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In this paper two models are presented based on Data-Driven Modeling (DDM) techniques

(Artificial Neural Network and neuro-fuzzy systems) for more comprehensive and more accurate

prediction of the pipe failure rate and an improved assessment of the reliability of pipes.

Furthermore, a multivariate regression approach has been developed to enable comparison with

the DDM-based methods. Unlike the existing simple regression models for prediction of pipe

failure rates in which only few factors of diameter, age and length of pipes are considered, in this

paper other parameters such as pressure and pipe depth, are also included. Furthermore, an

investigation is carried out on most commonly used mechanical reliability relationships and the

results of incorporation of the proposed pipe failure models in the reliability index are compared.

The proposed models are applied to a real case study involving a large water distribution network

in Iran and the results of model predictions are compared with measured pipe failure data.

Compared with the results of neuro-fuzzy and multivariate regression models, the outcomes of

the artificial neural network model are more realistic and accurate in the prediction of pipe failure

rates and evaluation of mechanical reliability in water distribution networks.

Key words | artificial neural network, mechanical reliability, multivariate regression, neuro-fuzzy

system, pipe failure rate, water distribution networks

NOMENCLATURE

l (t) the failure rate per year t (based on number

of failures/yr/km (or mile))

a the growth rate (1/yr)

l the pipe failure rate

Dl the pipe diameter in (inches) or (mm)

Np the number of existing pipes in the network

(Al) the availability parameter of component l

in the network (including pipes)

b1 number of pipe failures per unit of time that

is obtained as bl ¼ Ll
*l

L1 the length of pipe l in miles or km

a1 number of expected repairs for the lth pipe

per unit of time

MTBF mean time between failures (duration of

connectivity)

MTTR mean time to repair (duration of

disconnection and repair)

yactual the actual (observed) data

yprediction the predicted data

yaverage the average of data

RMSE root of mean squared error

IOA the index of agreement

n the number of observations (a real number)

Pl the hydraulic pressure of pipe l

Hl the depth of installation of pipe l

Agl the age of pipe l

Dmax, Lmax, Pmax, Hmax, Agmax, lmax

the maximum values of diameter, length,

pressure,depth, ageandbreakrate forasbestos

cement pipes in the district, respectively.
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w1, w2, w3 the weight matrices

b1, b2, b3 bias values obtained from the neural

network for different layers of the selected

model

gaussmf, gauss2mf, gbellmf, trapmf and trimf

hybrid and different types of studied

membership functions

ALPNLRFR availability (AL) from Poisson formula (P)

using nonlinear multivariate regression

method (NLR) for failure rate (FR)

ALPANNFR availability (AL) from Poisson formula (P)

using artificial neural network model (ANN)

for failure rate (FR)

ALPANFISFR availability (AL) from Poisson formula (P)

using neuro-fuzzy model (ANFIS) for failure

rate (FR)

ALPSFR availability (AL) from Poisson formula (P)

using Su formula (S) for failure rate (FR)

ALKANNFR availability values from Khomsi formula with

the failure rates extracted from the relation

and model of ANN

ALKANFISFR availability values from Khomsi formula with

the failure rates extracted from the relation

and model of ANFIS

ALKSFR availability values from Khomsi formula with

the failure rates extracted from the relation

and model of Su formula (S)

ALKNLRFR availability values from Khomsi formula with

the failure rates extracted from the relation

and model of NLR

ALKANNFR availability values from Fujiwara & Tung

formula with the failure rates extracted from

the relation and model of ANN

ALKANFISFR availability values from Fujiwara &

Tung formula with the failure rates

extracted from the relation and model

of ANFIS

ALKSFR availability values from Fujiwara & Tung

formula with the failure rates extracted

from the relation and model of Su

formula (S)

ALKNLRFR availability values from Fujiwara & Tung

formula with the failure rates extracted from

the relation and model of NLR

INTRODUCTION

The main task of water distribution networks is to supply

water to consumers (domestic, commercial and industrial)

in the required quantity, quality and pressure. Reliability

indicators are used to evaluate the efficiency of water

distribution networks in providing water with standard

quality, sufficient quantity and within the appropriate

pressure range to consumers under different operational

(normal and abnormal) conditions such as component

failure and hydraulic changes (Farmani et al. 2005).

Reliability of water distribution networks relates to two

types of failure, mechanical failure of system components

and hydraulic failure caused by changes in demand and

pressure head (Tabesh 1998). Accidents, and especially

failures of pipes in urban water distribution networks, lead

to financial and capital losses for repair and restoration of

the network. Failures reduce the reliability of the network

due to lowering of the pressure or due to interruption of the

water supply in parts of the distribution network, which

ultimately leads to dissatisfaction of customers. Sensitive

customers such as industrial centers, governmental build-

ings, hospitals, etc., are most likely to be affected.

To evaluate the mechanical reliability of a water

distribution system, a relationship should be established

between pipe failures and other parameters of the system.

