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Abstract: An increasing number of complex systems are now modeled as networks of coupled 

dynamical entities.  Nonlinearity and high-dimensionality are hallmarks of the dynamics of 

such networks but have generally been regarded as obstacles to control. Here I discuss recent 

advances on mathematical and computational approaches to control high-dimensional 

nonlinear network dynamics under general constraints on the admissible interventions. I also 

discuss the potential of network control to address pressing scientific problems in various 

disciplines. 

 

Imagine a world without power grids, the Internet, transportation infrastructure, banking systems; a 

world without social structure, ecosystems, biogeochemical cycles, without life. These are just some 

of the many features that would be missing had the world been devoid of networks. Perhaps not 

surprisingly, networks have long been part of our scientific literacy—according to the Thomson 

Reuters database, no less than 0.5 million (out of 60 million) scientific papers published since 1900 

have the word “network” in the title (not to mention elsewhere in the paper, or related terms such as 

web and graph). But what is the most substantial research question that can be formulated in the 

current study of networks? I would argue it is “how to rationally control the dynamics of complex 

networks.” Why? Because the solution to this problem would address some of the most pressing 

biomedical, engineering, and socioeconomic questions of our time—from cell reprogramming, drug 

target identification and microbial strain optimization, to the development of smart self-healing 

infrastructure systems and of sustainable management of ecosystems, to the mitigation of cascading 

failures and contagious processes in financial, social and technological systems. Here I discuss why in 

many systems our current ability to control such networks is limited not by the technology to actuate 

specific network elements, but instead by the challenges that nonlinearity, high dimensionality, and 

constraints on the interventions impose on designing system-level control actions. And I discuss 

promising new approaches to overcome and even benefit from these challenges. 

  

I. INTRODUCTION 

We have come a long way since the time researchers believed they were on the brink of 

discovering everything they needed to know about the physical world, as famously expressed 
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by Laplace [1]. Whether because of quantum mechanics, chaos, or the fact that we don’t 

even know what most of the universe is made of, now, 200 years later, very few researchers 

would embrace this optimistic view. Yet, a surprising number of researchers still reason along 

the following lines: if we could understand all the physics, they would say, then we could 

make sense of all the chemistry; and if we could understand all the chemistry, we could 

understand all the biology. After all, the argument goes, chemistry is applied quantum 

mechanics, and according to this simplified view, organelles are bags of chemicals, so cells 

are bags of bags of chemicals, and so on. But this program too seems hard to be completed, 

because as we go up in this hierarchy the systems become increasingly more structured, and 

it’s no longer sufficient to understand the properties of the component parts in order to 

understand the properties of the system. That is to say, the systems become increasingly 

more complex.  

But what exactly is a complex system? I will define it as a system that 1) is made up of a large 

number of interacting component parts and 2) exhibits collective dynamical behavior that 

cannot be anticipated from the properties of the parts themselves, not even in principle. For 

example, graphene, graphite, diamond, and all other allotropes of carbon are made of the 

same component parts—carbon atoms—yet they have very different physical properties; the 

key difference is in the network of interactions between those atoms.  That is, in complex 

systems the interactions can be just as important as the parts themselves, or more, in 

determining their properties. Thus, such systems lend themselves naturally to be modeled as 

networks of interactions between the component parts—a realization that is at the base of 

the modern, interdisciplinary study of networks initiated in the late 1990’s [2, 3]. The 

question of tracing a cell or even a molecule to the parts they are composed of is therefore 

akin to the question of understanding the underlying networks, a problem that is as 

mathematical as it is physical in nature. It follows that the control of such systems can in 

principle be based on manipulating either their dynamical units or the interactions between 

them (or both). 

That complex systems require different approaches and lead to different behavior has long 

been appreciated in physics. It is the basis of condensed matter physics and was popularized 

P. Anderson in his classic “More is Different” piece [4]. A key departure from that research is 

that, while Anderson could illustrate his ideas using the ammonia molecule, a system 

composed of four atoms, the current network-based study of complexity focuses on systems 

like metabolic networks, which in typical cells consist of an irreducible set of thousands of 

coupled biochemical reactions and a comparable (even if smaller) number of chemical species 

[5].1  The latter is a network of interest to us in the context of control both because of 

applications to the optimizations of microbial organisms for the production of chemicals of 

                                                 
1
 The network systems currently investigated are also significantly different from well-mixed or well-

ordered complex systems (think of a gas, a crystal) to which statistical mechanics has been 
traditionally applied. They are well structured, and as such cannot be characterized by few average 
quantities; and the equivalent to a unit cell would be essentially of the size of the entire system, which 
in turn leads to the issue of scale. Complexity is ultimately a statement about the dynamics (rather 
than the structure) of the system, which is nevertheless influenced by structure in such networks. 
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industrial interest and because of applications to the development of therapeutic 

interventions for humans and other organisms. 

Going from chemical reactions to living cells, another complex system of current interest in 

this context is that of neuronal networks. Consisting of tens of billions of dynamical units 

coupled together by some ten thousand times that number of connections, the brain is an 

example par excellence of a system whose functioning relies on its interconnectivity; and the 

processing capacity itself is an inherently system level property, as already suggested by the 

scaling pattern of the connections [6]. The control of such networks is of tremendous interest 

for problems ranging from brain-machine interface [7] to the treatment of diseases of the 

brain [8].  Going one scale up, it is timely to also consider networks of living organisms or 

even the earth’s biosphere, which is estimated to consist of a few million species that are 

coupled together either directly or indirectly through the environment. It is important to 

understand how to control such systems in order to exploit them (as in the case of fisheries) 

and also to manage wildlife, particularly in the presence of habitat loss and other 

perturbations. Finally, we can consider human-made systems—after all engineering is a 

systems science by definition. Power grids, for example, are at the forefront of network 

research owing to the ongoing transition from analog to digital control and the smart 

technologies that will come with it. These networks will need to be controlled at multiple 

levels, and developing the required new approaches has indeed been a major drive for the 

current control research in network systems. 

