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The effect of parameter uncertainty on water quality in a distribution system under steady and

unsteady conditions is analyzed using Monte Carlo simulation (MCS). Sources of uncertainties for

water quality include decay coefficients, pipe diameter and roughness, and nodal spatial and

temporal demands. Results from the system analyzed suggest that water quality estimates are

robust to individual parameter estimates but the total effect of multiple parameters can be

important. The largest uncertainties occur when flow patterns are altered. The study also

provides guidance on difficulties in model calibration. For example, the wall decay had the largest

influence on model prediction for the system that was reviewed and is one of the most difficult

to measure given its variability between pipes.
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INTRODUCTION

Since the passage of the Safe Drinking Water Act (http://

www.epa.gov/safewater/regs.html) in 1990, researchers

have been motivated to work on water quality and system

hydraulics issues in water distribution system design and

operation. Before 1990 water quality requirements were

only imposed at the water source: thus, the primary concern

of the water distribution system was systems hydraulics.

Today, maintaining disinfection and pressure levels are

equally important.

Water distribution system modeling can be used as a

basis of planning and operational decisions. However,model

accuracy and uncertainty impact model-based decisions.

Uncertainty is a characteristic that results from the lack of

perfect information of a system. It can be quantified in

differentways. Following the textbook engineering definition

(Tung & Yen 2005), the standard deviation and variance are

used to quantify uncertainty in this study. Model prediction

uncertainty results from uncertainties in model parameters

that are determined through calibration or are based upon

modeler judgment. However, field data to calibrate some

model parameters is inherently uncertain due to measure-

ment error, and is expensive, difficult and sometimes

impossible to collect. For example, although bulk decay

coefficients are easy to measure, pipe wall decay coefficients

cannot be measured directly and may vary from pipe to pipe.

Similarly, demand variability over time and space is almost

impossible to measure. Likely, pipe-related parameters such

as diameter and roughness coefficient are the easiest to

estimate using pressure data.

Uncertainty in pressure head due to pipe roughness and

nodal demands has been evaluated from the perspective of

system reliability (Bao & Mays 1990; Xu & Goulter 1998).

However, water quality uncertainty analysis within a

distribution system has been studied little. Water quality

within the distribution systems is strongly affected by water

quality model parameters, such as bulk and wall decay

coefficients. In addition, since transport is dominated by

advection, hydraulic parameters and conditions also impact

water quality. This is most clearly seen in the effects of tanks

due to flows to and from the storage facility. The hydraulic
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system representation also affects the flow distribution

and travel times within the system. Many modelers suggest

that all pipe models are required to adequately represent the

true flow patterns. As more pipes are introduced, more

uncertain parameters must be defined or calibrated for

those components.

This paper examines the impact of alternative sources of

uncertainty on water quality predictions by examining both

steady and unsteady conditions for two relatively large

systems. The objective is to study the effect of alternative

uncertain parameters sets on uncertainty levels of water

quality variables through Monte Carlo simulation (MCS).

The evaluated input parameters are the decay coefficients,

pipe roughnesses, pipe diameters and nodal demands.

Spatial and temporal nodal demand variabilities are also

considered. The model output of interest is the nodal

concentrations throughout the system. Evaluating the MCS

results provides insights into the relative importance of the

different model parameters and potential implications on

model calibration and use.

The relative impact of uncertain parameters changes

with system conditions. For example, water is often stored

in the tank to provide adequate pressure and for emergency

use at the expense of water quality deterioration. Thus, the

uncertainty in delivered water as related to the amount of

emergency storage is examined. Similarly, daily demand

patterns change between seasons and the relative impact

will vary.

BACKGROUND

Uncertainty analysis has been applied to water distribution

systems in attempts to quantify system reliability. Wagner

et al. (1988) performed MCS for general systems. However,

they only considered pipe breaks and pump outages as the

random phenomena and found their effects on nodal

pressure heads. Bao & Mays (1990) defined hydraulic

reliability as the water distribution system performance

measure and mechanical reliability as the ability of the

system components to provide continuing and long-term

operation without frequent repairs. Based on those

definitions, they completed an MCS study considering

uncertainties of future demand, pressure head and pipe

roughness and examined the impact of uncertainties on

nodal reliability.

Xu & Goulter (1998) considered uncertainties in nodal

demands, pipe roughness and reservoir/tank levels and

observed their impacts on nodal pressure heads. A first-

order Taylor series expansion to the nonlinear hydraulic

model was applied to develop the linearized model and

verified by MCS.

Sadiq et al. (2004) presented a risk analysis associated

with water quality in the distribution systems. However, the

authors computed the risk based on the external sources

that can deteriorate the water quality in the systems. The

sources included to compute the risks were: intrusion of

contaminants into the system (through connection) or

permeation of organic compounds through plastic com-

ponents, re-growth of bacteria in the systems including pipe

and storage facilities, water treatment breakthrough, leach-

ing of chemicals and the corrosion of systems components.

The system parameters that are involved in deteriorating in-

system water quality were not included in their study.

Barkdoll & Didigam (2004) evaluated the impact of

uncertain demands on pressure and water quality. They

limited their study to two relatively small networks for

steady and unsteady conditions. Only an average demand

was considered as uncertain and fluctuations in the daily

temporal demand factors were not considered.

Pasha & Lansey (2005) conducted MCS under steady

conditions considering pipe diameter and roughness decay

coefficients, and nodal demands as sources of uncertainty.

However their analysis did not include unsteady conditions.

Khanal et al. (2006) conducted a two-part contami-

nation level investigation into the distribution systems. In

part I, the zone of influence was mapped based on

calculated exposure index and in part II the Latin

hypercube sampling technique was used to perform a

generalized sensitivity analysis to find out network response

to base demand, storage capacity, injection mass and

injection duration. They concluded that in some cases

storage capacity is important while the injection duration is

the least important. Other important parameters such as

pipe diameter and roughness, bulk and wall decay coeffi-

cients were not considered in their study.

Given the range of information required to compute

water quality, all parameters should be considered and the
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relative impact of each parameter on the model output

should be evaluated. With this information, modelers can

begin to assess what data should be collected and the

importance of acquiring data to make good parameter

estimates. Thus, a water quality model can be calibrated

efficiently with the amount and quality of data collected.

MCS consists of successive evaluations of the equations

describing the system for alternative realizations of the

system parameters. The following sections summarize

the hydraulic and water quality relationships to show how

the parameters fit within the model.

Systems equations

Water distribution network hydraulics are described by

conservation of mass and energy and water quality is based

upon conservation of mass at a node and advective

transport in a pipe.

Hydraulics relationships

Several formulations of conservation of mass and energy

can be written for a water distribution system under steady

conditions (Boulos et al. 2004). Here the pipe equation

formulation is summarized. For a junction that connects

two or more pipes, conservation of mass is written as

l[Jin; i

X
Ql 2

l[Jout; i

X
Ql ¼ qi ð1Þ

where QI are the pipe flows, qi is the external demand or

supply, and Jin,i and Jout,i are the set of pipes supplying and

carrying flow from node i, respectively.