In general, numerous factors such as age, diameter,

material, corrosion, quality of pipe material, installation

conditions, operational conditions and traffic contribute to

accidents and mechanical failure of pipes. Among the

parameters that affect pipe failure, only some of them are

measurable such as age, length, diameter, depth and

pressure. The most often applied formulae for estimating

the pipe failure rate have been obtained using simple

regression models on the available pipe failure data from a

limited time period. These relationships include only a

number of influential parameters that affect pipe failure, e.g.

age (Shamir & Howard 1979), age and diameter (Kettler &

Goulter 1985; Giustolisi et al. 2006), diameter (Kettler &

Goulter 1983; Su et al. 1987; Goulter & Kazemi 1988, 1989;

Mays 1989; Cullinane et al. 1992; Goulter et al. 1993; Tabesh

& Abedini 2005), climatic conditions (Harada 1988; Sacluti

1999; Welter 2001; Ahn et al. 2005). Consideration of all

available parameters should lead to more realistic failure
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rate predictions. In view of the characteristics and

capabilities of data-driven methods and their ability to

include a large number of parameters involved in complex

phenomena, there has been a great deal of interest among

researchers and practitioners to use this type of model.

Artificial Neural Network (ANN) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) are among the DDM

techniques which have the ability to capture the complex

and nonlinear relationship between different variables of a

system by learning from data (Demuth & Beale 2002). Since

there have been numerous applications of these techniques

in various fields of engineering, use of DDM such as ANN

and ANFIS would be useful for prediction of pipe failure

rates. There are very few publications on the applications of

data-driven models for pipe failure prediction (e.g. Sacluti

1999; Ahn et al. 2005). On the other hand, a few

relationships have been developed to calculate mechanical

reliability of pipe systems (Su et al. 1987; Fujiwara & Tung

1991; Cullinane et al. 1992; Khomsi et al. 1996). All these

formulae involve pipe failure rate but, as will be seen in this

paper, they produce different results.

The main objective of this paper is to investigate the

potential of neural networks and neuro-fuzzy systems to

predict pipe failure rates using a range of measurable

parameters of the system such as pipe age, diameter, depth,

length and pressure. A multivariate regression model is also

constructed with these parameters. To evaluate different

mechanical reliability relationships the outputs of three

above-mentioned models for pipe failure prediction are

incorporated in a number of commonly used mechanical

reliability relationships and the results are compared. The

outcomes are used to classify the available reliability

measures and propose a criterion to use these indices

more appropriately.

PIPE FAILURE INDICATORS

Pipe breaks are a type of mechanical failure of the system

and are considered as one of the significant factors

contributing to water losses. Pipe failure imposes huge

direct and indirect economic losses and requires human

capital for the restoration and repair of the networks

(Dandy & Engelhardt 2001). Failure rate (the number

accidents per year and per pipe length unit) can be used

as a performance indicator (Tabesh & Abedini 2005).

Various researchers have carried out investigations into

the analysis of mechanical failure and prediction of pipe

failure rate based on a limited number of parameters

involved. These approaches usually result in a set of

formulae derived using statistical methods or regression

models (Lei & Saegrov 1998). This has led to considerable

differences between the results of these models.

Shamir & Howard (1979) presented an exponential

model for prediction of the pipe failure rate based on

time:

lðtÞ ¼ lðt0Þe
aðt2t0Þ ð1Þ

where l(t) is the failure rate per year t (based on number

of failures/yr/km (or mile)), t0 is the year of analysis, l(t0)

is the failure rate at t0 and a is the growth rate (1/yr). The

authors suggested that a coefficient varies from 0.05 to

0.15 based on the material and diameter of pipes. Kettler

& Goulter (1985) carried out studies to express the

variations in the number of annual breaks as a function

of age and diameter of cast iron and asbestos pipes in

Winnipeg (Canada). According to this research, the trend

of age variations in both cases is linear and shows the

same increase in number of failures at each year. Su et al.

(1987) proposed the following relation for the pipe failure

rate (number of annual failures per mile):

l ¼
0:6858

D3:28=
l

þ
2:7158

D1:3131
l

þ
2:7658

D3:5792
l

þ 0:42 ;l ¼ 1; … ;Np ð2Þ

where l is the pipe failure rate, Dl is the pipe diameter in

(inches) and Np is the number of existing pipes in the

network.

Ahn et al. (2005) presented a procedure based on

ANN to predict the pipe failure rate in the water

distribution network in Seoul City, South Korea, con-

sidering the variation of failures in pipes, against soil,

water and air temperatures. According to their model, in

autumn and spring when the temperature of water and

soil changes, the number of failures in pipes increases.

Tabesh & Abedini (2005) studied and analyzed pipe

failure rates of water supply networks in several cities in

Iran and discovered some relationships between the
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number of breaks per year and the diameter and age of

different pipe types. All the above-mentioned studies were

based on limited data and very few important parameters

were available and were incorporated in the models

obtained.

