds) and steering angle (dφ). The corresponding weights are adjusted in
such a way that the robot performs an appropriate retraction reaction if either of
the collision sensors is triggered. The task of learning is to use the signals from
the range finders (RF) to predict the trigger of the collision sensor (CS). The two
signals from the left and the right range finder are fed into two filter banks, with
N = 10 resonators with frequencies of fk = 1Hz

k ; k ≥ 1 and Q = 1 throughout.
The 20 signals from the two filter bank converge on both the speed neuron and
the neuron responsible for the steering angle. Learning rate was µ = 0.00002. L
depicts the implementation of the learning rule (see equation 2.2).

resonators covering approximally a temporal interval between 50 ms and
500 ms. These resonator signals converge onto both the speed neuron and
the steering neuron. Their weights are initially set to zero.

Depending on the initial conditions, the robot found different solutions
to avoid obstacles. One solution, for example, is that after learning, the robot
simply stops in front of an obstacle or slightly oscillates back and forth. This
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type of behavior may look trivial but is entirely compatible with the learning
goal of avoiding obstacles. More commonly, we observed a different type
of solution where the robot continuously drives around and uses mainly its
steering to generate avoidance movements. Other solutions do not seem to
be possible and have not been observed. Furthermore, we observed that the
robot always found one of these solutions after sufficiently long learning.

Figure 10 shows episodes of the robot behavior and its signals for one
selected example trajectory. The signals shown in Figures 10c and 10d cor-
respond to a situation where the robot still collides with the walls. Corre-
sponding collision points are marked in Figure 10a by c and d. As expected,
learning leads to a change of the temporal relation between the range finder
signal and the collision signal. This can be seen by the different lengths of
T depicted in Figures 10c and 10d and is due to the learned motor output,
which is increasingly dominated by the range finder signal. This supports
the filter bank approach, which we have used in the robot experiment. Fi-
nally, Figure 10e depicts a situation where the robot has learned to avoid
the obstacles (CS = 0).

Note that the low-pass component of the bandpass filters smoothes the
rater noisy range finder signals, which substantially adds to the robustness
of the algorithm. Furthermore, pure noise signals are not correlated to other
sensor signals and do not contribute to learning.

The change of the weights in the robot example shall now be compared
with the results from the simulations. We find that the weights approxi-
mately stabilize in our robot experiments (see Figure 11). Their actual values
depend on the solution found. The situation in the robot experiment, how-
ever, is more complicated than in the simulations shown earlier, because
the ds- and dφ-neurons get signals from more than two sensors at the same
time. Thus, often triplets of temporal correlations exist; for example, during
a slanted wall approach, we first obtain a signal from the right, then one
from the left range finder, and finally one from the right collision sensor.
After successful learning, the collision sensor remains silent, but we are left
with sequences of range finder events. Thus, learning continues, though at
a smaller rate, even after the last collision.

As a central observation, this shows that our system continues to oper-
ate without a designated reference signal (because x0 is zero now). Learning
continues between the remaining inputs. This can be seen in Figure 11 when
looking at the development of the weight from the left range finder to dφ,
which continues to change after the last collision has occurred (at t = 85s).
Ultimately, the earlier of the two range finder signals would dominate, but
this will lead to a stable situation only for very simple (e.g., circular) trajec-
tories, where an unchanging relation between both range finder signals is
forced on the robot.

