Relation between Helicobacter pylori cagA Status and Risk of Peptic Ulcer Disease

Abraham M. Y. Nomura,1 Guillermo I. Pérez-Pérez,2 James Lee,1 Grant Stemmermann,3 and Martin J. Blaser2,4

Although colonization with any Helicobacter pylori strain is associated with peptic ulcer, it is uncertain whether the risk is greater with cagA+ or cagA- strains, which differ in their biology. A nested case-control study was done, based on a cohort of 5,443 Japanese-American men examined on the Hawaiian island of Oahu from 1967 to 1970. A total of 150 men with gastric ulcer, 65 with duodenal ulcer, and 14 with both diseases were identified. The authors matched the 229 cases with 229 population controls and tested their serum for immunoglobulin G antibodies to H. pylori and immunoglobulin G antibodies to the cagA product of H. pylori using enzyme-linked immunosorbent assays. Persons with H. pylori positivity had an odds ratio of 4.0 (95% confidence interval (CI): 1.9, 8.5) for gastric ulcer and 2.5 (95% CI: 0.8, 7.4) for duodenal ulcer. For CagA positivity, the odds ratios were 1.4 (95% CI: 0.9, 2.4) for gastric ulcer and 2.6 (95% CI: 1.1, 5.8) for duodenal ulcer. Subjects who were seropositive for both H. pylori and CagA had an odds ratio of 4.4 (95% CI: 1.8, 10.5) for gastric ulcer and 5.8 (95% CI: 1.1, 30.0) for duodenal ulcer. The results suggest that colonization with a cagA+ H. pylori strain elevates the risk beyond that of a cagA- H. pylori strain for both gastric and duodenal ulcers. Am J Epidemiol 2002;155:1054–9.

duodenal ulcer; Helicobacter pylori; peptic ulcer; stomach ulcer

Received for publication July 2, 2001, and accepted for publication February 24, 2002.
Abbreviations: CI, confidence interval; IgG, immunoglobulin G.
1 Japan-Hawaii Cancer Study, Kuakini Medical Center, Honolulu, HI.
2 Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN.
3 Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH.
4 Department of Veterans Affairs Medical Center, Nashville, TN.
Reprint requests to Dr. Abraham M. Y. Nomura, Japan-Hawaii Cancer Study, Kuakini Medical Center, 347 N. Kuakini Street, Honolulu, HI 96817 (e-mail: abe@kuakini.net).
MATERIALS AND METHODS

All of the participants in this study were part of the Japan-Hawaii Cancer Study cohort, as described previously (6, 28). Briefly, 8,006 Japanese-American men were examined on the Hawaiian island of Oahu from 1965 to 1968. The data collected included birthplace, marital status, history of alcohol use, history of cigarette smoking, blood pressure, and body mass index (weight (kg)/height (m²)). Serum cholesterol values were determined by the Auto Analyzer N-24A method, and serum glucose values were determined by the Auto Analyzer N-2B method 1 hour after a 50-g glucose load was given (30).

A total of 7,498 (93.7 percent) of the 8,006 men returned for a second examination between 1967 and 1970, and a blood sample was obtained at that time. Serum specimens for a 20 percent random sample of the men were sent to the US Public Health Service Hospital in San Francisco, California, and were not available for this study, while specimens from the remaining 5,924 men were stored at −20°C at the study site. A total of 481 patients with previous gastrectomy or a previous diagnosis of peptic ulcer disease were excluded, leaving 5,443 men in the study.

During the 21-year surveillance period from 1968 to 1989, 258 men were hospitalized and diagnosed with peptic ulcer disease. Sufficient serum frozen from the examination of the men in 1967–1970 was available from 229 of these patients. In total, there were 150 men with gastric ulcer, 65 with duodenal ulcer, and 14 with both types of ulcer. Each of these patients was matched with one control from the study site. A total of 481 patients with previous gastrectomy or a previous diagnosis of peptic ulcer disease were excluded, leaving 5,443 men in the study.

