Landing Technique and Performance in Youth Athletes After a Single Injury-Prevention Program Session

Hayley Root, MS, ATC; Thomas Trojan, MD; Jessica Martinez, MS, ATC; William Kraemer, PhD; Lindsay J. DiStefano, PhD, ATC

Department of Kinesiology, University of Connecticut, Storrs

Context: Injury-prevention programs (IPPs) performed as season-long warm-ups improve injury rates, performance outcomes, and jump-landing technique. However, concerns regarding program adoption exist. Identifying the acute benefits of using an IPP compared with other warm-ups may encourage IPP adoption.

Objective: To examine the immediate effects of 3 warm-up protocols (IPP, static warm-up [SWU], or dynamic warm-up [DWU]) on jump-landing technique and performance measures in youth athletes.

Design: Randomized controlled clinical trial.

Setting: Gymnasiums.

Patients or Other Participants: Sixty male and 29 female athletes (age ¼ 13 ± 2 years, height ¼ 162.8 ± 12.6 cm, mass ¼ 37.1 ± 13.5 kg) volunteered to participate in a single session.

Intervention(s): Participants were stratified by age, sex, and sport and then were randomized into 3 protocols (IPP, SWU, or DWU). The IPP consisted of dynamic flexibility, strengthening, plyometric, and balance exercises and emphasized proper technique. The SWU consisted of jogging and lower extremity flexibility exercises. Participants were assessed for landing technique and performance measures immediately before (PRE) and after (POST) completing their warm-ups.

Main Outcome Measure(s): One rater graded each jump-landing trial using the Landing Error Scoring System. Participants performed a vertical jump, long jump, shuttle run, and jump-landing task in randomized order. The averages of all jump-landing trials and performance variables were used to calculate 1 composite score for each variable at PRE and POST. Change scores were calculated (POST − PRE) for all measures. Separate 1-way (group) analyses of variance were conducted for each dependent variable (x < .05).

Results: No differences were observed among groups for any performance measures (P > .05). The Landing Error Scoring System scores improved after the IPP (change ¼ −0.40 ± 1.24 errors) compared with the DWU (0.27 ± 1.09 errors) and SWU (0.43 ± 1.35 errors; P = .04).

Conclusions: An IPP did not impair sport performance and may have reduced injury risk, which supports the use of these programs before sport activity.

Key Words: injury risk, knee, anterior cruciate ligament

A n estimated 40 million children aged 6 to 18 years participate annually in at least 1 organized sport, resulting in more than 4 million musculoskeletal injuries. These injuries are associated with negative consequences, such as the early development of osteoarthritis, a decreased level of physical activity, and an increased rate of reinjury. Therefore, injury-prevention efforts at the youth level clearly need to be increased.

Neuromuscular injury-prevention programs (IPPs) can decrease injury rates and improve movement-based risk factors. Poor movement technique during sport-specific activity results in abnormal joint loading, and is associated with lower extremity injury risk. Examples of poor movement technique include stiff landings with limited sagittal-plane lower extremity motion, excessive hip adduction and knee frontal-plane motion (ie, knee valgus, medial knee displacement), and increased hip and knee rotation. Targeting youth athletes for neuromuscular IPPs may enable athletes to develop proper motor control prior to and throughout maturation before the ages associated with highest injury risk.

Earlier intervention may also help youth athletes grow accustomed to the routine of IPPs, which may result in better long-term compliance. Soligard et al observed that athletes with the highest rate of program compliance had the corresponding lowest rate of injury. However, even though the involved coaches acknowledged that injury prevention was important, compliance rates decreased as the season progressed. Therefore, it is necessary to be aware of potential barriers to injury-prevention compliance to assess the most effective way to encourage neuromuscular IPP implementation. Injury-prevention programs that are the length of a normal warm-up routine can be used before every athletic exposure to avoid taking time away...
from practice beyond the designated warm-up period that is relatively standard across all levels of competition and age.23–26

Further examination of player attitudes toward IPPs has shown that athletes need incentives and would prefer to invest in a program that not only reduces injury but also enhances competitive performance.22,27 In a recent study, Aguilar et al28 indicated that a dynamic warm-up (DWU) may elicit greater strength and flexibility gains than a static warm-up (SWU). Furthermore, Faigenbaum et al29 observed that SWUs may be suboptimal for the youth population, as they hinder power performance and flexibility. Neuromuscular IPPs are a combination of dynamic flexibility, plyometrics, and balance exercises. Therefore, an IPP may be the most advantageous option for an athletic warm-up that improves sport performance while decreasing injury risk.