An equivalent reward-retrieval situation has also been simulated. These
results shall not be presented here in order to limit the length of this article
but can be viewed on-line at http://www.cn.stir.ac.uk/predictor/animat/.
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Figure 10: (a) Manually reconstructed robot movement trace in an arena
(240cm × 200cm) with three obstacles (shaded) at the onset of learning. Mo-
tors were not entirely balanced, leading to a curved start of the trajectory. Many
collisions (solid circles show forward collision and dashed circles backward col-
lision) occur, and trapping at obstacles happens. After a collision, a fast reflex-
like retraction and turning reaction is elicited. (b) Robot movement trace after
successful learning of the temporal correlation between signals at RF and CS.
No more collisions occur; the trajectory is smooth. A complete movie of this trial
can be viewed at http://www.cn.stir.ac.uk/predictor/real—movie 1. (c–e) Sig-
nals at RF (top), CS (middle), and motor control signal ds (bottom) for different
learning stages. (c) Signals occurring at the early collision marked c in part a. A
stereotyped motor reaction is elicited in response to the CS signal. (d) Signals
occurring at the late collision d. Motor reactions occur in response to RF but
are not sufficient to avoid the collision. When it occurs, a strong motor reaction
is again elicited. (e) Signals occurring at the curve marked e in part b. Smooth
motor reactions occur in response to RF; CS remains silent because no collision
occurs.
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Figure 11: (a) Complete motor signal traces for ds and dφ and (b) development
of the synaptic weights for the same trial as in Figure 10.

4 Discussion

In this study, we have developed an isotropic algorithm for sequence order
learning (ISO learning) in which learning relies only on the temporal order
of its inputs. This has the advantage that all input signals are treated equally
and that learning takes place between all of them. Thus, it represents a form
of unsupervised sequence order learning.

4.1 Basic Properties. ISO learning is driven only by the temporal rela-
tion between pre- and postsynaptic signals. As a consequence, our learn-
ing rule is related to learning based on spike-timing-dependent plasticity
(STDP; Gerstner, Kempster, van Hemmen, & Wagner, 1996; Gerstner, Kre-
iter, Markram, & Herz, 1997; Markram et al., 1997; Zhang et al., 1998; Bi
& Poo, 1998; Roberts, 1999; Xie & Seung, 2000; Kistler & van Hemmen,
2000; Song, Miller, & Abbott, 2000; Song & Abbott, 2001; Fu et al., 2002),
but our algorithm uses time-continuous functions and not spike trains as
input signals. The measured curves for STDP are based on the relation
between individual (pre- and postsynaptic) spikes. Curves with different
characteristic shapes have been observed (Abbott & Nelson, 2000), such
as that similar to our Figure 2, but also inverted versions of it have been
measured. Thus, the question arises how these curves relate to the aver-
age firing rate of the neurons (Gerstner et al., 1997). This question was
specifically addressed in the studies of Roberts (1999) and Xie and Seung
(2000), who found that the temporal derivative of the postsynaptic impulse
rate directly relates to the temporal Hebbian STDP curve, or with sign in-
version to the anti-Hebbian curve. This shows that a computational link
exists between rate-based ISO learning and the spike-based STDP results
because we found that the Hebbian STDP curve will be obtained analyt-
ically by integrating the ISO learning rule over time (see equations 2.10
through 2.14).
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In the second part of this study, we introduced a closed-loop situation
by means of behavioral feedback. We implemented a primary reflex loop,
which is distinguished from all other inputs only by the fact that it initially
carries the largest synaptic weight. In general, such closed-loop reflex loop
situations have the disadvantage that any reaction will occur only after an
incoming sensor event. This inherent disadvantage of feedback loops leads
to a general objective for improving animal behavior, which is to find a
mechanism that prevents the reflex (Palm, 2000; Wolpert & Ghahramani,
2000). Sequence order learning can achieve this by creating earlier, antici-
patory actions. In addition, we have shown that weights stabilize as soon
as the reflex has been successfully avoided. Due to the isotropy of the in-
puts, any other input line can take on the role of the reference signal during
learning, and the initial reflex can even be unlearned or reduced in strength,
a situation observed in many physiological reflexes.