Serologic methods

The presence of serum IgG antibodies to *H. pylori* was determined by an enzyme-linked immunosorbent assay with the Pyloristat kit (Wampole Laboratories, Inc., Cranbury, New Jersey), as described (6, 28). The presence of serum IgG antibodies to CagA also was determined by enzyme-linked immunosorbent assay using a recombinant CagA antigen (orv220), as described (21, 33). The laboratory technician could not distinguish the serum specimens of cases from those of controls and was blinded to their *H. pylori* IgG status as well. An optical density ratio of 0.35 or greater was considered positive, and a ratio less than 0.35 was considered negative.

Data analysis

We used the binomial probability test, which is the exact probability test counterpart of the McNemar test (34), and the paired t test to compare, respectively, the proportion and mean value between cases and their matched controls. The risk of ulcer associated with the presence of IgG antibody to either *H. pylori* or CagA was assessed by the odds ratios and confidence intervals estimated by age-matched conditional logistic regression (35). Each exposure variable (*H. pylori* or CagA) was categorized into discrete classes according to the frequency distribution of the matched controls to create a set of binary indicator variables, with the lowest class as reference group. These indicator variables and the confounding covariate (smoking history) were used as explanatory variables in the conditional logistic regression model. Adjustment of cigarette history was done because it was positively associated with the risk of peptic ulcer in this cohort (8, 9). The test for trend was performed using the discretized class midpoints as explanatory variables, and the score statistic (36) was used to assess statistical significance. All of the reported p values are two-sided. Statistical analyses were performed with the SAS software (37).

RESULTS

The characteristics of the 229 patients with peptic ulcer and their matched controls are presented in table 1. As expected (8, 9), more cases than controls had a history of cigarette smoking. Otherwise, the two groups of men were similar with respect to their demographic characteristics and laboratory values.

Relation of anti-CagA antibodies and peptic ulcer disease risk

Next, we asked whether colonization with any *H. pylori* strain or with a cag*+* strain was associated with risk of developing peptic ulcer disease. As shown in our previous analysis (6), colonization with *H. pylori* was associated with a threefold increase in peptic ulcer disease risk, with significant (p < 0.05) increases for both gastric and duodenal ulcers (table 2). Subjects with the negative serologic response in this comparison were those who did not have *H. pylori* antibodies. Adjustment for cigarette smoking history reduced the extent of the association with duodenal ulcer (odds ratio = 2.5), but not with gastric ulcer.

Colonization by a cag* strain was associated with a 1.5-fold increase in risk of developing peptic ulcer disease (p = 0.07). There was an odds ratio of 2.1 (p = 0.06) for duodenal ulcer, but only 1.3 (p = 0.40) for gastric ulcer. Subjects with the negative serologic response in this comparison were those who did not have antibodies to the CagA protein,
ulcer disease risk
jects who were seropositive for
values were adjusted for history of cigarette smoking, sub-
matched conditional logistic regression analyses in which
were too few pairs (10) for meaningful results. With age-
control was
tivity on peptic ulcer disease risk, we first defined the
Joint effect of

to the CagA antigen, the trend
ulcer development. Although a similar pattern was observed
shown in table 3, high-titer antibodies to the
responses correlated with risk of peptic ulcer disease. As
the positive association was statistically significant for all
regardless of whether or not they had antibodies to H. pylori
whole-cell antigen were associated with a higher risk of

TABLE 2. Odds ratios for the association between peptic ulcer and colonization with Helicobacter pylori or with cagA+