PIPE AVAILABILITY INDICATORS

According to research carried out so far, the mechanical

reliability factor in a water network represents the avail-

ability parameter (Al) of the component l in the network

(including pipes). Some of the conventional methods are

described below.

Su et al. (1987) proposed the following relation for

calculating the pipe availability in the water distribution

network based on Poisson’s probability distribution:

Al ¼ e2bl ;l ¼ 1; … ;Np ð3Þ

where b1 is the number of pipe failures per unit of time

that is obtained as bl ¼ Ll
*l and L1 is the length of pipe l

in miles.

Fujiwara & Tung (1991) presented the following

relationship for calculating pipe availability in the water

distribution network:

Al ¼
al

al þ bl
;l ¼ 1; … ;Np ð4Þ

in which a1 ¼ number of expected repairs for the lth pipe

per unit of time. The value of al is obtained by dividing the

number of annual breaks in pipes of special material by the

number of days in a year (365).

Finally they proposed the following relationship for

pipe reliability:

Al ¼
0:64

½0:64þ Llð0:0054852 0:0000175DlÞ�

; l ¼ 1; … ;Np ð5Þ

where Ll and Dl are in (km) and (mm), respectively, and day

is used as the unit of time.

Following the definition of Ang & Tang (1984), the

probability (Al) of the operational state of link (pipe) l can

be represented as

Al ¼
MTBF

MTBFþMTTR
ð6Þ

in which MTBF ¼ mean time between failures (duration of

connectivity) and MTTR ¼ mean time to repair, i.e.

duration of disconnection and repair.

Using the datasets of Mays (1989) and Walski &

Pelliccia (1982), the following relationship for pipe

availability was obtained by Cullinane et al. (1992):

Al ¼
0:21218D1:462131

l

ð0:00074D0:285
l þ 0:21218D1:462131

l Þ

;l ¼1; … ;Np ð7Þ

where D1 is the diameter of pipe in inches. Since the pipe

failure rate is not directly incorporated into this formula it

cannot demonstrate variations of availability with pipe

break rate.

Khomsi et al. (1996) presented the following relation for

calculating the pipe availability in the water distribution

network:

Al ¼ 12
l*Ll

365
;l ¼ 1; … ;Np ð8Þ

where L1 is the length of the pipe (in km).

APPLICATION OF DATA-DRIVEN TECHNIQUES IN

PIPE FAILURE ANALYSIS

The purpose of analyzing accidents and breaks is to find the

relationship between relevant indices and characteristics of

the pipes and to use this relationship to compute mechan-

ical reliability. In order to carry out a comprehensive

analysis, information such as material, diameter, length, age,

installation depth of pipes and operation conditions (e.g.

hydraulic pressure) should be collected and stored in a

database.

Artificial neural network model

Artificial neural networks (ANNs) are essentially para-

metric regression estimators and are well suited for the
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purpose of this research, as they can approximate virtually

any (measurable) function up to any arbitrary degree of

accuracy (Hornik et al. 1989). A neural network model with

the perceptron structure is composed of a number of layers

(usually three layers) and each layer includes a number of

processing units called neurons. A neuron can be a

nonlinear mathematical function. As a result, a neural

network composed of an aggregation of these neurons can

also be a fully complicated nonlinear system. In a neural

network, each neuron acts independently and the overall

behavior of the network is the outcome of local behaviors of

numerous neurons. This makes local errors less influential

in the output. In other words, the neurons correct one

another in a cooperation process. This property increases

the durability of the ANN. One neuron generates a special

output quantity based on a number of different inputs with

the use of an activation function to produce the outgoing

signal of the node (Karamouz et al. 2007).

Neural networks are dynamic systems which have the

ability to capture the relationship between input and output

parameters of a system by learning from experimental data.

They learn general rules based on the numerical data. In this

research, a backpropagation artificial neural network with a

multilayer perceptron structure is used.

Adaptive Neuro-Fuzzy Inference Systems

(ANFIS) model

A neuro-fuzzy system is a combination of the logical

functions of fuzzy systems and neural networks. Neuro-

fuzzy systems have the potential to combine the benefits of

these two fields, i.e. their hybrid training methodology, in a

single framework (Abdel-Hamid et al. 2007). This method

eliminates the basic problem in fuzzy system design

(obtaining a set of fuzzy if–then rules) by effectively using

the learning capability of an ANN for automatic fuzzy

if–then rule generation and parameter optimization. Differ-

ent structures have been proposed for implementing a fuzzy

system by neural networks. One of the most powerful

structures developed by Jang & Guley (1996) is a neuro-

fuzzy network system known as ANFIS. The basic idea

behind these neuro-adaptive learning techniques is very

simple. These techniques provide a method for the fuzzy

modeling procedure to learn information about a dataset, in

order to compute the membership function parameters that

best allow the associated fuzzy inference system to track the

given input/output data. This learning method works

similarly to that of neural networks (Jang & Guley 1996).