4.2 Practical Aspects. A convenient aspect of ISO learning that leads to
a very limited computational effort is the use of infinite impulse response
filters in our approach. With such filters, it is possible to generate a smooth
and long-lasting response when using only two resonators. Such a response
can bridge a very long temporal difference T and is therefore able to gener-
ate a basic predictive reaction. Additional filters contribute to increasingly
precise timing. Thus, the basic temporal correlation between X1 and X0 can
be established by one filter (N = 1) and then improved by adding more and
more filters. In other approaches (Sutton & Barto, 1981, 1988; Klopf, 1988),
delay lines are often used for the predictive input X1. The discrete structure
of these algorithms requires many more delay elements as compared to the
analog operating ISO learning because they need a delay element for every
unit time-step. Thus, the computational effort is much higher if a broad
temporal range has to be covered.

4.3 Evaluative versus Nonevaluative Models. A fundamental differ-
ence exists between reference-based (reward-based) algorithms (e.g., TD
learning) and so-called drive reinforcement algorithms, such as differential
Hebbian learning and ISO learning.

Probably the most influential method for reference-based temporal se-
quence learning is the TD learning algorithm (Sutton, 1988). TD learning has
the goal of generating an output v, which predicts a reference (reward r) by
the help of its (sensorial) input signals x. This goal is achieved by minimiz-
ing a prediction error δ between reference and output. Thus, learning relies
on the predefined reference, which acts like a teacher signal in supervised
learning.

The direct comparison between the two algorithms shows that the refer-
ence (reward) pathway and the error calculation of TD learning are replaced
by the reflex pathway in our algorithm. Mathematically, the reflex path-
way is not functionally distinct from the other pathways in ISO learning;
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however, it drives the output with an initially strong weight. As described
in section 2.2.1, the strongest input dominates the learning behavior of the
other inputs and weights. Klopf (1988) called this drive reinforcement learn-
ing. In appendix B, we compare the different drive reinforcement models
in the literature. Here, we just note that our algorithm belongs to the class
of pure unsupervised learning algorithms opposed to TD learning, which
is supervised using the reference (reward) as teaching signal. The initially
strong weight in the reflex pathway of ISO learning can be interpreted as a
boundary condition, preventing the output from becoming arbitrary. Intro-
ducing boundary conditions is typical practice of unsupervised, especially
Hebbian, learning (Miller, 1996).

The structural differences of our learning algorithm and TD learning
suggest different neuronal substrates. The TD learning circuit consists of two
components: the predictive circuit and the error signal circuit. Usually, these
two circuits are identified with different neuronal subsystems: the error
circuit with the dopamine system and the predictive circuit with cortical
or other dopamine-modulated brain areas. Strong supporting evidence is
found in Schultz et al. (1997), and it is also known that reward-based learning
plays a substantial role in animal behavior, such as during instrumental
(operand) conditioning paradigms and action planning (Dayan & Abbott,
2001).

Our algorithm, on the other hand, suggests only one neuronal circuit
because all pathways are equivalent, as supported by Hauber, Bohn, and
Grietler (2001). It is conceivable that such a system coexists with the reward-
based learning systems, because in an autonomous agent, any reward-based
system needs to be bootstrapped by first correlative experiences, such as
those used by our system to drive learning.

In the one-circuit scenario, our learning rule, based on temporal relation
between pre- and postsynaptic signals, would have to be represented by
internal neuronal variables like NMDA dynamics or Ca2+ concentration.
The direct relation of our learning rule with the shape of the STDP curves (see
Figure 2b) indicates that it should be relatively straightforward to redesign
our model into a biophysically more realistic one, which directly relies on
such internal neuronal variables and uses spike trains as inputs. This has
recently been attempted by Rao and Sejnowski (2001) using the TD learning
algorithm but the relation between TD learning and STDP is less direct, and,
accordingly, the transition between those two models is bit more intricate
(Dayan, 2002).

When talking to specialists in the field of temporal sequence learning, we
were asked to explain to what degree our learning rule is different from the
one used in TD learning. This aspect is quite technical, and we refer readers
to appendix B for an in-depth discussion.