<table>
<thead>
<tr>
<th>Antigen and type of ulcer</th>
<th>Matched-pair status* (patients/controls)</th>
<th>OR†</th>
<th>95% CI‡</th>
<th>Adjusted odds ratio§</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All ulcers†</td>
<td>+/-</td>
<td>161</td>
<td>3.0</td>
<td>1.7, 5.2</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>48</td>
<td>4.0</td>
<td>1.2, 13.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>16</td>
<td>1.0</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>4</td>
<td>1.3</td>
<td>0.8, 2.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>2</td>
<td>2.1</td>
<td>1.0, 4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Gastric ulcer</td>
<td>+/-</td>
<td>107</td>
<td>3.2</td>
<td>1.6, 6.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>32</td>
<td>4.0</td>
<td>1.2, 13.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>10</td>
<td>1.3</td>
<td>0.8, 2.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>1</td>
<td>2.1</td>
<td>1.0, 4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Duodenal ulcer</td>
<td>+/-</td>
<td>48</td>
<td>3.2</td>
<td>1.6, 6.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>12</td>
<td>4.0</td>
<td>1.2, 13.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>3</td>
<td>1.3</td>
<td>0.8, 2.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>2</td>
<td>2.1</td>
<td>1.0, 4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>cagA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All ulcers†</td>
<td>+/-</td>
<td>63</td>
<td>1.5</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>64</td>
<td>1.5</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>44</td>
<td>1.5</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>58</td>
<td>1.5</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>229</td>
<td>1.5</td>
<td>1.0, 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Gastric ulcer</td>
<td>+/-</td>
<td>41</td>
<td>1.3</td>
<td>0.8, 2.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>30</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>41</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>150</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Duodenal ulcer</td>
<td>+/-</td>
<td>17</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>23</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>11</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>14</td>
<td>1.4</td>
<td>0.9, 2.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Exact binomial probability test for matched sample was used for comparing proportions; paired t test was used for comparing means.
† OR, odds ratio.
‡ 95% confidence intervals (CI) were based on two-tailed analysis.
§ Odds ratios were estimated by age-matched conditional logistic regression, adjusted for cigarette smoking history.
¶ Includes 14 persons with both gastric and duodenal ulcers.

Joint effect of H. pylori and CagA positivity on peptic ulcer disease risk

To evaluate the joint effect of H. pylori and CagA positivity on peptic ulcer disease risk, we first defined the H. pylori+, cagA+ population as the referent group in table 4. Analysis of case-control pairs in which either the case or the control was H. pylori+ and cagA+ was not done, since there were too few pairs (10) for meaningful results. With age-
matched conditional logistic regression analyses in which values were adjusted for history of cigarette smoking, sub-
jects who were seropositive for H. pylori but negative for CagA antibodies were at increased risk for developing pept-
ic ulcer disease (odds ratio = 2.9) and gastric ulcer (odds ratio = 3.5). They also had an increased risk for duodenal
ulcer, but it was not statistically significant. In comparison, subjects who were seropositive for both H. pylori and CagA

TABLE 3. Odds ratios for all peptic ulcers according to Helicobacter pylori and cagA test results and antibody levels* in Japanese-American men, 1967–1970

<table>
<thead>
<tr>
<th>Antigen</th>
<th>H. pylori test result</th>
<th>Odds ratio†</th>
<th>95% CI‡</th>
<th>p value for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative (<0.75)‡</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive (≥1.00)§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤1.75</td>
<td>2.1</td>
<td>1.1, 4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.76–2.50</td>
<td>4.7</td>
<td>2.3, 9.5</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>>2.50</td>
<td>4.0</td>
<td>1.9, 8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative (<0.35)§</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive (≥0.35)‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤0.53</td>
<td>1.8</td>
<td>1.0, 3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54–0.66</td>
<td>1.5</td>
<td>0.8, 2.7</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>>0.66</td>
<td>2.2</td>
<td>1.2, 3.9</td>
<td></td>
</tr>
</tbody>
</table>

* Odds ratios and 95% confidence intervals were estimated by age-matched conditional logistic regression, adjusted for cigarette smoking history.
† CI, confidence interval.
‡ Two subjects with values between 0.76 and 1 were excluded.
§ The positive levels were divided into tertiles based on the cutpoint values of the controls.