In this article, I offer a personal account of current challenges and recent advances in the 

control of complex networks.2 I discuss in particular the unique characteristics of real 

complex networks from the various domains that set them aside from other systems to which 

control has been traditionally applied. As amply analyzed below, at the center of this 

longstanding interdisciplinary problem is the inherent nonlinearity of complex networks, thus 

making this discussion particularly appropriate for the 25th Anniversary issue of Chaos: An 

Interdisciplinary Journal of Nonlinear Science. 

 

II. CONTROL AND THE COMMON (EVEN UNAVOIDABLE) PROPERTIES OF REAL NETWORKS 

When we look at networks coming from very different domains (intracellular, neuronal, 

ecological, infrastructural), it is natural to ask whether they have anything in common. 

Otherwise, why would we be considering several of these networks at the same time? It is 

widely appreciated in the network science community that these networks have several 

structural properties in common: they have a heterogeneous distribution of number of 

connections per node, they have community structure, they have a relatively small node-to-

node distance, and so on [10]. On second thought, this is not entirely surprising because, 

                                                 
2
 Thus this article focuses on the control of networks rather than “network control” as used to refer to 

distributed control systems that use networks of sensors and actuators to control a system that is not 
necessarily a network [9]. 
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after all, they have evolved from small to large through growth mechanisms that are 

somewhat related from a fundamental point of view.  

My focus here is on control and, because control is a dynamical process, I want to emphasize 

the common dynamical properties that all these networks, and in fact many other real 

networks, tend to have:  

• They are governed by nonlinear dynamics, which cannot be meaningfully approximated 

by linear ones. 

• They are dissipative dynamical systems, whose trajectories evolve toward a small 

portion of the entire phase space. 

• They exhibit not one but multiple stable states (whether fixed points, limit cycles, or 

chaotic attractors). 

• They are described by a large number of dynamical variables, corresponding to high 

phase-space dimensionality, generally of the order of the number of dynamical units. 

• There are constraints on the feasible control interventions that could be applied to 

them, and often there are limitations to the use of feedback. 

• They operate in a decentralized way, and hence tend to respond sub-optimally to 

perturbations with respect to any objective function they may have been designed or 

evolved to optimize. 

• There is often noise in the dynamics and parameter uncertainty in the available 

models constructed from data. 

Many of these properties are not yet widely appreciated in the network community. In 

particular, the interventions that can be implemented in trying to manipulate such systems 

are often of completely different nature when compared to traditional control problems. In 

general we are not merely limited to manipulating the variables (or parameters) by a small 

amount, but also there are variables that can only be manipulated in specific directions and 

variables that cannot be manipulated at all. For example, interventions in an ecological 

network are in practice often limited to suppressing (rather than increasing) the populations 

of specific species, while the populations of other species (e.g., endangered ones) cannot be 

manipulated at all. These constraints effectively limit the control to navigating a low-

dimensional manifold in a very high-dimensional space, and we have to do our very best 

within that manifold to control the system.  Moreover, in many cases, such as in the use of 

gene knockdowns to manipulate genetic networks and in the control of cascading failures (as 

in the approaches we have proposed and that I discuss below), there is essentially no 

opportunity to implement feedback. This too is a game changer, since much of traditional 

control theory is feedback control (and some control theorists have even defined control as 

the science of feedback [11]). 
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Also underappreciated is the fact that these systems—including most human-made, 

infrastructure networks—tend to respond sub-optimally to perturbations. This means that they 

may undergo large failures following a perturbation when in fact there are accessible states 

in which those large failures could be prevented. The difference between the spontaneous 

response of the system and the optimized response is precisely the margin that can be 

explored by control interventions to, for example, mitigate the propagation of a cascading 

failure. 

This brings me to the second set of definitions that I want to discuss, since there is a certain 

abuse of language in this field. First, controllability is a technical term [12]. It concerns the 

property of being able to steer a system from any given initial state to any given final state in 

finite time. Therefore, it is strictly global (hence unrealistically ambitious) and says nothing 

about our ability to keep the system at that final state. Even if we are able to drive the 

system from any initial state to any final state by manipulating a few degrees of freedom, if 

we want to keep the system at a specific final state, then, in general we will have to 

manipulate most dynamical variables to stabilize that state (unless it is already a stable state) 

[13]. For being unrealistically ambitious, general results on controllability are available only 

for linear dynamics, which, as explained above, are of limited relevance to the study of real 

networks (see [14-16] for attempts to extend some restricted results to nonlinear systems—

also briefly discussed in the Appendix). 

The term control, on the other hand, can refer to a number of different questions, but with 

emphasis on actually designing the intervention instead of just identifying when control is 

possible. It may concern the question of driving the system from a subset of specific initial 

states to a subset of final states. In particular, if you want to avoid the problem I just 

mentioned, you might want to limit yourself to going from stable initial states to stable final 

states, which is a case I will address in detail below. You may also try to stabilize states of 

interest, create states that do not exist, eliminate states that do exist, or any number of 

other actuated changes to the dynamics. All those actions would fall under the umbrella of 

control. 

Here I will focus on control, which is the most relevant concept for the network systems I 

consider, but with the goal of systematically exploring all relevant possibilities. In fact, it 

does not even make sense in most cases to ask about the possibility of going to arbitrary 

states in the phase space, as that would bring the system outside the regime in which it can 

function. Another fundamental distinction is that network controllability studies have been 

centered on determining whether the system is controllable for the given control inputs (a 

yes/no question) and on the identification of the minimal set of control driver 

nodes/variables (a combinatorial optimization question on a finite set of choices). In practice, 

however, the hard problem that has to be solved is to determine the control signal (and the 

control trajectory), which involves choosing from an infinite (in fact uncountable) number of 

possibilities. In the rest of the article I discuss the control of network dynamics with the view 

of not merely identifying driver nodes but also the control signal (and hence control 

trajectory). 
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III.  WHY IS NETWORK CONTROL AN OUTSTANDING PROBLEM? 

Control as a technology has been around for a couple thousand years [11]. Control theory, on 

the other hand is newer and has its origins often traced back to James Maxwell, who after 

having done most of his important work in electrodynamics, turned to what was the problem 

of the day: the control of the steam engine. His study of the flying ball governor established 

the conditions for this control system to be stable as a function of its parameters [17]. 

Maxwell had also studied networks: he studied networks of forces [18], which are not too 

different from the networks now studied in the modeling of the cytoskeleton in living cells. 