One of the main applications of ANFIS is its use in

modeling and control of complicated systems. In general,

any phenomenon which allows for recording of a set of

behavioral observations can be modeled by this method.

The very important characteristic of this type of system is

that they do not need any mathematical formula or model

for design. Therefore, they seem to be useful and appro-

priate for the design of systems whose functions cannot be

expressed explicitly in the form of mathematical models. In

order to develop a fuzzy model the number of membership

functions, inputs and outputs, values of condition para-

meters and result parameters should be specified first.

Models developed in this research were coded in

MATLAB (Ver. 7.04). The developed ANN and ANFIS

models take as input five parameters including pipe

diameter, length, age, depth of installation and hydraulic

pressure. The output of the models is the pipe failure rate.

Assessment of the quality of data-driven models is one of

the major procedures in this type of modeling, as many

models might be generated and trained. The assessment of a

model is meant to show to what level the model is capable

of providing an acceptable response to the new inputs in

regard to the training it has received. The root of mean

squared error (RMSE) and the index of agreement (IOA)

are used as assessment criteria of the constructed data-

driven models in this paper:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyactual; i 2 yprediction; iÞ
2

vuut ð9Þ

IOA¼12

Pn
i¼1 jyprediction;i2yactual;ij

2
h i

Pn
i¼1 ðjyprediction;i2yavarege;ijþjyactual;i2yavarege;ijÞ

2
h i

ð10Þ

where yactual is the actual (observed) data, yprediction is the

predicted data, yaverage is the average of data and n is the

number of observations (Demuth & Beale 2002).
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CASE STUDY

To evaluate the proposed methodology a part of a water

distribution network of a city in Iran is considered as the

study area (see Figure 1). The area of this district is 2,418 ha

and covers 93,719 properties with 579,860m of distribution

pipes, including steel pipes 800, 700 and 600mm in

diameter and asbestos cement and cast iron pipes 400,

300, 250, 200, 150, 100 and 80mm in diameter. The

installation and execution of the network pipelines in this

area generally started in 1981.

At the moment, due to considerable topographic

differences (1,021–1,214m above sea level), the highest

rate of pipe failures is recorded in this district. It should be

pointed out that, according to the existing reports and

statistics prepared by the local water and waste water

company, the highest rate of events and accidents in main

pipelines are recorded on pipes (especially asbestos cement

pipes) with diameters less than 300mm and the available

data for cast iron and steel pipes is not enough to be used by

data-driven models (Aghayee 2006). A large number of

parameters that contribute to pipe failure, e.g. diameter,

length, age, depth of installation and average hydraulic

pressure of asbestos pipes with diameters of 80–300mm,

were considered in development of the relationship for pipe

failure rate. The pipe data collected for asbestos pipes in the

range of 80–300mm includes 337 cases for a period of one

year. Eighty percent of the data were used for training of the

network, 15% for testing and 5% for verification of the

results.

Modeling of pipe failure rate

Artificial neural network model

In this research, a number of neural network structures

were prepared and tested by varying the number of layers,

neurons, activation functions and epochs (500–10,000).

Table 1 shows details of some of the main structures

categorized into 9 groups. Figures 2 and 3 represent

different assessment criteria (Equations (9) and (10)) for

each case. Finally, considering some criteria such as lower

error indicator values, robustness of multiple-layer net-

works (Demuth & Beale 2002) and evaluation of epochs

with the lowest error values during verification stage for

different groups of Table 1, one of the structures of case 5,

including two hidden layers with 5 and 10 neurons, was

selected as the most appropriate one. The methodology

presented in this paper is seen as the first phase of an

investigation, with the second phase incorporating the

obtained pipe break rates into an optimization program to

evaluate the influence of changes in pipe parameters on the

pipe failure rate. Therefore, a combination of several criteria

Figure 1 | Schematic of study area and pressure measurement points.
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Table 1 | Specifications of different constructed ANN models

Type of activation functions of

each hidden layer

Number of neurons

in each hidden layer

Case no. 1st layer 2nd layer Output layer 1st layer 2nd layer Output layers Number of epochs Run time (s)

1 Tangsig – Pureline 5 – 1 500 16.29

1,000 39.69

2,000 148.2

5,000 908.88

10,000 3535.03

2 Tangsig – Pureline 10 – 1 500 14.8

1,000 52.14

2,000 158.13

5,000 1006.63

10,000 3609.75

3 Tangsig – Pureline 15 – 1 500 13.79

1,000 46.91

2,000 162.67

5,000 922.96

10,000 4099.82

4 Tangsig Tangsig Pureline 5 5 1 500 16.03

1,000 49.83

2,000 181.91

5,000 1132.84

10,000 3213.92

5 Tangsig Tangsig Pureline 5 10 1 500 10.33

1,000 35.72

2,000 129.20

5,000 807.98

10,000 3124.95

6 Tangsig Tangsig Pureline 5 15 1 500 10.53

1,000 37.78

2,000 166.88

5,000 899.72

10,000 3159.42

7 Tangsig Tangsig Pureline 10 5 1 500 37.22

1,000 60.25

2,000 204.66

5,000 851.89

10,000 4429.76

8 Tangsig Tangsig Pureline 10 10 1 500 16.10

1,000 50.87

2,000 185.84

5,000 827.29

10,000 4009.17
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was used to choose the appropriate structure for the ANN

model. The results show that case 6 with 5000 epochs

obtained the lowest error values for all three stages

(training, testing and verification), but with a run time of

900 s. However, case 5 with 500 epochs, which is second-

best with respect to error values, requires just about 10 s.