For pipe l that connects nodes A and B, conservation of

energy is

HA 2HB ¼ hL;l ð2Þ

where HA and HB are the total energy at nodes A and B,

respectively, and hL,l is the head loss in connecting pipe l.

The head loss can be estimated by a number of equations

including the Darcy–Weisbach and Hazen–Williams

equations. Each equation and its associated parameters

can be modeled in an MCS. The empirical Hazen–Williams

equation is most widely used in the USA for water

distribution system analysis:

hL ¼ KuðQ=CHWÞ1:852ðL=D4:87Þ: ð3Þ

where Ku is a unit constant, and D, L, Q and CHW are the

diameter, length, flow and Hazen–Williams roughness

coefficient of the pipe respectively. EPANET (Rossman

2002) iteratively solves this set of nonlinear equations with a

Newton’s type method for the unknown H’s and Q’s given

all pipe diameters, lengths and roughness coefficients and

all nodal demands, following Todini & Pilati (1988).

Unsteady hydraulic conditions are represented by

introducing a tank to the system with a water surface level

that varies with flows to and from the tank. Nodal demands

are assumed to vary through the analysis period in a series

of discrete time steps.

Water quality relationships

Four mechanisms are involved with fluid and constituent

transport: advection, molecular and turbulent diffusion, and

dispersion. Turbulent diffusion does not affect longitudinal

transport and so is unimportant here. In most available

models, dispersion is neglected since the flow velocities are

normally high, resulting in uniform velocity distributions.

Molecular diffusion is very small compared to other

transport mechanisms so it is also neglected (Boulos et al.

2004). Therefore, advection transport at the flow velocity is

the only transport mechanism considered. In this case,

conservation of constituent mass for a pipe can be written in

differential form as

›C=›tþ V›C=›x ¼ rðCÞ ð4Þ

where V is the flow velocity that is determined by solving

the hydraulic equations. ›C/›x is the rate of change in

concentrations between the inflow and outflow sections of a

differential element, ›C/›t is the rate of change of

constituent concentration within the differential element

and r(C) is the reaction relationship. The general form of

r(C) for a decay process is

rðCÞ ¼ kðC 2 C*ÞCnc21 ð5Þ

where C p is the limiting concentration, k is the reaction

constant and nc is the reaction order. Chlorine, which can
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decay completely (C p ¼ 0), is modeled by a first-order

reaction (nc ¼ 1) in this application, so r(C) ¼ kC. Any

reaction order can be evaluated using MCS.

Decay reactions occur in the water with reacting

substances present in the water and with materials on the

pipe wall. As a result, the reaction constant k is the sum of

two coefficients, the bulk reaction coefficient, kb, and the

wall reaction coefficient, kwall or

k ¼ kb þ kwall: ð6Þ

Rossman et al. (1994) reported that pipe wall coeffi-

cients are affected by three factors: the reactive ability of

biofilm layer, the available wall area for reactions and the

movement of water to the wall. The reactive nature of the

wall material is measured by another coefficient, the global

wall reaction rate, kw. For first-order reaction the wall decay

coefficient kwall can be written as (Rossman et al. 1994)

kwall ¼ 2kwkf =RðabsðkwÞ þ kfÞ ð7Þ

where kf is a mass transfer coefficient that is a function of

the turbulence in the pipe that is related to the Reynolds

number, R is the pipe radius and abs is the absolute value

operator. The transport Equations (Equations (4)–(7)) can

be solved by several methods. EPANET (Rossman 2002)

uses the time-driven method.

The above Equations (1)–(7) show that the parameters—

nodal demand, pipe diameter, pipe roughness and bulk and

wall reaction coefficients—all directly affect the nodal

constituent levels. Reaction coefficients appear within the

reaction relationship but wall decay is influenced by the

degree of turbulence that is related to hydraulic conditions

(Rossman 2002). Thus, the hydraulic parameters (CHW,

D and q) indirectly affect constituent decay as well as directly

control flow velocities that dominate constituent transport.

All five parameters were considered as uncertain in this

analysis. A pipe’s effective diameter reduces over time

because of encrusted materials on the pipe walls. Pipe

roughness also increases due to the encrusted materials.

Thus, these two parameters are uncertain. The bulk decay

coefficient is related to many factors, including temperature

and pH, that may vary over time. The wall decay coefficient

is very difficult to measure accurately since it depends on

the reactive ability of the biofilm layer, the wall area

available for reactions and the movement of water. Thus,

these two decay coefficients are also uncertain. Demands

are inherently uncertain due to random water consumption.

METHODOLOGY

MCS for water distribution quality analysis consists of five

steps. The first step is to generate sets of random numbers

for each parameter set. Defining parameters’ values based

on the random numbers and parameter probability distri-

butions is the second step. Next, hydraulic and water quality

simulations are completed using EPANET (Rossman 2002).

Finally, statistics of disinfectant levels are computed for

nodes of interest. These steps are repeated until the statistics

of the output converge to consistent values (Step 5).

Generating random parameters (Steps 1 and 2)

For each realization, a set of random numbers are generated

in the range 0–1. The number of random values equals the

number of uncertain parameters. The parameter values are

then computed based upon their assumed distributions. For

a uniform distribution, the parameter, Puniform, is found by

Puniform ¼ rndðPul 2 PllÞ þ Pll ð8Þ

where Pul and Pll are the upper and lower bound of the

parameter and rnd is the generated random number.

Normally distributed parameters values are determined by

Pnormal new ¼ mþ s*Z ð9Þ

where m and s are the mean and standard deviation of the

parameter and Z is the standard normal deviate that is found

using the following approximation (Abramowitz&Stegun 1972)

Z ¼ t2 ða0 þ a1tÞ=ð1þ b1tþ b2t
2Þ: ð10Þ

where a0 ¼ 2.30753; a1 ¼ 0.27061; b1 ¼ 0.99229 and

b2 ¼ 0.04481. t is found from the random number by

t ¼ ðlnð1=rnd2Þ1=2 where 0 , rnd , 0:5: ð11Þ

If the generated rnd is greater than 0.5, then rnd ¼

1-rnd and the resulting sign of Z is changed from positive

to negative.
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Computing model variable statistics (Steps 3–5)

As noted earlier, EPANET is used to compute the pressure

head and water quality for each realization of random

input. The link between the random parameter generation

and EPANET is completed using the EPANET Toolkit

(Rossman 2002), which is also used to extract the model

results. The mean and standard deviation of the output

variables are computed as the MCS progresses. The process

is repeated for a defined number of realizations or until the

output statistics, i.e. mean and standard deviation of

chlorine concentrations, converge to consistent values.

Analyses were completed for steady and unsteady

conditions. Cyclical steady conditions were evaluated in

the unsteady analysis. Experiments were completed by

varying individual parameters, all parameters simul-

taneously, and all parameters omitting one.