Maxwell himself did not combine these two topics (control and networks) but others have 

done so since. There are even books very explicitly focused on the control of network systems 

and even complex networks [19-22], not to mention many papers. Among the papers, I would 

highlight the insightful work on structural controllability published by Lin in 1974 [23], which 

presents an approach that takes direct advantage of the network structure.  This is a paper 

that has been influential in recent years because network researchers are going back to those 

results to study linear time-invariant dynamics in networks, for the excellent reason that that 

case has a simple ready-to-use theory. Although not network-specific, another previous 

advance that is largely relevant to our discussion was the development of state-space 

approaches initiated in the 60s [24], which departed from the previously more common 

frequency-domain approaches and are in many ways a natural evolution from the work of 

Poincaré, Lyapunov, and others that laid the basis of modern dynamical systems theory. More 

broadly, control theory has a long and extremely successful history, and it is largely owing to 

its advances that we are now able to live in a technology-based society. 

A question worth asking upfront is then whether the most fundamental problems in the 

control of network systems have not yet been solved. And the short answer is: no, they have 

not. Put simply, existing control approaches do not scale well with the dimension of the phase 

space when the realistic properties of networks discussed in Sec. II are accounted for. This 

severely limits their applicability to large networks given that the size of the network is 

reflected in the dimension of the phase space. Naturally, there are scalable methods to 

address high-dimensional systems if the dynamics are linear [25], but then the dynamics of 

real networks are anything but linear. Likewise, there are many methods to address nonlinear 

dynamical systems, but in general only as long as the systems are not high dimensional. And 

there are methods to study nonlinear high-dimensional systems provided that the constraints 

on the admissible interventions are sufficiently mild [26].  

Now, when we add the various network-specific features together, very quickly the problem 

becomes complicated and in fact untreatable by existing methods, which do not scale well 

enough to allow the study of network systems with hundreds, thousands, or (in some cases) 

millions of dynamical variables. In this context an important class of outstanding problems 

concern cases that involve what I call phase-space phenomena. Now let me distinguish that 

from scenarios that do not involve phase-space phenomena using very elementary examples. 
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Consider the problem of controlling the spread of an infectious disease determined by a 

simple epidemic spreading model when we are constrained to immunizing only a small 

fraction of the nodes (i.e., of individuals in the population). A naïve approach would consist 

of selecting nodes at random and immunizing them. An improved approach would consist of 

immunizing high-centrality nodes, which can be done efficiently in a decentralized way by 

immunizing random network neighbors of randomly selected nodes [27]. Applicable to social 

networks for which no global information is available, this strategy draws from the general 

network property that in degree-heterogeneous networks the average number of neighbors of 

neighbors is always larger than the average number of neighbors [28], the difference being 

larger the larger the heterogeneity (the same property can in fact be exploited for the early 

detection of epidemic outbreaks [29]). What is interesting about this example is that 

everything I described is entirely based on local information and entirely determined by the 

structure of the network. At that level, and leaving aside the question of whether real 

epidemiological processes can be reduced to such a simple description, one can say that the 

problem is solved without any reference to the specifics of the dynamics or processes that 

take place in a phase space. This is the case because the control intervention is already 

defined (it consists of immunizing the node) and the problem reduces to identifying the nodes 

to intervene on. 

Now let’s take a very simple system that can be regarded as a network and that exhibits 

phase-space phenomena: where  is the control and the other terms define the autonomous 

dynamics of a two-node network [30]. Kalman established the condition for systems of the 

form  of any dimension  to be controllable [12]. The condition is that the matrix  be full rank, 

which is easy to test—unless the system is really high dimensional, but even in those cases 

there are computationally efficient methods that can be used to test this condition [31]. (By 

the way, akin to testing this condition for a given matrix  is the problem of identifying the 

minimal set of driver nodes or control inputs for the system to be controllable, which 

corresponds to identifying an “optimal” matrix  satisfying the Kalman rank condition for —

another problem for which computationally efficient algorithms have been developed over 

the years [32] and which has received recent attention following the publication of a new 

algorithm in [33].) Therefore, the problem of determining whether a linear system is 

controllable is essentially a solved problem whose answer is, as in the epidemic example 

above, entirely determined by the network structure.  In particular, it is clear that the 2-

dimensional system above is controllable by means of an input signal .  

Now suppose that, instead of merely checking whether the system is controllable, we are 

asked to build the control signal  or, equivalently, the control trajectory. As it will become 

clear soon, this problem is far more involved, since it involves phase-space phenomena. To 

appreciate that, consider the phase space of the system above shown in Fig. 1, where the 

arrows in the background represent the vector field of the autonomous portion of the system, 

and assume that our goal is to steer the trajectory from the open symbol to one of the solid 

symbols. For a control of the given form, which only actuates the first of the two variables, 

this can be achieved but requires crossing to the left past the dashed line at , to use the 

autonomous flow itself to steer the trajectory downwards before the control of  can move it 
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toward the target point on the right side. This is the case no matter how close the final state 

is to the initial one.  

Therefore it follows from this that the control trajectories are nonlocal. This property—which 

was established and analyzed in detail in [30]—has many implications, which are not yet fully 

appreciated. One of them is that, while this is a simple situation in a 2-dimensional system, in 

a large network in which the number of control inputs  is much smaller than the number  of 

nodes in the network—a scenario pursued by seeking to identify a minimal set of driver 

nodes—the system becomes numerically uncontrollable even when it satisfies the Kalman rank 

condition. Why? Because the Gramian, a matrix that we have to effectively invert in order to 

calculate the control trajectory, becomes numerically singular. This is so because in such a 

case there are many hyperplanes analogous to the dashed line in the 2-dimensional example 

(Fig. 1) that the control trajectory has to cross in order to reach the final state while being 

actuated by that small number of control inputs. As the dimension of the system goes up 

(more precisely, as  increases), the length of the control trajectory increases very rapidly. 

The longer the control trajectory the larger the condition number of the Gramian matrix. The 

condition number of the Gramian grows exponentially as the number of control inputs reduces 

or the number of degrees of freedom increases.  Therefore, this is not a problem simple to 

solve and it is one that, like sensitive dependence on initial conditions in the study of 

deterministic chaos, cannot be avoided by increasing the precision of the calculations.  