The other parameters of the chosen structure include

tangent sigmoid and linear activation functions, five input

parameters and one output. The tangent sigmoid and linear

activation functions which were most often used for ANN

are expressed as follows (Demuth & Beale 2002):

y ¼ tan sigðnÞ ¼ 2=ð1þ e22nÞ2 1 ð11Þ

y ¼ purelineðnÞ ¼ n ð12Þ

Table 1 | (continued)

Type of activation functions of

each hidden layer

Number of neurons

in each hidden layer

Case no. 1st layer 2nd layer Output layer 1st layer 2nd layer Output layers Number of epochs Run time (s)

9 Tangsig Tangsig Pureline 10 15 1 500 48.82

1,000 46.88

2,000 199.53

5,000 952.50

10,000 3682.10

Figure 2 | (a) Variations of the RMSE values of ANN models based on different values of epochs at training stage. (b) Variations of the RMSE values of ANN models based on different

values of epochs at verification stage.
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where n is a real number, but y is bounded between 21 and

1 (for tansig) and 21 and þ1 (for pureline).

After selecting the most appropriate structure for the

artificial neural network, its applicability and efficiency

should be tested. The results of the ANN predictions as well

as actual values in the three stages of training, testing and

verification are presented in Figure 4. Comparing the

observed and simulated values in all these stages indicate

the appropriateness of the selectedmodel. As can be seen, the

predicted results are very close to the observed data. In order

to compare the simulated and observed results, the simulated

failure rates for the selected neural network and the observed

data are plotted in Figure 5. This figure shows that the ANN

model was able to capture and learn the existing trends and

behavior of the data with very good accuracy and to

generalize the training to different unseen cases.

Finally, the failure rate equation of asbestos cement

pipes for the study area is obtained from the following

relationship based on the pipe diameter, age, length, depth

of installation and hydraulic pressure:

l ¼ purelineðw3ðtangsigðw2ðtansigðw1 £ ðTestDataInÞ

þ b1Þ þ b2Þ þ b3Þ £ lmax ð13Þ

With substitution of the test parameters the formula

below is obtained:

l ¼ purline w3 tan sig w2 tan sig w1

Dl =Dmax

Ll =Lmax

Pl =Pmax

Hl =Hmax

Agl =Agmax

2
6666666664

3
7777777775
þ b1

0
BBBBBBBBB@

1
CCCCCCCCCA

0
BBBBBBBBB@

1
CCCCCCCCCA
þ b2

0
BBBBBBBBB@

1
CCCCCCCCCA

0
BBBBBBBBB@

1
CCCCCCCCCA
þ b3

0
BBBBBBBBB@

1
CCCCCCCCCA
lmax ð14Þ

Figure 3 | (a) Variations of the IOA values of ANN models based on different values of epochs at training stage. (b) Variations of the IOA values of ANN models based on different

values of epochs at verification stage.
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wherel is the failure rate,Dl is thediameter,Ll is the length,Pl

is the hydraulic pressure, Hl is the depth of installation, Agl is

the age of pipe l and Dmax, Lmax, Pmax, Hmax, Agmax and lmax

are the maximum values for asbestos cement pipes in the

district, respectively. w1, w2 and w3 are the weight matrices

and b1, b2 and b3 are the bias values obtained from the neural

network for different layers of the selected model, the values

of which are presented in Table 2.

Neuro-fuzzy model

In this study, in order to choose the appropriate neuro-

fuzzy structure, the ANFIS model is implemented for a

series of membership functions with different epochs

ranging from 10–150 and the results are compared by the

error indicators. The outcomes are presented in Table 3.

The final specifications of the ANFIS model structure

considered for this research are as follows:

Number of inputs: 5 parameters, number of outputs: 1,

number of input data pairs for training: 270, number of

input data pairs for testing: 50, number of input data pairs

for verification: 17, size of epochs: 10–150, type of

optimization method of membership function: hybrid and

different types of studied membership functions include

gauss2mf, gaussmf, gbellmf, trapmf and trimf. More detailed

information related to the membership functions can be

seen in Jang & Guley (1996).

As this table shows, the gaussmf membership function

provides the best result with most error indicators. In further

stages of the work, this model was subjected to test and

verification for the accuracy of its application and efficiency.

The outcomes of all three stages are presented in Figure 6.