To our knowledge, researchers have investigated IPP effects after a season-long program implementation, but none have compared the acute effects of an IPP on performance and movement technique with an SWU or DWU. Results that show an immediate injury-risk reduction and performance benefit by improving movement technique when using an IPP will support the recommendation to use an IPP in place of a more traditional warm-up program. This information may greatly assist neuromuscular IPP compliance and adoption in youth sports, where a high demand for performance enhancement exists. There-
Participants performed 3 trials of a jump-landing task. They jumped forward a distance of 50% of their body height from a 30-cm-high box and immediately jumped for maximal height after landing in the target area, which was indicated by a taped line on the floor. Participants did not receive feedback or coaching on jumping technique. They were given as many practice trials as needed to perform the task successfully. A successful jump required participants to (1) jump off with both feet from the box, (2) jump forward but not vertically to reach the target area, (3) land with both feet in the target area, and (4) immediately jump to maximal height, all in a fluid motion.

Two standard digital video cameras (model FS400; Canon USA Inc, Lake Success, NY) were stationed at the front and side of the participants to capture frontal- and sagittal-plane views of each person completing the jump-landing task. A single rater (H.R.) who was blinded to time and group later analyzed the video footage using the LESS. The LESS is a valid and reliable clinical movement-assessment tool for identifying high-risk movement patterns during jump-landing tasks (Table 5). The LESS scores are based on observable jump-landing errors, with a high score indicating poor technique and a corresponding higher risk of lower extremity injury. Movement errors are operationally defined, and 18 of the variables are scored on a binomial scale of 1 point for error and 0 points for no error, with the default scored as no error. Two additional variables give a global assessment of the jump-landing quality and are scaled from 0 to 2 points. Another item was a variable that evaluated if participants landed with a visual weight shift, because Xergia et al proposed landing asymmetry as an additional risk factor for ACL injury. Finally, the LESS score also included an excessive trunk-flexion–displacement variable, given that Frank et al identified poor trunk control as a potential ACL injury risk.

Table 2. Static Warm-Up Protocol

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-min jog</td>
<td>Jog around the perimeter of the basketball courts at a pace slow enough for each athlete to carry on a conversation comfortably.</td>
</tr>
<tr>
<td>Hip-adductor stretch</td>
<td>Standing with feet shoulder-width apart, lunge sideways, and lean toward the same side to feel a stretch in the opposite inner thigh area.</td>
</tr>
<tr>
<td>Modified hurdler</td>
<td>In a seated position with 1 lower limb straight, place the other limb on the inside of the straight limb and reach forward.</td>
</tr>
<tr>
<td>Hip-flexor stretch</td>
<td>Kneel on 1 lower limb with the other limb in front of the body and the foot on the ground. Lean forward toward the front limb to feel a stretch in the back of the hip.</td>
</tr>
<tr>
<td>Quadriceps stretch</td>
<td>In the standing position with an erect spine, bend 1 knee and bring the heel toward the buttocks while holding the foot with 1 hand.</td>
</tr>
<tr>
<td>Gastrocnemius and soleus complex</td>
<td>In a push-up position, bring the feet forward until the heels are on the ground. Keep 1 foot on the ground and cross the other foot on top of the stretched lower limb.</td>
</tr>
</tbody>
</table>

* Each stretch was held for approximately 30 seconds before switching to the opposite side for an additional 30-second stretch.
factor. The total LESS score is a valid measure of injury risk because it can differentiate youth athletes who sustain ACL injuries from those who do not in subsequent sessions.31

Performance Measures

All research assistants who measured and recorded performance data were blinded to group assignment.

Vertical Jump. Maximum vertical-jump height was measured using the Vertec device (Sports Imports, Columbus, OH). Participants started the vertical-jump task by standing under the Vertec with their upper extremities and hands fully extended vertically to obtain initial reach height. Next, they executed a double-limb countermovement jump to touch the highest bar possible. Participants performed 1 practice jump and 2 trial jumps.

Standing Long Jump. We measured standing–long-jump performance using a standard flat tape measure secured to the ground from a designated starting line. Participants began in a standing position at a marked starting line and were instructed to jump for maximum distance. They were allowed to move their upper and lower extremities as preferred to begin the task as long as their feet remained stationary. For each trial, the recorded distance was measured from the back of the heel closest to the starting line to that line. If a participant fell or could not keep his or her balance during the landing, the trial was excluded, and the participant jumped again.