As proposed in [30], we need a controllability criterion that accounts not only for the 

existence but also for the actual computability of the control interventions: the system is 

controllable in practice if and only if the controllability Gramian has full numerical rank. The 

numerical rank can be interpreted as the number of singular values that are larger than a 

predefined numerical threshold, and as such involves a criterion for deciding when a number 

should be treated as zero given the available precision of the numerical computations. This 

criterion, which should not be confused with continuous indexes based on condition numbers 

[34], also has the great advantage of increasing modeling robustness.3  

The moral of the story is that if our goal is just to determine whether the system is 

controllable and what the minimal set of driver nodes would be, the problem is analogous to 

the epidemic problem discussed earlier—that is, we avoid the phase space altogether and the 

problem is manageable. Now, as soon as we try to actually control the system, which requires 

determining the control trajectories, the problem becomes much more complicated. 

Therefore, if the question concerns actual control (not just controllability), even linear 

systems can be very difficult to handle when they are sufficiently high dimensional. And 

sufficiently high dimensional here means just a few hundred degrees of freedom [30]. 

                                                 
3
 For example, consider two systems with the same matrices  and , except that in the first system the 

nodes have self-dynamics  (i.e., the diagonal elements of  are nonzero) while in the second system 
there is no self-dynamics (i.e.,  has null diagonal). Theoretically, the first system requires multiple 
control inputs [33] while the second can be controlled by a single control input [35]. But that is only 
true at arbitrarily large precision.  Numerically this otherwise surprising difference disappears, and 
both systems will generally require a large number of control inputs to be controlled [36]. 
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Another implication of the nonlocality of the control trajectories, which is subtler but 

extremely important, is that we cannot linearize a nonlinear system to then use the results 

established for the linear system to control the nonlinear one locally. Why? Because the 

control trajectory will go outside the region in which linearization is valid, and the results will 

be inconsistent (as discussed in some detail in Ref. [13]). Therefore, while there are other 

procedures in which linear methods can be used in the control of nonlinear systems, this is 

not one of them. It follows as a corollary of this no-go result that the control of a network 

with hypothetical linear dynamics is not informative of the control of the actual dynamics 

even if the network structure is the same. In particular, the former being controllable is 

neither sufficient nor necessary for the latter to be controllable, as demonstrated for 

instance in [13] through both theory and examples. 

In the context of nonlinear systems, traditional approaches of control have emphasized 

scenarios in which the system is close to normal operating conditions. While these scenarios 

remain extremely important, in the context of networks it is also important to consider 

scenarios in which the system is far from the desired state and/or the opportunities to benefit 

from feedback are limited (such as in the case of cellular reprogramming or in the control of 

a propagating cascade and other adverse conditions). Our emphasis here will therefore be on 

the control of network dynamics far from equilibrium, which remain largely underexplored 

and is an extremely timely area of research with tremendous potential for new developments 

in both theory and applications.  

 

IV. SOLUTION OF A NONLINEAR NETWORK CONTROL PROBLEM 

The control of networks with nonlinear dynamics is significantly more difficult than of those 

with linear dynamics (see also the Appendix). Given the difficulties identified above already 

present in the case of linear dynamics, one may wonder whether we can establish any general 

control method that would work in the case of nonlinear dynamics. The short answer is yes 

and for a range of conditions, but to start—and illustrate the essence of the problem—I will 

consider the most favorable scenario: network systems that has purely deterministic 

equations of motion (which I will assume to be ordinary differential equations, though that is 

not essential) and that have no parameter uncertainty, delays, or other complications. Later 

we can lift these assumptions.  

Let’s assume that the problem we want to solve is the one in which a cascading failure has 

been triggered and our goal is to mitigate its propagation. Or the closely related problem in 

which no cascade has been triggered and our goal is to repurpose the network from its 

original function to a new one (as in the process of cell reprogramming). In either case the 

problem can be formally interpreted as one in which the trajectory of the system is away 

from the desired (or initial) attractor and would autonomously evolve to (or be at) another 

(undesirable) attractor. Our task is to design a control intervention to address the situation. 
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That is, an intervention that would bring the system to the basin of attraction of the desired 

attractor, from where it can evolve autonomously to the desired attractor itself.4 In the case 

of a cascading failure, the problem is particularly interesting because it sets upfront limits on 

the time we have available to do calculations for the control decisions and to implement it. In 

the graph representation of the system—where the constraints on feasible interventions often 

limit the control perturbation to a small set of nodes—what we would be trying to do is 

essentially to trigger a compensatory cascade that would neutralize the original one, which is 

in course. That seems an impossible task, but mainly because the graph is not the most 

insightful representation of the problem (even if, as it is usually the case, it is the 

representation in which the consequences of cascading failures are observed). Like any 

dynamical problem, this one too is best understood in the phase-space representation, which 

I adopt to discuss the solution established in Ref. [39]. 

Given the assumed conditions, we can describe the dynamics through equations of the form , 

where the most important thing to note is that the system has dynamical variables, denoted 

by vector , and parameters, denoted by vector —both high-dimensional vectors. The network 

structure is accounted for by . Suppose we are focusing on attractor , which has a basin of 

attraction , and that at time  the system is at a state . If our control is based on actuating the 

dynamical variables, the task is then reduced to designing a control perturbation  that would 

bring the system to a new state  (expressed in terms of impulse perturbation just to keep the 

logic simple—this too is not essential). Put as such the problem is trivial: all we have to do is 

to take  as the vector difference between the current state  and a point at the desired 

attractor   But reality is not so simple: there are usually constraints on the admissible 

interventions. In a biochemical network, for example, even though individual reactions can be 

manipulated in both directions, due to bottlenecks it is usually easier to down-express a 

pathway than to over-express it. In an ecological network, it is usually easier to suppress a 

species population than to increase it.  For this reason, we have to account for inequality 

constraints of the form  (with the convention that the inequality applies to each component). 