Comparison between the observed and simulated values

in all three stages of training, testing and verification of

the network indicates the appropriateness of the selected

model for the concerned study area. As can be seen, the

predicted results are very close to the observed data, which

indicates the proper training and capability of the network.

The results of application of the ANFIS model in predictingFigure 5 | Comparison of failure rate predicted by the ANN model and the actual data.

Figure 4 | Results of the ANN model for simulated and actual values in three stages of training, test and verification.
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failure rate of water supply network pipes are compared

with each other using different error indicators and

presented in Figure 7. This figure clearly shows that the

results are very close to the observed data and have very

minor errors.

Nonlinear regression model (NLR)

To check the performance of regression methods

in comparison with DDM approaches in reliability

calculations, a multivariate nonlinear regression model

was built to predict failure rate of the water distribution

network pipes in the study area. The failure rate equation

for asbestos pipes was obtained as a function of diameter,

length, age, depth of installation and average hydraulic

pressure as:

l¼20:4197ðD0:3762
l Þþ0:4168ðL0:0872

l Þ

þ0:2813ðP0:5668
l Þþ0:0903ðH21

l Þþ0:7408ðAg0:4281l Þ ð15Þ

Table 2 | Weight matrices and bias values for different layers of the proposed ANN model

Input Number of neurons in the hidden layers

Type of variable parameters 1 2 3 4 5 6 7 8 9 10

W1 [5 p 5] 1 0.1821 0.3492 5.02 2.7446 1.0163 – – – – –

2 22.7328 21.1073 23.0463 3.214 22.4476 – – – – –

3 23.3495 0.5907 4.5567 0.5471 22.0669 – – – – –

4 22.3838 0.3738 21.4264 23.387 4.9999 – – – – –

5 22.7966 2.4204 20.7034 0.1411 4.2703 – – – – –

W2 [10 p 5] 1 21.0711 21.9987 20.021 0.1251 0.771 – – – – –

2 0.7703 21.1975 0.9115 0.9512 1.0315 – – – – –

3 20.8422 20.0554 20.0637 21.3451 21.5443 – – – – –

4 1.2972 0.0562 1.1455 21.2958 0.4394 – – – – –

5 20.3427 1.7843 0.478 20.5062 21.069 – – – – –

6 0.3397 0.7869 21.3985 0.2817 1.3806 – – – – –

7 0.2811 21.1855 21.291 1.3663 20.1556 – – – – –

8 0.3111 0.2936 20.1149 22.3224 0.2974 – – – – –

9 21.5557 0.7187 20.5576 20.6852 0.1246 – – – – –

10 20.3242 20.7931 1.7768 21.3798 0.1656 – – – – –

W3 [10 p 1] 1 20.6567 20.7492 0.0345 20.0391 0.0664 0.0555 0.045 0.1319 20.7154 0.342

b1[5 p 1] 28.9721 5.6689 21.2129 0.4981 24.8612 – – – – –

b2 [10 p 1] 2.0939 21.8358 1.275 20.8041 0.2468 0.2216 0.5657 0.9569 21.6516 22.1249

b3 [1] 0.4895 – – – – – – – – –

Table 3 | Error values for training, testing and verification stages of the ANFIS model with different types of membership functions

Training stage Testing stage Verification stage

Type of membership function RMSE IOA RMSE IOA RMSE IOA

Gaussmf 0.024642 0.99682 0.023051 0.99799 0.050288 0.988

Gauss2mf 0.029297 0.99764 0.024181 0.99704 0.032148 0.99131

Gbellmf 0.02635 0.99732 0.036533 0.99491 0.046858 0.98719

Trimf 0.025673 0.99755 0.020785 0.99802 0.057833 0.99551
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Sensitivity analysis of the proposed methodologies

To assess the performance of the proposed methodologies

in predicting pipe failure rate, a series of analyses are

performed by ANN, ANFIS and NLR models and Su et al.’s

(1987) formulation (Equation (2)) for a pipe with basic data

of D ¼ 80mm, L ¼ 100m, P ¼ 4 atm, H ¼ 1.2m and

Ag ¼ 20 yr. In the analysis, each of these parameters was

varied within its range in the database while the remaining

parameters were kept constant. The selected results are

presented in Table 4.

It is seen that the following trends can be identified

with variations of different parameters. Pipe break rates are

increased when pipe diameter and depth are decreased and

pressure, length and age are increased. It is observed that

the Su et al. (1987) formula, which only considers the effect

of pipe diameter, is not sensitive to variation of the other

parameters. Therefore, the existing formulations for pipe

break rates, which consider very few parameters such as

diameters and/or age or length, are not able to predict the

break rate properly. These results highlight the necessity

of consideration of as many parameters as possible.

Figure 6 | Results of the ANFIS model for simulated and actual values in training, test and verification stages.