APPLICATION NETWORK: EXAMPLE 1

Steady conditions

The first network that is analyzed in this study is network

NET2A from the EPANET User’s Manual (Rossman 2002)

(Figure 1) that consists of 35 pipes, 30 nodes, one reservoir

(node 32) and one source (node 31). For the steady state

analysis, demands, the reservoir and source levels, and

source concentration were held constant. Although net-

work hydraulics are assumed to reach steady conditions

nearly instantaneously, water quality requires time to reach

a steady condition. A 72h hydraulic and water quality

analyses were completed. The hydraulic time step, quality

time step and pattern time step were 1:00, 0:05 and 1:00h,

respectively.

Chlorine is the disinfectant of interest. It was assumed

to decay by following a first-order reaction with kb ¼ 20.3

1/d and kw ¼ 20.3 1/d. The input concentrations generated

at source and reservoir were assumed to be 1.0mg/l and

0.5mg/l, respectively. All pipe and base demand data were

taken directly from the EPANET manual. Pipes down-

stream of node 26 were dominated by laminar flow, which

violates the assumption in the defined water quality model,

so downstream pipes were truncated and demands were

lumped at node 26.

Due to a lack of literature, bulk decay and wall decay

coefficients were assumed to follow normal distribution the

roughness and nodal demands were assumed to follow

truncated normal distribution. The coefficient of variation

used for all of these parameters is 0.1. Pipe roughness values

were limited to 25 units above or below the mean or a

maximum and minimum of 140 and 80, respectively.

A check is completed to ensure the set of generated

CHW values are within their bounds. If not, the value is

discarded and a new random number is generated.

Figure 1 | Water distribution network NET2A (Example 1 network) for steady case. For

the unsteady case, the reservoir is changed to a tank and three pumps are

introduced at the source (pump station).
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Pipe diameters are assumed to follow uniform distri-

butions with a range from the nominal diameter of 12.7mm

(0.5 inches). However, log-normal distribution can be an

alternative. The range in which a diameter can vary is small

(12.7mm).

To ensure that the generated demands do not vary

significantly from the system’s mean demands the total

generated demand must not change the total mean demand

by more than 5%. If they do, the set of generated demands

is rejected and a new set of demands is generated.

Rejection of the generated demands occurred very rarely.

Table 1 summarizes the statistics used for the set of

MCS runs.

The nodal concentrations were examined at three

locations in the system (nodes, 11, 24 and 26 (Figure 1))

at hour 72. The three locations are intended to examine the

effects of travel time from the source. At hour 72, the

average water ages for nodes 11, 24 and 26 were 4.2, 7.4 and

11.5h, respectively. These values are close to the travel

times to those locations. The longer simulation period (72h)

was used to ensure steady water quality conditions were

found for all locations and generated parameter sets. It was

observed that MCS statistics converge relatively quickly

(between 3,000–5,000 realizations). However, to ensure

convergence 10,000 realizations were conducted in each

experiment (Figure 2).

To understand the impact of each parameter’s uncer-

tainty a set of experiments was completed with only one

parameter being uncertain and all others constant. An MCS

is unnecessary for the decay coefficients as they are single

values but for ease of programming they were completed.

Results for these experiments are shown as box and whisker

plots (Figure 3(a)). The effect of each parameter can be

assessed from the relative length of the box and whisker.

The combined effect of a parameter set was then assessed in

a set of five experiments by fixing one parameter per

experiment, allowing all others to be uncertain and

completing an MCS (Figure 3(b)).

The variance of a function of several parameters

(e.g. a and b) can be approximated by

Varð fða;bÞÞ ¼ ð›f=›aÞ2VarðaÞ þ ð›f=›bÞ2VarðbÞ þ 2ð›f=

›aÞð›f=›bÞCovða;bÞ þOðn3=2Þ: ð12Þ

where Var( f(a,b)) is the total function variance due to

parameters a and b. The first and second terms on the RHS

are the contributions of parameters a and b, independently.

The third term is the component from the dependence

between a and b and the fourth term is noise or model

uncertainty. In this study parameters were assumed to be

independent; thus the covariance term is zero. Also, the

model is assumed to be known exactly.

Results

As seen in Figures 3(a, b), the global wall decay coefficient

has the most effect on concentrations at node 11. The box

length is the largest when only one parameter, the global

wall decay coefficient, was considered uncertain

(Figure 3(a)). Similarly, the box length is the smallest

when it was considered as certain (Figure 3(b)). Node 11

is reasonably close to the pump station and therefore the

travel time to that node is relatively short. The result of the

short travel time is that bulk decay has little influence while

the global wall decay has the highest impact of all

parameters. If flow is steady, the total uncertainty at a

Table 1 | Statistics for uncertain parameters (both Example networks)

Pipe

diameter D

Pipe

roughness C

Base

demand q

Demand

factor qf

Bulk decay

coefficient kb

Wall decay

coefficient kw

Mean Variesp Variesp Variesp Variesp 20.3 (1/d) 20.3 (1/d)

Standard deviation or range 0.500 Variesp Variesp Variesp 0.03 0.03

Coefficient of variation – 0.1 0.1 0.1 0.1 0.1

Probability distribution Uniform Truncated normal Truncated normal Normal Normal Normal

p‘Varies’ in first row of Table 1 means each pipe and node has its own mean parameter value (e.g. diameter, roughness and demand). Since standard deviations are calculated from means

using coefficients of variation they also vary pipe to pipe and node to node. However, single mean values have been used for wall and bulk decay coefficients for the whole network.
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particular location based on Equation (12) is approximately

equal to the sum of the uncertainties due to each parameter

considered separately. Therefore, the output variance is

highest when all parameters are uncertain. This observation

was confirmed in Figures 3(a, b). The standard deviation at

node 11, s11 ¼ 0.014mg/l. and coefficient of variation at

node 11, CV11 ¼ 0.019, when all parameters are uncertain.

Node 24 is located in the middle of the system and

receives a mixture of flows from the source and the tank. The

global wall decay coefficient and demand make the largest

contributions to the node’s uncertainty (Figure 3(a)). The

magnitude of the water quality uncertainty due to the global

wall decay coefficient and demand is higher at this location

compared to nodes 11 and 26 (Figure 3(a)). As a result of a

longer travel distance, decay due to wall interactions is larger

than node 11. Thus, water quality is more sensitive to the

global wall decay coefficient. Demand changes alter the flow

pattern and the source of water passing through this node.

Since the chlorine concentrations of water from the source

after decay are much less than the water from the nearby

reservoir, this causes higher uncertainty in the concen-

trations at node 24. Similar to node 11, pipe diameter and

roughness and bulk decay have little influence on the water

quality at this node (Figures 3(a, b)).