We also have to account for equality constraints, , which often represent variables that 

cannot be actuated, such as nodes that are not accessible to manipulation or whose 

manipulation could lead to adverse effects; in the examples just given these could be 

essential biochemical reactions or endangered species. With these constraints the problem 

becomes highly nontrivial, even under the seemingly favorable conditions assumed this far.  

The main reason this problem is difficult is because, on the one hand, these constraints 

generally prohibit bringing the system directly to the desired attractor . The problem can still 

be solved if we identify an intervention that instead brings the system the basin of attraction 

. But then, on the other hand, there is no general analytical or numerical method to locate 

                                                 
4
 Note that the challenge is to steer the trajectory toward a specific different attractor (hence, across 

different ergodic regions of the phase space). It is not important whether the attractor is a fixed 

point—it can be periodic or even chaotic since, once the attractor is reached, simple methods can be 

used to manipulate that dynamics within it [37, 38]. 
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basins of attraction in high-dimensional phase spaces (analytical methods, such as those 

based on Lyapunov functions, generally offer conservative estimates and numerical methods 

suffer from lack of scalability). As illustrated in Fig. 2, the real problem in the control of such 

nonlinear networks reduces to trying to reach the intersection between the region of feasible 

interventions defined by the constraints and the desired basin of attraction, which is not 

known. Upfront, we can’t even tell whether there is an intersection and hence whether the 

problem has a solution. What we do know is, of course, the dynamics as defined by the 

equations of motion. Using this local piece of information we have been able to solve this 

puzzling problem, which is global in nature, by establishing a method that effectively brings 

the state of the system to (this intersection with) the basin of the desired attractor even 

though we do not know explicitly where the basin of attraction is [39].5  

Before discussing this solution, note that instead of bringing the state to the attraction basin 

we could have sought to bring the attraction basin to the state, as illustrated in Fig. 3. This 

could be achieved by actuating the parameters instead of the dynamical variables (in an 

ecological network this would correspond to manipulating growth or mortality rate instead of 

population). Specifically, we would seek to change the parameters from  to  such that , where  

a smoothly deformed version of the desired attractor for the modified parameters (assume, 

for simplicity, that this involves no bifurcations). Here too we would have to respect 

inequality and equality constraints,  and , which in the ecological example could mean that 

growth (mortality) rate can only be reduced (increased) and some species cannot be 

manipulated. Once in the basin  the trajectory would autonomously approach attractor . Once 

it is close to  we could then slowly relax the parameter perturbation, so as to cause the 

trajectory to follow the attractor until it changes back to —the desired state.  

The method we have developed to reach the target basin of attraction involves two main 

elements [39]. First, that we know the desired attractor (which is in general much easier to 

determine than its basin) and that the dynamical equations allow us to forecast the future 

trajectory. Second, that a finite-size control perturbation that could bring the system to the 

target basin can be built by iteratively calculating small perturbations using information 

provided by the (local) equations of motion. Specifically, on the forecast trajectory we can 

locate the closest approach point to the desired attractor and then ask: “in what direction 

should we change the state  at time , by a perturbation no larger than  while respecting the 

given constraints, so that the closest approach point of the new trajectory will be closer to 

and at the smallest possible distance of the desired attractor?” We have implemented a 

computationally efficient algorithm to address this question, which uses the variational 

equation to map perturbations forecast at the closest approach point to the optimal one at 

the initial time . By repeating this process, the closest approach point will successively 

                                                 
5
 It goes without saying that the intersection of the feasible region with the target basin of attraction 

will generally depend on time of the intervention. A dramatic illustration of this dependence was 
shown in Ref. [40], where examples were given of extinction cascades in food-web networks that could 
be prevented entirely by the suppression of species that would otherwise be eventually extinct by the 
cascade. 
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approach the desired attractor and, if a solution can be found, it will eventually converge to 

the attractor, at which point the control perturbation has crossed into the basin of attraction 

(even though no explicit information about its location was used). The result is a gradient 

descent-like method, which—in contrast with ordinary gradient descent optimization 

methods—is in this case tailored to solve a problem that is generally nonconvex due to the 

constraints. The ready-to-use version of this algorithm is available through Ref. [41]. 

The method is highly scalable and effective. The computational cost scales with the number 

of dynamical variables as , and it can therefore address very large networks in a 

computationally inexpensive manner.6 Its effectiveness has been demonstrated in applications 

both to real networks from various domains and to ensembles of model networks [39]. 

Realistic applications of this approach, and its variants [40], included the control of de-

synchronization instabilities in power-grid networks, identification of interventions to 

mitigate extinction cascades in food-web networks, and the identification of therapeutic 

interventions for an epigenetic form of cancer.  

A relevant question is whether the method can cross intermediate basins of attraction. The 

answer is yes, because this process resets itself every time it crosses a separatrix. And 

performance is not adversely affected in systems with complex or fractal basins of 

attraction—its effectiveness has been demonstrated even for riddled basins of attraction [39]. 

The core method also has the merit of being easily adaptable to address more general 

dynamics. For example, if instead of taking the first control intervention that crosses into the 

target basin of attraction, we add an additional (rather straightforward) optimization step to 

minimize (under the given constraints) the time it takes to reach the neighborhood of the 

attractor, the resulting method is also effective in the presence of moderate noise and 

parameter uncertainty; the attractors and basins of attractions are in this case defined with 

respect to the deterministic, well-defined portion of the dynamics. Finally, even when it is 

impossible to reach the desired attractor (e.g., if the constraints are too restrictive), in 

practice this method will tend to bring the system to an attractor whose properties of interest 

are more similar to those of the desired one, as shown in Fig. 4 for an associative memory 

network. This is expected, in particular, when such properties depend continuously on the 

dynamical variables (and hence on the location of the attractors), as it is often the case.  

Is there a relation between the identified control intervention and the structure of the 

network for general networks with nonlinear dynamics? Yes, there is, if the network elements 

(nodes and edges) are all comparable, so that the system is dominantly determined by 

network structural parameters. In particular, there will be a correlation between the 

                                                 
6
 Incidentally, here is where we take advantage of the sparsity that sets networks apart from other 

dynamical systems. The approach can be applied to any dynamical system at the estimated 

computational cost of O(), but for networks this cost is reduced by a full power of   provided that the 

number of variables is approximately proportional to the number of nodes and that the average degree 

remains essentially constant, as is the case in many network models. 
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likelihood that a node will belong to a successful control set and its centrality measures in the 

network—such as its degree in the case of random networks. But this is generally not true in 

real networks since real networks are defined by many structural and dynamical parameters, 

and the topological parameters that define the structure of the network are just part of 

them. It is therefore essential to consider the problem in the phase space. After the 

calculations are done in the phase space, it is instructive to go back to the network 

representation and to interpret the result. This will often lead to insightful conclusions about 

the role of the network structure (as done in some detail in Ref. [40] for food-web networks). 