Am J Epidemiol Vol. 155, No. 11, 2002
DISCUSSION

This study extends the observations of our previous report, which found that colonization with any \textit{H. pylori} strain was associated with a three- to fourfold increased risk for peptic ulcer disease (6). We now report that colonization with a \textit{cagA}+ \textit{H. pylori} strain elevated the risks beyond that of a \textit{cagA}+ bacterial strain, an effect present for both gastric and duodenal ulcer cases (table 4). Controlling for the effects of smoking accentuated the risk of ulcer of subjects colonized with \textit{cagA}+ strains, as shown in table 2. There was weak evidence that the height of the anti-\textit{CagA} antibody response was related to the risk of peptic ulcer disease.

Previous cross-sectional studies among patients who had gastroscopy in Western countries generally show a significant positive association between presence of a \textit{cagA}+ \textit{H. pylori} strain and duodenal ulcer, with the control patients having nonulcer dyspepsia (17, 18, 22, 23). In the Far East, where \textit{cagA}+ \textit{H. pylori} strains predominate, such cross-sectional studies have not shown an association of \textit{cagA}+ \textit{H. pylori} strains with peptic ulcer (24–26), except in one report (27). This is probably due to the observation that more than 80 percent of the nonulcer controls in these Asian studies were \textit{cagA}+ positive, compared with 47 percent of the controls in our study.

There are several advantages in this study. Most important, it has a cohort study design in which the blood samples were obtained before the diagnosis of peptic ulcer. The cohort is a relatively homogeneous population that tends to minimize undefined confounding variables, and there are appreciable numbers of gastric and duodenal ulcer cases in this investigation. Last, the control group represents persons who were not hospitalized for peptic ulcer and is not self-selected for subjects with gastrointestinal symptoms. The results from this study show that carriage of \textit{cagA}+ \textit{H. pylori} had a significantly increased risk for both gastric and duodenal ulcers. The difference in odds ratio between \textit{H. pylori}-positive persons colonized with \textit{cagA}− or \textit{cagA}+ strains was relatively small in relation to gastric ulcer, but it more than doubled for duodenal ulcer (5.8 vs. 2.7). However, this difference was not statistically significant.

The effect of age at diagnosis and time interval from examination to diagnosis was examined by subgroup analysis for gastric ulcer in table 5. For cases diagnosed at less than age 65 years, the odds ratio was high for those who were both \textit{H. pylori} and \textit{cagA} positive (odds ratio = 9.8). The same pattern was not present for cases diagnosed at age 65 years or older. For gastric ulcer cases diagnosed within 10 years of their examination, the odds ratio was high for those who were both \textit{H. pylori} and \textit{cagA} positive (odds ratio = 6.2). The same pattern was not present for cases diagnosed 10 or more years after examination. Similar analyses for duodenal ulcer were not statistically significant, probably because of the small numbers of subjects in each subgroup (data not shown).

TABLE 4. Odds ratios and 95% confidence intervals* of \textit{Helicobacter pylori} and \textit{cagA} serology for all peptic ulcers, gastric ulcers, and duodenal ulcers in Japanese-American men, 1967–1970

<table>
<thead>
<tr>
<th>Peptic ulcer</th>
<th>No. of case-control pairs</th>
<th>H. pylori serology/cagA serology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H. pylori−/cagA</td>
</tr>
<tr>
<td>All</td>
<td>219</td>
<td>1.0</td>
</tr>
<tr>
<td>Gastric</td>
<td>145</td>
<td>1.0</td>
</tr>
<tr>
<td>Duodenal</td>
<td>61</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Odds ratios (OR) and confidence intervals (CI) were estimated by age-matched conditional logistic regression adjusted for cigarette smoking history.