Node 26 is in the distant portion of the system and has

a higher water age and lower chlorine concentrations

(mean concentration ¼ 0.51mg/l). This node is influenced

by all input parameters to a larger degree. The global wall

decay coefficient and discharge have the largest influence

due to longer travel times. Compared to nodes 11 and 24,

bulk decay and pipe diameter and roughness are more

important at this node (Figure 3(a)). However, pipe

diameter and roughness have the smallest influence

relative to other input parameters at node 26. The

standard deviation for node 26’s concentration is about

0.027mg/l when all uncertain parameters are considered

(Figure 3(b)) but, more significantly, the coefficient of

variation is 0.053 since the concentration is low. In the

upper portion of this system, the pipe velocities are smaller

and thus the decay in the path to node 26 is dominated by

bulk reactions as seen in Figure 3(a).

To observe the importance of parameters, Pearson

product-moment correlation coefficient (PCC) and Spear-

man’s rank correlation coefficient (RCC) (Tung & Yen

2005) were calculated at steady conditions from the MCS

samples for several nodes (Table 2). Based on the

magnitude of the terms, water quality estimates are more

sensitive to water quality parameters (decay coefficients)

than hydraulic parameters (diameter, roughness and

demand). For nodes with relatively short travel times (12,

15 and 22) the wall coefficient had the largest RCC. On the

other hand, for nodes 25 and 27 the RCC for the bulk decay

was highest due to the long travel times and low velocities

in pipes off the main trunkline.

Finally, the ratio of the Spearman to Pearson coeffi-

cients provides an indication of the nonlinearity over the

range of the input parameter that is a better indicator

compared to a single-point sensitivity term. A larger value

implies higher nonlinearity. It is interesting to note that the

decay parameters, although being the most sensitive, are the

most linear while the parameters causing less uncertainty

have a more non linear effect.

Figure 2 | Mean and standard deviation of concentration at different realizations considering all parameters uncertain at node 24 (Example 1 network).
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Unsteady conditions

To examine the effect of temporal flow conditions, the

Net2A system was modeled in an extended period analysis

(EPS). As shown in Figure 1, the reservoir was changed to a

tank. Three identical pumps at the source were represented

with the design point option with Qdesign and Hdesign equal

to 31.8m3/h (8.83 l/s) and 85.3m, respectively. Pumps were

operated using a control policy based on the tank level

containing three rules: less than 3.1m of water in the tank

turn on all three pumps, exceed 4.57m level turn off one

pump and exceed 7.62m level turn off all pumps.

The source water level and its concentration were held

constant at 0m and 1mg/l, respectively. The 24h average

demand pattern listed in Table 3 was repeated for a 480h

simulation period. A cyclical steady state quality and

quantity pattern was reached before 480h but extra time

was added to allow for uncertainty in changing parameters.

The same hydraulic time step, quality time step and pattern

time step were also used in the EPS as in the steady state

analysis. The same decay coefficients were used as in the

steady state analysis. Nodal concentrations were examined

at three locations in the system (nodes 11, 24 and 26) from

hours 456 to 480 (12 am to 12 am). MCS runs were

completed (1) varying one parameter with others remaining

fixed and (2) considering all parameters uncertain together.

The MCS was terminated if the change of standard

deviation of concentration did not exceed 0.0001mg/l

between 250 realization increments or 10,000 realizations

were evaluated.

For unsteady conditions the total system demand factor

(q) is generated as in the steady case and applied to the

average demand for each node to generate the base demand

over a day for that particular node. Since each node’s

demand varies over time, a second temporal demand factor

(qf) is generated for each node for each time period. This

temporal demand factor introduces uncertainty about the

average nodal demand as a function of time. The final nodal

demand at node j and time t, qt,j, is computed by

qt;j ¼ qft;jq
n
j DFtqbj ð13Þ

where qbj is the base demand for node j, DFt is the

deterministic base demand multiplier for time t, qnj is

the random nodal demand factor for node j and qft;j is the

random temporal demand factor for time t and node j. In

the MCS, uncertainties were introduced for qft;j as an

independent parameter and the total demand uncertainty,

qnj . Both of these demand factors were assumed to follow

the normal distribution. Since no information is available

on potential relationships, all parameters are assumed to be

uncorrelated.

According to Equation (12) it is observed in the steady

case that prediction uncertainty when all the parameters

were considered uncertain is higher than the uncertainty

due to any parameters considered separately. However, in

the unsteady case changes in the flow pattern and system

operations play an important role. It is observed that, due to

change in the flow pattern, there are discrete changes in

Figure 3 | (a) Box and whisker diagrams for MCS results under steady conditions for

individual parameter uncertainty (Example 1 network). (b) Box and whisker

diagrams for MCS results under steady conditions for multiple uncertain

parameters (Example 1 network). Box and whisker diagram for

concentration at different nodes showing median, 1st and 3rd quartiles, and

5th and 95th percentiles for different sets of uncertain parameters

(D ¼ pipe diameter, CH ¼ pipe roughness, q ¼ nodal demand, kb ¼ global

bulk decay coefficient and kw ¼ global wall decay coefficient).
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pump operations and flow. Thus, the gradients in Equation

(12) are not continuous. As a result, the uncertainty due to

all parameters can be seen to be less than the uncertainty

due to individual parameters at a particular time.

Node 11

The average concentration over the 24h cyclical demand

period for node 11 is shown in Figure 4(a). The concen-

tration at node 11 is highest during the early morning and

gradually falls until mid-afternoon. Node 11’s demand is

always provided by flow from the pump station source. The

velocities in the pipes located between the source and node

11 are lowest between 2 am and 3 pm. This water reaches

node 11 from 3 am to 4 pm, resulting in the lower average

concentrations compared to the remainder of the day due to

the longer travel times. High concentrations during the

remainder of the day are due to higher velocities and shorter

travel times.

Standard deviations of chlorine concentration for

different uncertain parameters are shown in Figures 4(b, c).

The overall magnitude of uncertainty (Figure 4(c)) is small

at this node except for around 4 pm. As noted, chlorine

decay is closely related to travel time. In a constant

diameter pipe, velocity increases directly with flow rate.

Therefore, during high flow periods chlorine decay is low.