But this is a posteriori analysis; it’s not something that we can use to solve the control 

problem by inspection of the network structure.  

 

V.  OUTLOOK ON CURRENT AND FUTURE RESEARCH 

The approach discussed in Sec. IV to control nonlinear network dynamics can be generalized 

in many ways. For example, the effectiveness of an intervention will generally depend on the 

time at which it is implemented. It is therefore advantageous to consider interventions not 

only at the initial time but also at any later time. Moreover, instead of relying on impulse 

control we can consider continuous interventions formulated, for example, in terms of 

optimal control. Another generalization would be to consider closed-loop control for networks 

that benefits from real-time feedback, such as power networks, for which feedback can 

actually be implemented. Such generalizations would be useful in practice, and the quality of 

the results would only improve.  In view of practical applications, it would also be useful to 

consider the scenarios in which the state of the system is only partially known. 

Another scenario extremely important to consider is the following. Here I discussed 

robustness to small noise—a case that can be addressed by the same framework considered 

above [39]—but now suppose that noise is big enough not only to make the basin boundaries 

fuzzy but also to induce transitions between basins of attraction. In this case, which is 

common in biological networks, a question of interest is whether we can control the response 

of the system to noise in order to induce and/or inhibit specific transitions and ultimately 

control the occupancy of the stable states by manipulating tunable parameters in the system. 

An elegant solution to this problem was recently presented in [42], where the following 

elements were combined into a very effective and efficient control approach: 1) large 

deviation theory was used identify the transition paths as the least action paths and to 

calculate the corresponding transition rates; 2) the transition dynamics of the original 

network were reduced to a Markov process on a network of state transitions between the 

attractors, on which control was implemented. This way, by using a new network to solve the 

original network problem, we effectively reduce a high-dimensional problem to a sequence of 

one-dimensional ones, resulting in a scalable approach. This approach changes the system 

response to noise instead of noise itself by suitably modifying the underlying quasi-potential, 

and is therefore analogous to the approach recently undertaken to design mechanical 

material networks with unusual phase transitions by manipulating the underlying free energy 

function [43]. 
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The key common property of the nonlinear-dynamics control approaches reviewed here [39-

42] is that they all explore the structure of the phase space. Instead of merely optimizing an 

objective function, they incorporate information about the attractors and take advantage of 

the fact that the phase space is patched into basins of attraction (even if their location is not 

explicitly known).  The advantages are two-fold: first, this makes the methods more robust 

and scalable, as it suffices to reach the attraction basin (a full-dimension set of the phase 

space) rather than a point of the attractor (a lower dimensional set); second, this makes the 

methods more effective, as it saves us from the scenario in which the phase-space point 

optimizing the function of interest happens to be not only outside all attractors but also 

outside the basin of the most optimal attractor (in this case, the system would evolve back to 

an undesirable state as soon as the control is switched off).  A different context in which the 

structure of the phase space has been exploited was in the control of conservative systems 

[59, 44], where it is beneficial to consider the partition of the phase space into ergodic 

components. Aside from the numerical advantages, the analysis of the structure of the phase 

space facilitates conceptual understanding of the problem, as previously demonstrated in the 

qualitative study of differential equations.  

Finally, I should note that there are several other active lines of current research concerning 

the control of network systems, which are pursued by various communities and which do not 

necessarily involve the assumptions or scenarios that I invoked here. Within the network 

community, significant part of the attention has been devoted to the study of controllability 

and observability, particularly of linear time-invariant systems [33, 35] (but see also [51, 52, 

45] for nonlinear cases). Attention has also been given to the study of control processes in toy 

models, particularly to guide formulation of hypothesis for processes away from equilibrium 

[57, 58]. On the other hand, pinning control [56] has received significant attention within the 

nonlinear dynamics community in connection with network synchronization (a topic that has 

attracted increasing interest [53-55]) and consensus processes, where the control strategy is 

based on introducing a leader to directly influence the dynamics of a selection of nodes [46-

48]. In the control community, decentralized and distributed control [60, 61, 20], which 

concern systems composed of a large number of interacting subsystems (including networks), 

are classic areas that continues to be extremely active, particularly in the context of large-

scale systems in various contexts [62, 64, 9]. The control of flocking, schooling, moving 

sensors, and collective behavior in general in networks of autonomous agents is a related line 

of research that has received significant recent attention. Control in the context of 

transportation networks, supply chains and operations research in general is yet another very 

active field of current research. There are also new applications that are stimulating 

significant research of which I would highlight the ongoing development of autonomous 

automobiles and smart grids—both involving stimulating network control questions.  

 

Appendix: Nonlinear Control and Controllability 

Nonlinear systems are significantly different from linear ones but some general results can 

still be established. For example, a system of the form , where  is the control, will be 
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(globally) controllable if for every  the set of realizable vectors  contains  in its interior [49]; 

this is, of course, a sufficient but not necessary condition (to which even the simple system in 

Fig. 2 serves as an example).  A closer extension of the Kalman rank condition can be 

established by defining a suitable nonlinear controllability matrix in terms of Lie brackets 

[50]—an operator that given two vector fields defines another vector field that essentially 

measures the non-commutativeness of the corresponding flows, and hence provide 

information about the directions that can be achieved by combining those two fields.  The 

controllability is again associated with a full rank condition, but with two important 

differences from the linear case: the condition is in this case only necessary and the 

controllability it speaks to is local [16, 50]. For this reason, in this context it is often more 

useful to consider other properties, such as reachability and accessibility, for which stronger 

(necessary and sufficient) conditions have been established [15, 50]. 