Figure 7 | Results of the ANFIS model with different methods of error calculation.
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The result of the ANFIS model show unrealistic values

and very sharp variations for break rates when diameters are

increased from 80 to 200mm. For variations of pipe lengths

between 100–500m the ANFIS model produces almost the

same break rates. The ANN and NLR methods produce

lower break rates, respectively, that are more realistic than

the ANFIS results but still vary in close range. It can be

concluded that, because of the existence of about 95km of

pipes with 80mm diameter, this small range of variations is

reasonable. When pressure is changed from 4 to 7 atm the

break rates resulting from the ANN and NLR models show

an increase of up to 0.5 and 0.2, respectively. However,

again variations of the ANFIS outputs are less than 0.1. The

change of pipe depth from 0.5 to 2m causes a very smooth

decrease of break rate by ANN, ANFIS and NLR (about

0.1). Finally all three models show the same increasing trend

for variation of age from 14 to 26 yr, although ANN and

NLR produce a larger range of pipe break rates.

The other findings are that generally the trend of

variations in the ANN and NLRmodels for most parameters

are almost the same and each model is more sensitive to

some specific parameters. Because in the ANN and ANFIS

models input data are trained to learn the existing relations

between the parameters, if the number of data are very few

for specific values or ranges of some parameters, it may lead

to unrealistic results. Generally in comparison with the

ANFIS model, the ANN model produces more reliable

results and can be introduced for pipe break rate prediction.

Since mechanical reliability measures are affected by pipe

failure rates, the advantages of each type of above-

mentioned model are assessed in the next stage.

Mechanical reliability (availability) results

In this part of the research, the conventional relations for

calculating mechanical reliability (availability) such as

Poisson (Su et al. 1987, Equation (3)), Fujiwara & Tung

(1991) (Equation (4)) and Khomsi et al. (1996) (Equation

(8)) were selected and the failure rate parameter in these

equations was substituted by the pipe failure models

developed in this work (i.e. ANN, ANFIS and NLR) and

also the Su et al. (1987) formulation (Equation (2)) and

results were compared.

Poisson exponential distribution function (Su et al. 1987)

Based on the Poisson exponential distribution function

(Su et al. 1987) and four pipe failure rate relationships the

availability of pipes in the water distribution network are

calculated and the results are illustrated in Figure 8. It is

seen that the trend of variations of availability index for pipe

failure rates from Su (ALPSFR) and NLR (ALPNLRFR) are

the same. Also the trend of variation of availability index for

pipe failure rates from ANN (ALPANNFR) and ANFIS

(ALPANFISFR) methods are similar. On the other hand,

availability values resulted from the Su et al. (1987) and the

ANN pipe failure relations are close together and show an

upper limit. Furthermore, availability values resulted from

the ANFIS and NLR pipe failure methods have a similar

trend and show a lower limit. Besides, it is observed that

variations of reliability results from the ANN and ANFIS

models are higher than the Su et al. (1987) and NLR models.

Table 4 | Sensitivity analysis of the proposed methods

Break rate (breaks/km/yr)

Parameters ANN ANFIS NLR Su

D (mm) 80 1.56 5.33 1.81 0.85

100 1.16 4.14 1.61 0.59

150 0.61 1.77 1.22 0.33

200 0.66 0.11 0.91 0.23

L (m) 100 1.56 2.18 1.81 0.85

200 1.58 2.21 1.84 0.85

300 1.61 2.21 1.87 0.85

400 1.64 2.21 1.89 0.85

500 1.66 2.21 1.90 0.85

P (atm) 4 1.56 2.19 1.81 0.85

5 1.54 2.25 1.89 0.85

6 1.99 2.28 1.96 0.85

7 2.07 2.16 2.04 0.85

H (m) 0.5 1.59 2.22 1.91 0.85

1 1.55 2.18 1.82 0.85

1.5 1.51 2.18 1.79 0.85

2 1.51 2.14 1.78 0.85

Ag (yr) 14 1.35 1.95 1.43 0.85

18 1.44 2.13 1.69 0.85

22 1.71 2.23 1.92 0.85

26 2.22 2.31 2.12 0.85
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Also these two methods can learn the nature of the failures

better than the other ones by training the available datasets

to predict the failure rates. The ANFIS results represent the

higher magnitude of variations than the ANN results.

Khomsi et al. formula (1996)

By substituting the developed three pipe failure rate models

and the Su et al. (1987) relationships in Khomsi et al.’s

(1996) formula the availability of the pipes in the water

distribution network was calculated and the results are

shown in Figure 9. Again the same conclusions as Figure 8

can be obtained.

Fujiwara & Tung formula (1991)

Considering the failure rate function of Fujiwara & Tung

(1991) as the base and using the value of al ¼ 0.923 from the

field data, the following relationship is obtained for

Figure 8 | Comparison of the results of availability from Poisson formula with the failure rates extracted from relationship and models of Su, ANN, ANFIS and NLR.

ALPNLRFR ¼ availability (AL) from Poisson formula (P) using nonlinear multivariate regression method (NLR) for failure rate (FR), ALPANNFR ¼ artificial neural network

model, ALPANFISFR ¼ neuro-fuzzy model and ALPSFR ¼ Su formula.