Table 2 | Pearson and Spearman rank correlation coefficients and their divisor for different uncertain parameters for nodes (Example 1 network)

Pearson correlation

coefficients (PCC)

Spearman rank

correlation coefficients (RCC) Divisor (RCC/ PCC)

Node Parameter Mean Min Max Mean Min Max Mean Min Max

12 Diameter 0.04 0.00 0.22 0.01 0.00 0.02 1.51 0.01 14.86

Roughness 0.02 0.00 0.30 0.01 0.00 0.02 3.24 0.00 43.40

Demand 0.05 0.00 0.27 0.01 0.00 0.02 0.95 0.02 7.18

Bulk Coef. 0.72 0.72 0.72 0.17 0.17 0.17 0.24 0.24 0.24

Wall Coef. 0.95 0.95 0.95 0.30 0.30 0.30 0.31 0.31 0.31

15 Diameter 0.04 0.00 0.27 0.01 0.00 0.03 1.24 0.00 9.66

Roughness 0.03 0.00 0.21 0.01 0.00 0.03 1.07 0.03 8.82

Demand 0.05 0.00 0.29 0.01 0.00 0.02 1.01 0.01 13.77

Bulk Coef. 0.81 0.81 0.81 0.02 0.02 0.02 0.02 0.02 0.02

Wall Coef. 0.98 0.98 0.98 0.18 0.18 0.18 0.19 0.19 0.19

22 Diameter 0.04 0.00 0.39 0.01 0.00 0.03 6.17 0.00 162.36

Roughness 0.04 0.00 0.57 0.01 0.00 0.03 1.27 0.00 12.81

Demand 0.06 0.00 0.73 0.01 0.00 0.02 13.14 0.01 211.44

Bulk Coef. 0.85 0.85 0.85 0.01 0.01 0.01 0.01 0.01 0.01

Wall Coef. 0.97 0.97 0.97 0.11 0.11 0.11 0.12 0.12 0.12

25 Diameter 0.04 0.00 0.22 0.01 0.00 0.02 1.23 0.01 8.07

Roughness 0.02 0.00 0.17 0.01 0.00 0.03 5.42 0.00 123.30

Demand 0.12 0.01 0.45 0.01 0.00 0.02 0.14 0.00 1.23

Bulk Coef. 0.91 0.91 0.91 0.13 0.13 0.13 0.14 0.14 0.14

Wall Coef. 0.97 0.97 0.97 0.09 0.09 0.09 0.09 0.09 0.09

27 Diameter 0.04 0.00 0.18 0.01 0.00 0.02 0.76 0.01 4.78

Roughness 0.01 0.00 0.11 0.01 0.00 0.01 6.51 0.05 175.68

Demand 0.12 0.01 0.45 0.01 0.00 0.02 0.14 0.00 0.83

Bulk Coef. 0.88 0.88 0.88 0.09 0.09 0.09 0.10 0.10 0.10

Wall Coef. 0.96 0.96 0.96 0.06 0.06 0.06 0.06 0.06 0.06
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On the other hand, if flows are small, decay is high. Around

2 am and 3 pm, the source pump operations generally

changed. At 2 pm one of the three operating pumps is

turned off and flow from the pump station decreases. This

pump is turned back on at 3 pm and the pump station flow

increases. These pump switches are reflected in the

concentration changes at these time (Figure 4(a)). Small

demand changes can cause the pump switching to occur

slightly before or after the noted times, causing more

variability in pumping rates and higher water quality

uncertainty. The demand uncertainty contributions to

overall chlorine concentration uncertainty are quite small

during the remainder of the day.

With the exception of these two periods the global wall

decay coefficient provides the largest contribution to node

11’s concentration uncertainty. The uncertainty pattern due

to bulk decay coefficient is similar to, but lower than, the

global wall decay coefficient. In the turbulent flow in the

pipes supplying node 11, the wall decay coefficient is larger

and has more impact than the bulk decay coefficient.

Pipe diameter and roughness are the least significant

parameters for this node. Although diameter changes cause

velocity and water age differences, these changes are

apparently less than that caused by demand uncertainty.

Equation (12) can be used to estimate water quality

variability. This relationship is in essence the first-order

second moment variance estimate method based on a

Taylor’s series expansion and ignoring the higher-order

terms. Calculations have been made to calculate the

standard deviations of water quality from 12 am to 12 am

for the last 25h of the simulations (from hours 456 to 480)

at node 11 for the uncertain parameters diameter and

demand. The result shows that diameter has less impact

(standard deviation 0.013mg/L) than demand (standard

deviation 0.022mg/L). Pipe roughness alters turbulence

levels and wall decay but to a lesser degree than the wall

decay coefficient’s direct impact. Considering one para-

meter uncertain at a time the standard deviation and

coefficient of variation are as high as 0.015 and 0.02,

respectively, excluding the pump switching periods in the

MCS. The uncertainty is largest (standard deviations in the

range of 0.025mg/l) when all the parameters are considered

as uncertain (Figure 4(c)).

Node 24

The temporal pattern of flow to and from the tank is shown

in Figure 5(a). Water flows from the tank into the network

from 6 am to 3 pm and 4 pm to 7 pm and the tank fills

during the remainder of the day. Average concentration

over time at node 24 is shown in Figure 5(b). From 8 am to

9 pm the average concentration is around 0.27mg/l. During

the remainder of the day the concentration level is around

0.8mg/l. The abrupt concentration changes occur when the

tank flow pattern changes. Water coming from the tank is

older and has lower concentrations than flow coming

directly from the source. Node 24 is located very close to

the tank so the concentration responds nearly immediately

to tank flow changes.

The standard deviation of node 24’s chlorine concen-

tration has peaks at 7 am, 4 pm and 9 pm resulting from

variability in nodal demand and temporal demand factors

(Figure 5(d)). The peaks in the standard deviation occur

when demand changes cause the tank flow patterns to

change. Thus, the peaks correspond to periods when tank

flows are near zero (Figure 5(a)). Water quality in the tank

during draining periods is lower than the water quality in

the tank when flow is being supplied from the source. Thus,

during the noted periods, the source and its concentration

are quite different and the demand changes cause the

Table 3 | Temporal demand factors for different conditions (both Example networks)

Time

Temporal demand

multipliers Time

Temporal demand

multipliers

12 am 0.5 12 pm 1.16

1 am 0.48 1 pm 1.17

2 am 0.45 2 pm 1.21

3 am 0.4 3 pm 1.23

4 am 0.46 4 pm 1.36

5 am 0.64 5 pm 1.57

6 am 0.85 6 pm 1.75

7 am 1.2 7 pm 1.5

8 am 1.37 8 pm 1.15

9 am 1.27 9 pm 0.85

10 am 1.16 10 pm 0.66

11 am 1.15 11 pm 0.58
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source of water to change and uncertainty (standard

deviation) to increase.

The relative impact of the different patterns is shown in

Figures 5(c, d). The most striking result is the relative

uncertainty of the output relative to individual parameters

except during the flow transition periods. Except for those

periods, the standard deviation of the chlorine concen-

tration is less than 0.015mg/l for all parameters. Thus, the

coefficient of variation (CV) of the output is at most 0.04

while the input coefficients of variation were all 0.1. This

result demonstrates the robustness of this system to input

uncertainty during normal operations. The total effect of the

set of parameters, however, can be more substantial. When

all uncertain parameters are considered simultaneously,

the water quality standard deviation increases in both

non-transition and transition periods although the increase

of standard deviation in the transition period is higher than

during the non-transition period.

Focusing on individual parameters, the wall decay

coefficient generally has the largest effect exclusive of the

short flow reversal periods and follows a temporal pattern

similar to the concentration (Figure 5(c)). Although the

highest standard deviation varies, the coefficients of

variation are relatively constant and near 0.02. The wall

coefficient is more significant than the bulk coefficient

between the hours of 10 pm and 6 am since the flow is

provided by the pump station at relatively high velocities.