 

ACKNOWLEDGEMENTS 

The author thanks Aleksandar Haber for informative discussions. His work is funded by the 

National Science Foundation under grant DMS-1057128, a Multidisciplinary University Research 

Initiative under grant ARO-W911NF-14-1-0359, and the National Institutes of Health under 

grant NIGMS-1R01GM113238.  

 

REFERENCES 

[1] P. S. Laplace, A Philosophical Essay on Probabilities Théorie Analytique des Probabilités, 6th ed., 

Madame Veuve Courcier, Paris (1820). 

[2] D. J. Watts and S. H. Strogatz Collective Dynamics of 'Small-World' Networks, Nature 393, 

440  (1998). 

[3] A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science 286 

(5439), 509 (1999). 

[4] P. W. Anderson, More Is Different, Science 177 (4047), 393 (1972). 

[5] B. Ø. Palsson, Systems Biology: Properties of Reconstructed Networks (Cambridge University 

Press, Cambridge, UK, 2006). 

[6] K. Zhang and T. J. Sejnowski, A Universal Scaling Law Between Gray Matter and White 

Matter of Cerebral Cortex, Proc. Natl. Acad. Sci. USA 97, 5621 (2000). 

[7] J. C. Sanchez and J. C. Principe, Brain-Machine Interface Engineering (Morgan & Claypool 

Publishers, 2006). 

[8] S. J. Schiff, Neural Control Engineering (MIT Press, Cambridge, MA, 2012). 

 06 O
ctober 2024 14:06:30



 

16 

[9] J. Baillieul and P. J Antsaklis, Control and Communication Challenges in Networked Real-

Time Systems, Proc. IEEE 95(1), 9-28 (2007). 

[10] M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review 45, 167 

(2003). 

[11] K. J. Astrom and P. R. Kumar, Control: A Perspective, Automatica (2003). 

[12] R.  E. Kalman, Mathematical Description of Linear Dynamical Systems, J. SIAM Control 

Ser. A 1, 152 (1963). 

[13] J. Sun, S. P. Cornelius, W. L. Kath, and A. E. Motter, Comment on "Controllability of 

Complex Networks with Nonlinear Dynamics,"  arXiv:1108.5739 (2011). 

[14] G. W. Haynes and H. Hermes, Nonlinear Controllability via Lie Theory, SIAM J. Control 8, 

450 (1970).  

[15] H. J. Sussmann and V. Jurdjevic, Controllability of Nonlinear Systems, J. Differ. 

Equations 12, 95 (1972).  

[16] R. Hermann and A. J. Krener, Nonlinear Controllability and Observability, IEEE Trans. 

Automat. Control 22, 728 (1977).  

[17] J. C. Maxwell, On Governors, P. Roy. Soc. Lond. 16, 270 (1868). 

[18] J. C. Maxwell, On Reciprocal Figures and Diagrams of Forces, Philos. Mag. 27, 250 (1864). 

[19] S. Meyn, Control Techniques for Complex Networks (Cambridge University Press, Cambridge, 

UK, 2007). 

[20] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks (Princeton 

University, Princeton, NJ, 2009). 

[21] H. Su and W. Xiaofan, Pinning Control of Complex Networked Systems (Springer, Berlin, 

2013). 

[22] D. Lozovanu and S. Pickl, Optimization of Stochastic Discrete Systems and Control on Complex 

Networks (Springer, Berlin, 2015). 

[23] C.-T. Lin, Structural Controllability, IEEE T. Automat. Contr. AC-19 (3), 201 (1974). 

[24] R. E. Kalman, On the General Theory of Control Systems, Proceedings of the First IFAC Congress on 

Automatic Control, Moscow, 1960, Vol. 1, 481-492 (1961). 

[25] K. Murota, Systems Analysis by Graphs and Matroids: Structural Solvability and Controllability 

(Springer, Berlin, 1987), 1st ed. 

[26] H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems (Springer, New 

York, NY, 1990).  

 06 O
ctober 2024 14:06:30



 

17 

[27] R. Cohen, S. Havlin, and D. ben-Avraham, Efficient Immunization Strategies for Computer 

Networks and Populations, Phys. Rev. Lett. 91, 247901 (2003). 

[28] S. L. Feld, Why Your Friends Have More Friends than You Do, Am. J. Sociol. 96, 1464 

(1991). 

[29] N. A. Christakis and J. H Fowler, Social Network Sensors for Early Detection of Contagious 

Outbreaks, PLoS ONE 5 (9), e12948 (2010). 

[30] J. Sun and A. E. Motter, Controllability Transition and Nonlocality in Network Control, 

Phys. Rev. Lett. 110, 208701 (2013). 

[31] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale 

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, PA, 1998).  

[32] C. Commault, J.-M. Dion, and J. W. van der Woude, Characterization of Generic 

Properties of Linear Structured Systems for Efficient Computations, Kybernetika 38, 503 

(2002). 

[33] Y.  Y. Liu, J.  J. Slotine, and A.-L. Barabási, Controllability of Complex Networks, Nature 

473, 167 (2011). 

[34] B. Friedland, Controllability Index Based on Conditioning Number, J. Dyn. Syst., Meas., 

Control 97, 444 (1975). 

[35] N.  J. Cowan, E.  J. Chastain, D.  A. Vilhena, J.  S. Freudenberg, and C.  T. Bergstrom, 

Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of 

Complex Networks, PLoS ONE 7, e38398 (2012). 

[36] J. Sun and A.E. Motter, unpublished. 

[37] E. M. Bollt, Targeting Control of Chaotic Systems, in Chaos and Bifurcations Control: Theory 
and Applications, eds. Chen G., Yu X., Hill D. J. (Springer, Berlin, 2004), pp. 1–24.  

[38] E. Ott, C. Grebogi, and J. A. Yorke, Controlling Chaos, Phys. Rev. Lett. 64, 1196 (1990). 

[39] S. P. Cornelius, W. L. Kath, and A. E. Motter, Realistic Control of Network Dynamics, 

Nature Comm.  4, 1942 (2013).  

[40] S. Sahasrabudhe and A. E. Motter, Rescuing Ecosystems from Extinction Cascades through 

Compensatory Perturbations, Nat. Comm. 2, 170 (2011). 