4.4 Closed-Loop Condition. Hebbian learning rules like the one used
here belong to the class of unsupervised learning rules. Unsupervised learn-
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ing seems to be the obvious choice for creating the first and earliest stages
of autonomous behavior, because it does not require external (teacher-like)
knowledge. Instead, it relies purely on self-organization based on the cor-
relation structure of the inputs. Such unguided self-organization processes,
however, can also lead to a situation where nonsensical correlations are
learned, leading in the end to an undesired network behavior. The standard
solution to avoid this problem is the introduction of boundary conditions,
which keep the self-organization process within sensible margins. In prac-
tice, this is done either heuristically by the network designer or, as a better
choice, boundary conditions are introduced such that they intrinsically (and
in a natural way) represent the structure of the problem to which the self-
organization process is applied.

In the case of our unsupervised temporal sequence learning algorithm,
the same is achieved by embedding the learning circuit in an environment
that leads to a closed-loop situation. The causal relation that naturally ex-
ists between many different pairs of sensor events (e.g., pain follows heat,
taste follows smell) as described in section 1 creates an implicit boundary
condition for our algorithm by using the latest incoming event (the one that
drives the reflex) as the temporal reference for learning. The environment
has two properties in our model: it provides feedback, and it contains dis-
turbances, but very clearly it does not provide any reward or any other
teaching signal. Klopf (1988) called this feedback loop nonevaluative since
there is nothing in the environment that evaluates the organism’s perfor-
mance. Instead, here ISO learning becomes self-referenced (von Foerster,
1960; Maturana and Varela, 1980): the actions of the learner influence its
own learning without any evaluation process.

Robotics is the discipline that can clarify the concepts of autonomous be-
havior and interaction with a complex environment quite naturally (Brooks,
1997). In the field of temporal sequence learning, Vershure has been work-
ing for over 10 years in using robot applications (Verschure & Pfeifer, 1992;
Verschure & Voegtlin, 1998). In his words, every organism undergoes three
steps of development: prewired reflex (fixed connections), adaptive con-
trol (classical Hebbian learning of sequences of sensor inputs), and reflec-
tive, contextual control (goal-oriented learning). In Vershure’s terminology,
adaptive control has no goals but builds up temporal associations with
“proximal” and “distal” sensors. At the stage of the reflective control, a goal
is introduced in the form of a reward or punishment when, for example, an
object has successfully been found.

Our study shows that this distinction may be too rigid. The behav-
ioral pattern observed in our robot seems to be punishment guided, which
would place it at the advanced level of reflective control. The unsupervised,
nonevaluative, but self-referenced structure of the robot’s interaction with
the environment, however, places it at the simpler level of adaptive control.
This shows that autonomous agents can develop rather complex behavioral
patterns by means of simple nested feedback loop systems, without hav-
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ing to evaluate their own behavior. Of course, we would not argue against
the importance of higher learning schemes, and it is also quite sensible
to distinguish between increasingly higher levels starting with nonevalua-
tive schemes, which are surpassed by evaluative (reward and punishment)
schemes, which are followed up by contextual learning and finally by the
different stages of cognitive learning. But it seems advisable to treat these
different stages in a less separatist way, allowing for a broader transition
range between them.

In our companion article, we derive a theoretical treatment of the closed-
loop ISO learning situation. We will show analytically that the predictive
pathway learns to approximate the inverse controller of the reflex pathway,
thereby creating a forward model of the control situation.

Appendix A: Plancherel’s Theorem

This theorem is not widely known, so we state it here as

∫ ∞

0
f1(t) f2(t) dt = 1

2π

∫ +∞

−∞
F1(iω)F2(−iω) dω (A.1)

= 1
2π

∫ +∞

−∞
F1(−iω)F2(iω) dω (A.2)

where F is the Laplace transform of f (Stewart, 1960). If we set f1 = f2 = f ,
it becomes the more commonly used theorem of Parseval.