The remainder of the parameters had very little influence on

concentration uncertainty including the demand terms

during the periods of well-defined flow from the tank.

Figure 4 | (a) Temporal pattern of average concentration at node 11 (Example 1 network). (b) Temporal pattern of standard deviation of concentration at node 11 for uncertain

roughness and decay coefficients under cyclical unsteady conditions (Example 1 network). (c) Temporal pattern of standard deviation of concentration at node 11 for

uncertain diameter, demands, and all parameters together under cyclical unsteady conditions (Example 1 network).
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The order of importance in this unsteady analysis (global

wall decay coefficient, nodal demand and temporal demand

factors, and bulk decay coefficient) was identical to the

most significant contributors to uncertainty at node 24 for

the steady state conditions (Figures 3(a, b)).

Node 26

Flow reaching node 26 has the longest travel time in the

system. On average, morning water (6 am to 12pm)

supplied to node 26 is directly from the pump station with

high chlorine concentrations. During the remainder of the

day water reaching node 26 has been stored in the tank

prior to delivery and has lower concentrations (Figure 6(a)).

Flow reaching node 26 passes through node 24. The two

concentration levels at node 24 (Figure 5(b)) correspond to

the tank supply (low values) and direct source supply (high

values). On average, this pattern is slightly compressed

when it reaches node 26 (Figure 6(a)) due to the demand

Figure 5 | (a) Temporal tank flow pattern (positive and negative values correspond to flow to and from the tank, respectively (Example 1 network). (b) Temporal pattern of average

concentration at node 24 (Example 1 network). (c) Temporal pattern of standard deviation of concentration at node 24 for uncertain roughness and decay coefficients

under cyclical unsteady conditions (Example 1 network). (d) Temporal pattern of standard deviation of concentration at node 24 for uncertain diameter, demands and all

parameters together under cyclical unsteady conditions (Example 1 network).
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variations. The 10h elevated period at node 24 (Figure 5(b))

is reduced to 5h due to the higher daylight hour demands

(Figure 6(a)). In addition, the pattern is delayed by about

4.5 h as a result of the low velocities in pipes between nodes

24 and 26. This travel time also accounts for the lower

chlorine concentrations.

The standard deviations and coefficients of variation for

different individual parameters during the evening and

night-time hours are as high as 0.01 and 0.04, respectively

(Figures 6(b, c)). Uncertainties are elevated from about 6 am

to 6 pm due to changes in hydraulic conditions and thewater

source (i.e. stored in a tank or supplied directly from the

source) rather than changes in water quality during travel.

This hypothesis was confirmed by introducing a setpoint

booster at the tank outlet maintaining a constant chlorine

concentration at node 24 and repeating the MCS. Uncer-

tainty spikes were not observed in this test (not shown).

A number of interesting results are identified from

Figures 6(b, c). First, the uncertainty at node26 is consistently

higher thanbothnodes 11 and24due to the larger decrease in

chlorine in flow reaching that node. Second, at times the

uncertainty when all parameters are considered is less than

the uncertainty when a single parameter is evaluated. This

result is inconsistent with the fundamental relationship in

Equation (12) that shows that uncertainty should increase

with additional uncertain input parameters. In this case,

however, the variability in results is causedby changes in tank

conditions (open/closed) which, in turn, alters the equations

Figure 6 | (a) Temporal pattern of average concentration at node 26 (Example 1 network). (b) Temporal pattern of standard deviation of concentration at node 26 for uncertain

roughness and decay coefficients under cyclical unsteady conditions (Example 1 network). (c) Temporal pattern of standard deviation of concentration at node 26 for

uncertain diameter, demands, and all parameters together under cyclical unsteady conditions (Example 1 network).
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that govern the system state and Equation (12) does not

apply. It appears that, as more uncertain parameters are

included in the analysis, the tank filling and emptying

conditions are delayed and the uncertainty in output is

shifted in time. Third, the nodal demand and the temporal

demand factor uncertainties always had the highest impact.

This factor is likely due to its direct relationship to the travel

time. Next, the uncertainty peaks caused by roughness and

diameter are not coincident in time.While diameters directly

affect pipe velocities and travel times, pipe roughness is

less direct as it alters the network flow pattern due to the

head loss distribution but does not directly change the

flow velocity. Finally, plotting the MCS results on normal

distribution paper for all periods during the day showed

that up to about the 95th percentile the model output was

normally distributed (not shown).

SENSITIVITY ANALYSIS

Parameter uncertainty level

MCS runs for different input coefficients of variation (CV)

for all parameters were completed to examine the relation-

ship between the input and output uncertainty levels. The

output CV for nodes 11, 24 and 26 were examined at six

different times during the day. As expected, the output

uncertainty increases with input uncertainty (CV) for all

nodes at all times.

The output uncertainty due to global wall and bulk

decay coefficients increases faster than linear as the CV is

increased. Doubling the CV of kw (from 0.05 to 0.10)

increased the output standard deviation (SD) at all nodes

and times by about a factor of 1.75. Doubling the CV again

to 0.20 more than doubled the concentration SDs (a factor

of 2.2). The change with respect to kb was slightly more

linearly proportional with increases of about 185% and

210% when the input CV was altered from 0.05 to 0.1 and

0.1 to 0.2, respectively.

Less than proportional increases in output uncertainty

were observed when the total demand factor, qnj , uncertainty

was altered. For example, when the demand CV was

decreased to 50% of the base value the SD of the

nodal concentration generally decreased to about 40% of

its base value. Varying the demand factor uncertainty

altered the supply location timing and elevated periods

of high uncertainty. For most times and locations, the

temporal demand factor (qf) response was nearly linearly

proportional to changes in its input uncertainty over a range

of CVs from 0.05 to 0.20. Node 26 was the least consistent,

particularly during periods when the source supply would

change. Changes in uncertainties in pipe diameter and

roughness have similar slightly less than linear proportional

changes in output SDs. Node 26 was anomalous in some

cases. Full display of the results can be found in Pasha (2006).

Effect of emergency storage volume

Reducing tank storage and ensuring tank turnover are

means to improve water quality. Changing tank operations

may also alter the uncertainty in water quality. To model

tank conditions three pump control policies were devel-

oped. Each policy consists of three pumping control rules:

below a minimum level turn on all three pumps, exceed a

mid-tank level turn off one pump and exceed a maximum

level turn off all pumps. The low emergency storage policy

control rules changed pump operations at 1.5, 3.1 and 4.6m

of water in the tank, respectively. The tank levels for

changing pump operations for medium and high emergency

storage conditions were 3.1, 4.6 and 6.1m and 4.6, 6.1 and

7.6m, respectively. Medium storage is the condition

evaluated in earlier sections. Note that a low emergency

storage range results in a larger proportion of tank water

turning over each day.