TABLE 5. Odds ratios and 95% confidence intervals* of \textit{Helicobacter pylori} and \textit{cagA} serology for gastric ulcers by age at ulcer diagnosis and time interval from exam to diagnosis in Japanese-American men, 1967–1970

<table>
<thead>
<tr>
<th>Gastric ulcer</th>
<th>No. of case-control pairs</th>
<th>H. pylori serology/cagA serology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis of gastric ulcer (years)</td>
<td></td>
<td>H. pylori−/cagA</td>
</tr>
<tr>
<td><65</td>
<td>58</td>
<td>1.0</td>
</tr>
<tr>
<td>≥65</td>
<td>87</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Interval from examination to diagnosis of gastric ulcer (years)		H. pylori−/cagA	OR	95% CI	H. pylori+/cagA	OR	95% CI
<10	62	1.0	3.6	1.1, 11.7	6.2	1.8, 21.9	
≥10	83	1.0	4.0	1.2, 13.9	3.3	1.0, 10.8	

* Odds ratios (OR) and confidence intervals (CI) estimated by age-matched conditional logistic regression, adjusted for cigarette smoking history. The reference group in each analysis are the men who were both \textit{H. pylori}− and \textit{cagA}−.
strains was strongly associated with both gastric and duodenal ulcers, especially duodenal ulcers.

The CagA protein of *H. pylori* is an immunodominant antigen with marked antigenicity despite a relatively low molar content among cellular proteins (13, 14). There is a strong correlation between the presence of serum antibodies to CagA and colonization by a cag+ strain (21, 22, 38). Since elements of the cag island can be lost and persons can simultaneously carry cagA+ and cagA− that are otherwise identical (39, 40), serologic testing can more accurately assess a person’s cag status than does characterization of a single *H. pylori* isolate, as is sometimes done. Furthermore, the CagA protein is a well-conserved antigen among strains from different geographic locations. An earlier study showed that CagA proteins from strains around the world can be detected by immune antiserum raised to the protein from a single strain and thus are closely related (41). Persons carrying cag+ strains have greater degrees of gastric inflammation and epithelial cell damage than do those from whom cagA− strains have been isolated (17). Both intensity of inflammation and epithelial damage may be involved in the pathogenesis of peptic ulceration (42).

Although cag+ positivity was associated with both gastric and duodenal ulcers in this study as well as in prior cross-sectional studies (22, 27), it is uncertain why persons develop one type of ulcer instead of the other when colonized with cagA+ *H. pylori* strains. Patients with duodenal ulcer have significantly more inflammation and epithelial degeneration in the gastric antrum than in the gastric corpus compared with gastric ulcer patients (43). Furthermore, it has been suggested that *H. pylori* increases the risk of duodenal ulceration due to the cumulative effects of antral predominant gastritis, leading to increased acid secretion and to consequent gastric metaplasia in the duodenum (44). However, there are many complexities in addressing the issue of ulcer location, as indicated by others (45).

The data in table 5 indicate that gastric ulcer cases diagnosed before age 65 years have a highly significant association with both CagA and *H. pylori* positivity, especially compared with cases diagnosed at an older age. Other studies are needed to confirm this relation to age at diagnosis. It is uncertain whether age at the time of acquisition of cag+ *H. pylori* strains has an effect on this association, but an earlier study suggested that early age of acquisition of any *H. pylori* strain might increase risk of gastric ulcer (29). These data are consistent with the association of carriage of cag+ strains with both atrophic gastritis (46) and gastric adenocarcinoma (21, 47), since these conditions are nosologically related to gastric ulcer.

In conclusion, the results of these studies confirm and extend our understanding of the role that carriage of cag+ strains play in peptic ulcer disease. That carriage of cag+ strains is associated with enhanced risk of ulcer disease must be tempered by the recent observation, using the same serologic assays, that their carriage is inversely associated with gastroesophageal reflux disease and its sequelae (48, 49). Thus, all *H. pylori* strains are not equal in their relation to disease (50), and physicians should consider *H. pylori* strain characteristics, such as cagA status, in attempting to optimize care for their patients.

ACKNOWLEDGMENTS

This study was performed at the Japan-Hawaii Cancer Study, Kuakini Medical Center, and supported in part by grants R01 CA 33644 and R01 DK 53707 from the National Institutes of Health, and by the Medical Research Service of the Department of Veterans Affairs.