Appendix B: Comparison Between TD, ISO Learning, and Other
Differential Hebbian Learning Algorithms

One has to distinguish drive reinforcement models such as those by Sutton
and Barto (1981), Klopf (1986, 1988), and Kosco (1986) (to which ISO learn-
ing also belongs) from reference-based reinforcement models such as TD
learning (Sutton, 1988; Dayan & Sejnowski, 1994).

We first discuss the differences between the different drive reinforcement
models, which are shown in Figures 12a through 12c. The central difference
between ISO learning and the other techniques is that in ISO learning, all
inputs are filtered before they are summed at the output neuron. In the
other algorithms, the inputs are summed in an unfiltered way. A low-pass
filter is applied only to the conditioned stimulus when it enters the learn-
ing pathway (i.e., before the correlator ×). This leads to a fundamentally
different behavior of ISO learning because as a result, ISO learning pro-
duces an orthogonal behavior between input and output (after filtering, the
inputs resemble sine waves; thus, the derivative of the output resembles
a sum of cosines; see Figure 2). This orthogonal behavior, which crucially
relies on the filtering of all pathways, leads to the inherent and desired
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Figure 12: Comparison of (a–c) three drive reinforcement algorithms and (d) TD
learning in Laplace notation. Transfer functions are denoted as H, K, and the
derivative operator as s. X0 represents the unconditioned and X1 the conditioned
input. The amplifier symbol denotes the changing synaptic weight. Note that
c is drawn with a fixed weight at X0 to make it more easily comparable to the
other diagrams. All models use a derivative of the postsynaptic signal in order
to control the weight change. Both Sutton and Barto models (a, d) use low-pass
filters K only in the conditioned pathway. Klopf’s model b is identical to model a
with the exception of an additional temporal derivative at x1. Only in ISO learn-
ing are all inputs filtered, which together with the output-derivative generates
orthogonal behavior, leading to weight stabilization. For further explanation,
see the text.

weight stabilization property of ISO learning, which does not arise in the
other drive-reinforcement algorithms without additional measures taken.
Furthermore, we note that Klopf has introduced an additional derivative at
the conditioned input, because he focuses on signal changes.

TD learning belongs to yet another category of sequence learning algo-
rithms. The difference arises from the fact that TD is evaluative (reference
based; see Figure 12d), whereas the drive reinforcement models operate in
a nonevaluative way. We have already discussed this elementary difference
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at great length. Here, we focus on the aspect that TD learning also uses
some kind of derivative, which suggests a strong structural similarity be-
tween TD and ISO learning methods. In spite of this apparent similarity,
however, our approach is more strongly related to Kalman filtering than to
TD learning. This is due to the combination of linear filtering and applying
a derivative. The predictive property of our algorithm thereby arises from
the fact that every low-pass filtered function is smooth, which leads to the
situation that its derivative linearly predicts its future development. This
property of low-pass filtered signals is well known in signal theory and is
mainly used in the Kalman filter theory (Bozic, 1994).

TD learning instead calculates a temporal difference error δ (similar to the
famous δ-rule by Widrow & Hoff, 1960) by means of subtracting subsequent
output values from each other and relating this error value to the reward:
δ(t) = r(t)+v(t+1)−v(t). The second group of terms seems to be related to
the derivative used in our approach. This mathematical similarity, however,
carries a distinctively different interpretation, which can be understood as
follows: The goal of TD learning is that the output v(t) at any point in time
should predict the total remaining reward,

v(t) =
T∑

s≥t

r(s), (B.1)

at the end of learning. Take the example of a rat exploring a maze where at
each intersection, a decision about a turn has to be made, creating a temporal
sequence of events. Each turn leads to a different reward (e.g., food) to be
picked up along the way. This clarifies the concept of total remaining reward
until the end of the maze is reached at T. Furthermore, it is known that
the total remaining reward can be iteratively approximated using the next
following prediction value v(t+1) to yield something like the total remaining
expected reward:

T∑
s≥t

r(s) ≈ r(t) + v(t + 1) := e(t, t + 1). (B.2)

During learning, this total remaining expected reward e is compared with
its actual prediction v in order to define the prediction error δ. Thus, δ(t) =
e(t, t + 1)− v(t), leading to the apparent similarity of the resulting temporal
difference terms v(t + 1) − v(t) in TD learning with the derivative we used.
From this interpretation, however, it is quite clear that the term v(t + 1)

arises only in conjunction with r(t). This kind of conjunction cannot be
found in our algorithm because it is reward free. Furthermore, the structure
of TD learning is acausal, looking forward in time using v(t+1) to calculate
δ(t). This and the reward-based structure of TD learning make it rather
difficult to associate it with STDP, as attempted by Rao and Sejnowski (2001)
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(see Dayan, 2002 for discussion). Thus, the formal similarities between both
rules do not seem to warrant treating them as equal. These interpretations
continue to hold for the time-continuous version of TD learning designed
by Doya (2000).

Appendix C: The Robot

• Hardware. A modified commercial robot (“rug warrior,” 16 cm diame-
ter) was used. Two active wheels are driven by DC motors, and steering
is achieved through different DC levels. Average speed was adjusted to
0.45 m/s using a control parameter c = 0.6. In order to detect mechanical
contact, the robot has three microswitches, CSl, CSr, CSb, in a triangular con-
figuration (see Figure 9) Visual signals are generated by two multiplexed,
infrared-emitting, active range finders RFl, RFr with an angle of 70 degrees
between them. Infrared reflection is detected by an infrared sensor centered
between the emitters, which operates in synchrony with them. The detec-
tion range was adjusted to 0.5 to 15.0 cm. Interfacing between robot and
computer is done tethered via a conventional I/O card.

• Sensor characteristics. Sensor signals are bandpass filtered, as in many
biological systems. This is achieved by feeding the raw signal into a band-
pass with transfer function h(t). The output functions of the bandpass filters
are denoted as uk and normalized to one. The bandpass characteristics of all
collision sensors hr(t) are identical with Q = 0.6 and f = 1 Hz. The signal
from each vision sensor is fed in parallel into a filter bank of 10 bandpass
filters. Its frequencies are set to fk = 10

i Hz, k = 1, 2, . . . , 10; Q is set to 1.0
throughout. The filter bank approach assures that large and varying tem-
poral intervals between vision sensor and collision sensor signals can be
covered.

• Neuronal circuitry. The robot has two neurons: one that controls the
speed ds, the other the steering angle dφ. Normal operation is straightfor-
ward motion (ds = const, dφ = 0). Both neurons receive inputs from all
sensors in a direct feedforward connectivity.

• Unconditioned retraction reaction. The unconditioned retraction re-
action uses only the collision sensor signals. These signals drive the output
neurons in such a way that an avoidance movement with a motion vector
pointing away from the site of stimulation is elicited.

•Learning. All bandpass filter outputs uk from the collision and the vision
sensors converge onto both neurons, where they are summed according to
their synaptic weights ρk. The change of the weights is achieved by learning
rule equation 2.2. The constant µ is set to 0.00002.

• Neuronal Output (resulting from unconditioned retraction reaction
and learning). The output of the neurons is defined as ds = c − ρds

0 [hr(t) ∗
(CSl + CSr − CSb)] + lds and dφ = ρ

dφ

0 [hr(t) ∗ (CSl − CSr)] + ldφ . The asterisk
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denotes a convolution operation. The variables lds and ldφ represent the
total sum of all learned contributions that converge onto the ds- and dφ-
neuron, respectively. Learning follows equation 2.2. The synaptic weights
in unconditioned reaction are initially set to ρds

0 = 0.15 and ρ
dφ

0 = −0.5.
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