Figure 9 | Availability values from Khomsi formula with the failure rates extracted from relations and models of Su, ANN, ANFIS and NLR.

Figure 10 | Availability values from Fujiwara & Tung formula with the failure rates extracted from relations and models of Su, ANN, ANFIS and NLR.
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availability:

Al ¼
0:923

½0:923þ ðLl
*lÞ�

: ð16Þ

Using the above formula and incorporating the relations

and models developed for predicting pipe failure rate, the

availability values of pipes are presented in Figure 10. Again

the same conclusions as for the two previous figures can be

drawn.

Finally, the presented methods are compared in order to

study the differences of the three availability formulae of

Poisson (Su et al. 1987), Fujiwara & Tung (1991) and Khomsi

et al. (1996) and the results are illustrated in Figures 11

and 12. It can be seen that in both figures the Khomsi et al.

(1996) equation produces very high values for pipe

availability and can be considered as an upper limit. On

the other hand, in both figures availability formulae of

Poisson (Su et al. 1987) and Fujiwara & Tung (1991) show

very high variations. However, the range of these variations

is about 10% lower when using the ANN model. With the

ANN model availability values from Poisson (Su et al. 1987)

and Fujiwara & Tung (1991) formulae are close to each

other (Figure 11). However, with the ANFIS model,

availability values from the Fujiwara & Tung (1991) formula

are higher in comparison with the Poisson formula

(Figure 12). In general, the results obtained from the basic

Khomsi et al. (1996) equation with applying failure rate

from a artificial neural network model, i.e. ALKANNFR,

produce the upper limit of mechanical reliability. The

results calculated from the Poisson (Su et al. 1987) relation

and applying failure rate from a neuro-fuzzy model,

i.e. ALPANFISFR, present the lower limit of mechanical

reliability.

As the managers and decision-makers in the water

industry are always interested in minimizing the conse-

quences of failures and improving the reliability of water

distribution networks, the evaluation of the existing net-

work is necessary in order to assess the current state of the

system and predict future. To do this, having some practical

indices to evaluate pipe failure and availability is necessary

and important. The precision of these indicators directly

influences managers’ decisions. Among several available

pipe failure and availability indices Figures 8–12 produce a

Figure 11 | Comparison of availability values involve ANN results for failure rates.

Figure 12 | Comparison of availability values involve ANFIS results for failure rates.
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good framework to identify the appropriateness of the most

popular and commonly used indices. It is observed that

application of ANN for prediction of pipe failure rate leads

to higher values for pipe availability. Therefore, any

decision made based on the results of an ANN approach

produces lower costs in comparison with the outputs of

ANFIS and NLR models. On the other hand, application of

Poisson and Fujiwara & Tung availability relationships

produces lower availability results and any decision based

on these results leads to higher costs. All the costs are

related to repair or replacement programs, leak detection

and pressure management schemes.

CONCLUSIONS

The mechanical failure of pipes in the water distribution

network has been studied by numerous statistical models in

the past. However, each of these models includes only a

small number of contributing parameters. In this paper a

new modeling approach is introduced to predict pipe failure

rates and mechanical reliability of pipes using data-driven

models. The pipe failure data have been collected from a

real water distribution network. During the study several

parameters which affect the failure rate were collected in

the field. These include pipe diameter, length, age, depth

and average hydraulic pressure. Then the pipe failure rates

were obtained by three different methods. The results

indicate that, in the prediction of pipe failure rates by the

ANN and ANFIS models, the trend of variations in the

observed data and in the simulated data has shown a

reasonable behavior and they are able to predict failure

rates with a high accuracy. Based on sensitivity analysis it

was found that sensitivity of the ANN model is higher to

variations of pipe diameter, pressure and age in comparison

with pipe length and depth.

To evaluate different available relationships proposed

for pipe availability calculations, the conventional avail-

ability relations of Poisson (Su et al. 1987), Fujiwara & Tung

(1991) and Khomsi et al. (1996) were selected and combined

with the relations and models developed in this research for

predicting failure rate of pipes and the results were

compared with each other as well as with the method of

Su et al. (1987). It can be concluded that the results of the

ANN model in all three availability relations, i.e.

ALPANNFR, ALKANNFR and ALFTANNFR, produce

the upper limit. The ANFIS models of ALPANFISFR,

ALKANFISFR and ALFTANFISFR introduce the lower

limit of mechanical reliability (availability) of water distri-

bution networks. The results from the NLR failure rate

prediction produced lower limit availability values but with

very smooth variations in comparison with the ANFIS

results. Furthermore, it was concluded that the availability

formula of Khomsi et al. (1996) produces very high values

(about 1) and Poisson (Su et al. 1987) formulation of

availability represents the lowest values. Finally, because of

good precision in predicting failure rate of pipes, compre-

hensiveness, flexibility and the possibility of connecting to

hydraulic models, the ANN pipe failure rate model appears

to be more appropriate in evaluating mechanical reliability

(availability) values.
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