REFERENCES

Downloaded from https://academic.oup.com/aje/article-abstract/155/11/1054/57300 by guest on 25 January 2019
29. Blaser MJ, Chyou PH, Nomura A. Age at establishment of
23. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
20. Blaser MJ. Ecology of
18. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
17. Pan ZJ, van der Hulst RW, Feller M, et al. Equally high preva-
14. Blaser MJ. Ecology of
12. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
10. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
8. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
7. Pan ZJ, van der Hulst RW, Feller M, et al. Equally high preva-
6. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
5. Pan ZJ, van der Hulst RW, Feller M, et al. Equally high preva-
4. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
2. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
1. Pan ZJ, van der Hulst RW, Feller M, et al. Equally high preva-

Helicobacter pylori and Peptic Ulcer 1059

20. Blaser MJ. Ecology of Helicobacter pylori in the human stom-
Helicobacter pylori strains possessing cagA associated with an
increased risk of developing adenocarcinoma of the stomach.
of infection with cagA Helicobacter pylori strains. J Clin Microbiol
23. Orsini B, Ciancio G, Surrenti E, et al. Serologic detection of
CagA positive Helicobacter pylori infection in a northern
Italian population: its association with peptic ulcer disease.
lences of infection with cagA-positive Helicobacter pylori in
Chinese patients with peptic ulcer disease and those with
pylori expressing the cagA gene is not associated with an
increased risk of developing peptic ulcer diseases in Korean
does not predict Helicobacter pylori-associated peptic ulcer
gene and expression of cytokine messenger RNA in gas-
pylori infection and gastric carcinoma in a population of
29. Blaser MJ, Chyou PH, Nomura A. Age at establishment of
Helicobacter pylori infection and gastric carcinoma, gastric
studies of coronary heart disease and stroke in Japanese men
living in Japan, Hawaii and California: demographic, physical,
dietary and biochemical characteristics. J Chronic Dis 1974;
27:345–64.
infection with Helicobacter pylori and risk of gastric cancer: evi-
constancy by age in cagA proportion of Helicobacter pylori
34. Armitage P, Berry G. Statistical methods in medical research.
35. Hosmer DW, Lemeshow S. Applied logistic regression. New
37. SAS Institute, Inc. SAS user’s guide. Version 6.11. Gary, NC:
38. Peek RM, Miller GG, Tham KT, et al. Detection of
Helicobacter pylori and in vivo expression of H pylori genes
Helicobacter pylori isolated from members of a family with a
history of peptic ulcer disease. Gastroenterology 1995;111:
638–47.
Lewis expression of Helicobacter pylori isolates from the
41. Höök-Nikanne J, Pérez-Pérez GI, Blaser MJ. Antigenic char-
acterization of Helicobacter pylori strains from different parts
42. Dixon MF. Helicobacter pylori and peptic ulceration: histopatho-
43. Tham KT, Peek RM Jr, Atherton JC, et al. Helicobacter pylori
genotypes, host factors, and gastric mucosal histopathology in
44. Walker MM, Crabtree JE. Helicobacter pylori infection and the
pathogenesis of duodenal ulceration. Ann N Y Acad Sci
45. Graham DY, Yamaoka Y, H pylori and cagA: relationships
with gastric cancer, duodenal ulcer, and reflux esophagitis and
46. Kuipers EJ, Pérez-Pérez GI, Meeuwsen SGM, et al.
Helicobacter pylori and atrophic gastritis: importance of the
47. Parsonnet J, Friedman GD, Orentreich N, et al. Risk for gastric
cancer in people with CagA positive or CagA negative
between cagA strains of Helicobacter pylori infection and risk of
esophageal and gastric cardia adenocarcinoma. Cancer Res
49. Vicari JJ, Peek RM, Falk GW, et al. The seroprevalence of
CagA positive Helicobacter pylori strains in the spectrum of
gastroesophageal reflux disease. Gastroenterology 1998;115:
507.
50. Blaser MJ. Not all Helicobacter pylori strains are created