[41] S. P. Cornelius and A. E. Motter, NECO—A Scalable Algorithm for NEtwork COntrol, 

Protoc. Exchange doi:10.1038/protex.2013.063 (2013). 

[42] D. K. Wells, W. L. Kath, and A. E. Motter, Control of Stochastic and Induced Switching in 

Biophysical Networks, Phys. Rev. X, to appear (2015). 

 06 O
ctober 2024 14:06:30



 

18 

[43] Z. G. Nicolaou and A. E. Motter, Mechanical Metamaterials with Negative Compressibility 

Transitions, Nat. Mat. 11, 608 (2012). 

[44] I. Mezic, Controllability, Integrability and Ergodicity, Lecture Notes in Control and 

Information Sciences 289, 213 (2003). 

[45] A. J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff, Observability and 

Controllability of Nonlinear Networks: The Role of Symmetry, Phys. Rev. X 5, 011005 (2015). 

[46] F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, Controllability of Complex 

Networks via Pinning, Phys. Rev. E 75, 046103 (2007). 

[47] M. Porfiri and F. Fiorilli, Node-to-Node Pinning Control of Complex Networks, Chaos 19, 

013122 (2009). 

[48] W. Yu, G. Chen, J. Lu, and J. Kurths, Synchronization via Pinning Control on General 

Complex Networks, SIAM J. Control Optim. 51(2), 1395 (2013). 

[49] B. Jakubczyk, Introduction to Geometric Nonlinear Control: Controllability and Lie 

Bracket (ICTP Lecture Notes, 2001). 

[50] A. Isidori, Nonlinear Control Systems (Springer, Berlin, 1995), 3rd Ed. 

[51] Y. Yang, J. Wang, and A.E. Motter, Network Observability Transitions, Phys. Rev. Lett. 

109, 258701 (2012). 

[52] Y. Y. Liu, J. J. Slotine, and A.-L. Barabási, Observability of Complex Systems Proc. Natl. 

Acad. Sci. U.S.A 110, 2460 (2013). 

[53] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster 

Synchronization and Isolated Desynchronization in Complex Networks with Symmetries, 

Nature Communications 5, 4079 (2014). 

[54] A.E. Motter, S.A. Myers, M. Anghel, and T. Nishikawa, Spontaneous Synchrony in Power-

Grid Networks, Nature Physics 9, 191 (2013). 

[55] Y. Tang, F. Qian, H. Gao, and J. Kurths, Synchronization in Complex Networks and its 

Application – A Survey of Recent Advances and Challenges, Annual Reviews in Control 38, 184 

(2014). 

[56] X. F. Wang and G. Chen, Pinning Control of Scale-Free Dynamical Networks, Physica A 

310 (3), 521 (2002). 

[57] P.-A. Noël, Charles D. Brummitt, and R. M. D’Souza, Controlling Self-Organizing Dynamics 

on Networks Using Models that Self-Organized, Phys. Rev. Lett. 111, 078701 (2013). 

[58] A. E. Motter, Cascade Control and Defense in Complex Networks, Phys. Rev. Lett. 93, 

098701 (2004). 

 06 O
ctober 2024 14:06:30



 

19 

[59] I. Mezic, Controllability of Hamiltonian Systems with Drift: Action-Angle Variables and 

Ergodic Partition, Proceedings 42nd IEEE Conference on Decision and Control, Vol. 3, 2585-

2592 (2003). 

[60] N. R. Sandell, P. Varaiya, M. Athans, and M. G. Safonov, Survey of Decentralized Control 

Methods for Large Scale Systems, IEEE Transactions on Automatic Control 23, 108 (1978). 

[61] D. D. Šiljak, Decentralized Control of Complex Systems (Dover, Mineola, NY, 2012; first 

published by Academic Press Inc. Boston, MA, 1991). 

[62] R. D’Andrea and G. E. Dullerud, Distributed Control Design for Spatially Interconnected 

Systems, IEEE Transactions on Automatic Control 48, 1478 (2003). 

[63] P. Benner, Solving Large-Scale Control Problems, IEEE Control Systems Magazine 24 (1), 

44 (2004). 

[64] D. D. Šiljak, and A. I. Zečević, Control of Large-Scale Systems: Beyond Decentralized 

Feedback, Annual Reviews in Control 29, 169 (2005). 

 

 

 

  

 06 O
ctober 2024 14:06:30



 

20 

 
 

Figure 1. Example of a system that is controllable but whose control trajectories are nonlocal 

(Adapted from J. Sun and A. E. Motter, Controllability Transition and Nonlocality in Network 

Control, Phys. Rev. Lett. 110: 208701. Copyright 2013 American Physical Society). 

. 

 

Figure 2. Illustration of a control problem in which the variables are constrained not to be 

increased by the intervention, which prohibits steering the trajectory directly to the desired 

attractor. (a) A solution, which consists of bringing the system to the basin of the desired 

attractor. (b) The problem as it appears to the observer when the basin of attraction is not 

known, as in the case of large networks with high-dimensional phase spaces. The dotted line 

indicates the future evolution of the system. 

 
Figure 3. Schematic illustration of the control approach, for interventions based on 
manipulating (a) dynamical variables and (b) system parameters. 
 
 
Figure 4. Example of associative memory network in which each letter of the word 

“NETWORK” is stored as an attractor. The network is 8x8 and each node is a phase oscillator 

color-coded by the phase; in stationary states each node can be in one of two states: in phase 

or anti-phase with a reference node (marked as ON and OFF pixels, respectively). In this 

illustration the control problem is to drive the network from the attractor representing a 

letter to the attractor presenting the next letter by only manipulating OFF-pixel nodes. The 

control interventions are indicated by the vertical arrows, and the subsequent evolutions 

toward the attractors are indicated by the oblique arrows. The gray pixels mark errors, which 

means that in some cases the system converged to a different, parasite attractor.  The 

reached attractors are, nevertheless, remarkably similar to the intended ones, indicating that 

the method is robust even when the desired solution is not possible. (Figure adapted from S. 

P. Cornelius, W. L. Kath, and A. E. Motter, Realistic Control of Network Dynamics, Nature 

Comm.  4: 1942. Copyright 2013 Macmillan Publishers Limited)). 
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