As the emergency storage increases mean concen-

trations decrease with longer retention times. The average

daily standard deviation (excluding periods impacted by

flow changes) also changes with the storage volume for all

the parameters at downstream nodes (Table 4). Higher tank

storage volumes increase uncertainties (standard devi-

ations) at the downstream nodes 24 and 26 for all the

parameters except the decay coefficients. Uncertainties due

to the decay coefficients (both the global wall and bulk

decay coefficients) decrease when tank storage volume

increases (Table 4). However, since the mean concen-

trations decrease with higher storage, the relative uncer-

tainty as represented by the coefficient of variation (CV)

increases as a result of uncertainty in the decay coefficients.

Variation in the uncertainties at nodes where the tank does
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not provide water (or the tank provides water for a shorter

time) is negligible (e.g. node 11). Thus, for this system,

reducing emergency storage improves system water quality

and makes system conditions more stable and less uncertain.

Effect of demand pattern

Since demand factors had the largest influence on the

output uncertainty, MCS runs were completed for three

other demand patterns. The magnitude of the total demand

was increased and decreased by 10% in patterns 1 and 2,

respectively. The third pattern increased the demand at all

times by 10% except at 8 am and 6 pm when the peaks are

increased by 25% representing a more summer-like con-

dition. Compared to the original demand pattern, the

magnitude of the output uncertainties did not change for

any of the three new patterns.

While the temporal pattern of standard deviations for

node 11 did not change, the time distribution of standard

deviations of chlorine concentration for nodes 24 and 26

were altered (Figure 7). Since the temporal demand patterns

had similar shapes as for the base condition, the timing of

demand and temporal demand factors uncertainties were

unchanged. However, the peaks associated with pipe

roughness and diameter were shifted in time. Like the

base condition, these peaks are caused by changes in water

source. A new peak was added for the third pattern due to

variability in water source in the early evening. Overall, the

similar uncertainty magnitude shows the relative stability of

water quality in this water distribution system.

APPLICATION NETWORK: EXAMPLE 2

The second network analyzed is a real network that consists

of 90 nodes, 116 pipes, 1 source, 1 tank, and 4 pumps

connected to the source. The tank is considered only in

unsteady conditions. The hydraulic time step, quality time

step and pattern time step were 1:00, 0:05 and 1:00 h,

respectively. Chlorine is the disinfectant with an input

concentration of 1.25mg/l assuming a first-order reaction

with kb ¼ 20.3 1/d and kw ¼ 20.4 1/d. Of a total of 90

nodes, 40 nodes have zero demand. 0.879m3/s (31.05 cfs or

3,166m3/h) is the average total system demand. Node 79 is

the furthest node from the source and thus has the longest

water age of about 26h with the lowest concentration. The

nodal concentrations were examined at three locations in

the system (nodes, 19, 52 and 79 (Figure 8)).

Similar to Example 1 diameter is considered uniformly

distributed with a maximum variation of 12.7mm (0.5

inches) and other parameters are considered normally

distributed while roughness and demand are assumed to

follow a truncated normal distribution. In steady state

analysis, the demand is constant and the simulation was

performed for 90 h to ensure steady conditions for all

locations. The last hour’s concentrations were evaluated. In

unsteady analysis the 24h demand pattern was repeated for

the 240h simulation to ensure cyclical steady conditions.

The last 24 hours concentrations were evaluated.

Similar to the Example 1 network, 10,000 realizations

were conducted in each experiment to ensure convergence.

A set of experiments was completed with only one

parameter being uncertain while the others are constant.

Table 4 | Average standard deviation (mg/l) for different tank storage volumes under unsteady conditions (Example 1 network)

Node Conditions Diameter Roughness Demand Bulk decay Global wall decay Demand factor All parameters

26 High storage 0.0039 0.0019 0.0194 0.0056 0.0123 0.0100 0.0258

Medium storage 0.0049 0.0015 0.0175 0.0056 0.0143 0.0081 0.0247

Low storage 0.0029 0.0018 0.0153 0.0063 0.0139 0.0077 0.0240

24 High storage 0.0028 0.0045 0.0137 0.0038 0.0107 0.0088 0.0208

Medium storage 0.0017 0.0022 0.0122 0.0036 0.0124 0.0072 0.0199

Low storage 0.0017 0.0032 0.0103 0.0040 0.0117 0.0064 0.0181

11 High storage 0.0012 0.0017 0.0047 0.0038 0.0111 0.0019 0.0130

Medium storage 0.0012 0.0017 0.0046 0.0036 0.0123 0.0019 0.0134

Low storage 0.0013 0.0018 0.0045 0.0038 0.0111 0.0018 0.0136
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These experiment results were compared with an experi-

ment with all parameters considered uncertain.

Steady conditions

Box and whisker plots are shown for steady state exper-

iments in Figure 9. Similar to the Example 1 network, the

important parameters are global wall decay coefficient, bulk

decay coefficient and demand. As expected, when all the

parameters are considered uncertain together the output

uncertainty level becomes the highest. Separately, the global

wall decay coefficient has the highest impact at node 52

which is close to the pump station. While demand has a

small impact at node 52, it has higher impacts at nodes 19

and 79. The bulk decay coefficient shows similar obser-

vations as found in Example 1. It has higher impact where

the water age is higher or the water turbulence is less (node

79) but relatively smaller impacts where water age is less or

the turbulence is higher (nodes 19 and 52). Similar to the

Example 1 network, diameter and pipe roughness have

small contributions to overall uncertainty.

Unsteady conditions

Unsteady condition results are shown in Figures 10–12.

Observations that are similar to Example 1 can be made for

this network. Uncertainty spikes are observed due to either

change in pump schedule or change in flow direction to the

tank. Node 19 is relatively close to the pump station and is

not affected by the tank flow (Figure 10). The uncertainty

spikes at this node are observed due to changes in the

pump operation. However, node 52 is located close to the

tank and is directly affected by the tank flow. Uncertainty

spikes at this node are observed when the tank flow

direction changes (Figures 11(a, b)). Node 79 is the distant

node and the tank effect is relatively small. As a result, the

Figure 7 | Temporal pattern of standard deviation of concentration for different uncertain parameters at node 26 under cyclical unsteady conditions for demand pattern 2 (top row)

and 3 (bottom row) for Example 1 network.
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spikes are not significant (Figure 12). The global wall decay

coefficient has the highest impact on uncertainties for

nodes 19 and 52 while the nodal demand has the highest

impact at node 79.

DISCUSSION

The most salient result from this analysis is the relatively

small uncertainty in water quality as a result of the model

input uncertainty during much of the day at most locations.

Changes in supply result in significant uncertainty but

parameter uncertainties do not have a tremendous impact

on model output. For a system operator or administrator,

this result is promising. If the model is generally robust

under normal operations, the delivered water quality is

likely maintained under those conditions. As systems move

to optimizing operations to maintain water quality, an MCS

analysis such as this would be useful to ensure standards

will be met.

In addition, the limited uncertainty is promising for the

detection of contaminant intrusions. Contamination events

are detected as deviations from average conditions. Since

water quality is relatively stable, excursions from those

conditions are likely indicative of an outside influence and

relatively small changes can be identified. During mixed

supply periods, confidence levels would have to be

increased or additional logic could be incorporated to

provide information on the system operations (i.e. the tank

empty/fill condition).

Although stable model results are useful for some

purposes, they pose difficulties in water quality model

calibration and potential predictions under extreme con-

ditions. A water quality model requires two sets of model

parameters: hydraulic and water quality. Hydraulic para-

meters include pipe diameters and roughnesses, and nodal

demands. Distributed demands are difficult to ascertain and

are typically generated from experience and judgment. Pipe

parameters can be estimated and improved from pressure

test data. These inputs in a hydraulic simulation give water

velocities and travel times that drive water quality. All of

these parameters can be improved with tracer tests that

measure travel times. Tracer tests, however, are strongly

influenced by the actual demands occurring during the test.

In the small system examined here, the demand influence

on water quality is not significant but this may not translate

to water age and travel time. It was more significant in the

large system but only at the distal nodes.

Figure 8 | Example 2 network.

Figure 9 | Box and whisker diagrams for MCS results under steady conditions for

individual parameter uncertainty (Example 2 network).
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Bulk decay coefficients can be determined off-line in jar

tests. However, wall decay coefficients must be calibrated

with field data. The relatively limited uncertainty of water

quality to model parameters presents a difficult problem.

It suggests that a reasonable range of parameter values

(wall decay and others) will provide similar water quality

estimates. Thus, calibration for the wall decay parameter

from field disinfectant measurements under average con-

ditions will likely not provide its unique value. This is

acceptable for normal operations but may not be so for

extreme conditions or during studies to modify operations.

An inability to identify the true parameter value is

particularly difficult in more complex water quality models

that require multiple parameters to describe water quality

transformations in a pipe. Another use of water quality

models is to examine water quality under new operational

conditions or extreme conditions such as pipe breaks and

pump failures. These conditions have been examined here

to a very limited extent with promising conclusions but

deserve study in a similar vein.

Figure 10 | (a) Temporal pattern of average concentration at node 19 (Example 2 network). (b) Temporal pattern of standard deviation of concentration at node 19 for uncertain

roughness and decay coefficients under cyclical unsteady conditions (Example 2 network). (c) Temporal pattern of standard deviation of concentration at node 19 for

uncertain diameter, demands, and all parameters together under cyclical unsteady conditions (Example 2 network).
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Tracer tests with simultaneous water quality measure-

ments are the best practical method for ascertaining in-

system water quality parameters but demand estimates

remain an issue. Given that these tests are usually

completed under normal operations and the sensitivity to

wall decay is not very significant, a wall decay estimate

from a tracer study result is likely to be not very robust.

During hydraulic calibration, extreme conditions are

introduced through a hydrant test. No analogous long-

term stress test has been proposed for water quality

parameter estimation. Research is in this direction appears

necessary.

To summarize, based on the MCS results, if a model is

calibrated for normally occurring conditions, model calibra-

tion will likely result in in-system parameters that are not

robust. However, whenmodeling those typical conditions, this

paper shows that the range of model outputs based on those

parameters will not be wide (except for changes resulting

in system dynamics (tank/source operations)). However, the

impact of less common conditions is unclear beyond some

simple tests. More study is needed on looped systems, failure

conditions, growth changes and alternative system opera-

tions that intend to minimize pumping costs or disinfection

injections (possibly in conjunction with valving).

Figure 11 | (a) Temporal pattern of average concentration at node 52 (Example 2 network). (b) Temporal pattern of standard deviation of concentration at node 52 for uncertain

roughness and decay coefficients under cyclical unsteady conditions (Example 2 network). (c) Temporal pattern of standard deviation of concentration at node 52 for

uncertain diameter, demands, and all parameters together under cyclical unsteady conditions (Example 2 network).
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CONCLUSIONS

MCS was applied to two water distribution systems to study

the effect of uncertain parameters on water quality predic-

tions. Steady and unsteady conditions were analyzed for the

input parameters’ coefficient of variation of 0.1. The

parameters considered are the bulk and global wall decay

coefficients, pipe roughnesses and diameters, and nodal

demands for steady conditions. For unsteady analysis, a

temporal demand factor is added. The effect of parameter

uncertainty is examined by varying one parameter with

others remaining fixed in both steady and unsteady cases.

To further examine the relative effect of a parameter under

steady conditions, each parameter was fixed while all

parameters were considered as uncertain.

Four primary conclusions were drawn from the results.

First, the relative impact for these two systems due to the

uncertain input was small. Second, from the steady and

unsteady analyses the influence of decay coefficients tended to

be the largest of all parameters. Changes in flow conditions

caused by demand uncertainty caused elevated uncertainty

levels but during the consistent flow conditions the effect of

demand uncertainty was low. Third, the relative magnitude of

the standarddeviationof themodel outputwasdirectly related

to the distance from the source (under consistent flow

conditions). Finally, for the systems considered and the

Figure 12 | (a) Temporal pattern of average concentration at node 79 (Example 2 network). (b) Temporal pattern of standard deviation of concentration at node 79 for uncertain

roughness and decay coefficients under cyclical unsteady conditions (Example 2 network). (c) Temporal pattern of standard deviation of concentration at node 79 for

uncertain diameter, demands, and all parameters together under cyclical unsteady conditions (Example 2 network).
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assumption of uncorrelated parameters, the impact of uncer-

tainties were not additive in the unsteady case and, in some

cases, the output standard deviation for all uncertain

parameters together was less than the uncertainty for a single

uncertain parameter due to the lagging effect of uncertainties

caused by changing the flow pattern in the system.

A series of sensitivity analyses were completed for the

Example 1 network and the following conclusions were

reached. Although it promotes chlorine decay, as emer-

gency storage was increased the relative uncertainty

increased at downstream nodes. The rate of change of the

output uncertainty was constant or increased with increas-

ing parameter uncertainty levels. The impact of altering the

demand pattern over the range considered was small.

The implications of uncertainties on modeling water

quality are significant in terms of calibration and model

application. Determining a set of parameters that provide a

match with field measurements is likely not very difficult as

many parameter sets will provide similar results. However,

gaining confidence in a calibration may prove difficult due

to the limited uncertainty of the water quality under normal

operational conditions. Reasonable parameters appear to be

relatively robust for normal operations but more extreme

results may not be accurately predicted. To begin to further

assess these issues, additional uncertainty analyses should

be completed considering spatial and temporal correlations

between demands, for travel time conditions and for highly

stressed systems or under failure conditions. This study was

conducted with an emphasis on the state-of-the-art in water

distribution system modeling under normal operating

conditions. Pressure-driven demand modeling (Giustolisi

et al. 2008) should be considered in a similar framework to

determine the impact of these conditions on model

prediction uncertainties.
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