Shuttle Run. Shuttle-run time was measured to the nearest 0.01 second using dual-beam electronic timing gates (TC-Speed-Trap II Wireless Timing System; Gill Athletics, Champaign, IL). Participants began at a designated starting line, which was marked with cones and a line taped to the floor. We marked an end line 30 m away with the cones and a line taped to the floor. One successful trial required participants to complete 2 repetitions of a 30-m down-and-back sprint (ie, 2 repetitions totaled 120 m) to the marked lines. Each participant completed a practice run and 2 trial runs, resting approximately 1 minute between runs.

Data Analysis

We checked all data for normality and homogeneity of variance. All trials for each dependent variable (vertical-jump height, long-jump distance, shuttle-run time, LESS score) were averaged for 1 composite score at PRE and POST. Change scores were calculated for each dependent variable by subtracting PRE values from POST values. Separate 1-way between-groups (IPP, SWU, DWU) analysis-of-variance tests were performed for each dependent variable. If the 1-way analysis of variance was different, we evaluated the 95% confidence interval (CI) of each pairwise group difference as a post hoc analysis. The alpha level was set a priori at .05. All data were analyzed using SPSS statistical software (version 21.0; IBM Corporation, Armonk, NY).

RESULTS

All participants completed the PRE and POST test sessions and an intervention program. All 3 groups were similar at baseline for all demographic information (age, height, mass, and current sport; \(P > .05 \)). We noted a difference between groups for the LESS change score \((F_{2,83} = 3.48, P = .04; \text{Table } 6) \), as the IPP resulted in a greater improvement in LESS score than the SWU (group difference [mean ± standard error] = −0.83 ± 0.33; 95% CI = −1.47, −0.18) and the DWU (−0.67 ± 0.33; 95% CI = −1.34, −0.002; Figure 2). We did not observe differences...
between groups in change scores for the vertical jump, long jump, or shuttle run ($P > .05$). We also did not find baseline differences between groups for any of the dependent variables (vertical-jump height, long-jump distance, shuttle-run time, or LESS score; $P > .05$; Table 7).

DISCUSSION

Our results provided evidence that an IPP can immediately improve jump-landing technique without impairing performance in youth athletes. The IPP caused participants to improve landing technique by 0.5 points on average, with the opposite response occurring after the SWU and no change after the DWU. Given that lower extremity injuries, particularly of the ACL, are frequently a combination of multiple injurious movement patterns and sport-specific circumstances, the presence or absence of an additional biomechanical risk factor (equivalent to 1 full point on the LESS) may be the difference between a season-ending injury and health. We hope that these positive results after a single IPP session will further encourage long-term program adoption, improve compliance rates, and perpetuate success with greater reductions in injury rates.

Researchers10,13,34,35 have shown that exercise-based IPPs can successfully modify several lower extremity risk factors, such as knee-flexion angle and vertical ground reaction force, as well as lower the absolute injury rate after a season-long intervention. However, positive results hinge on compliance, and players with the greatest compliance will tend to see the greatest reductions in injury rates.22 Our results indicated an immediate benefit to implementing programs, which could provide instant gratification to players and coaches. Because the LESS is a binary score (error present versus error absent) for biomechanical movement, it is reasonable to assume that making multiple gross changes in movement pattern after just one 10-minute session would be too difficult. However, the ability to make 1 acute change after a single session is promising and further emphasizes the need for continued use of an IPP to potentially see changes across multiple biomechanical risk factors.
Table 5. Landing Error Scoring System

1. Knee flexion at initial contact: <30°
 - No error (0)
 - Error (1)
2. Hip flexion at initial contact: hips are NOT flexed
 - No error (0)
 - Error (1)
3. Trunk flexion at initial contact: trunk is NOT flexed
 - No error (0)
 - Error (1)
4. Ankle plantar flexion at initial contact: land heel to toe or flat foot
 - No error (0)
 - Error (1)
5. Asymmetrical timing: feet do NOT land at the same time
 - No error (0)
 - Error (1)
6. Asymmetrical heel-toe/toe-heel: 1 foot lands flat/heel-toe, and the other foot lands toe-heel
 - No error (0)
 - Error (1)
7. Lateral trunk flexion at initial contact: trunk is NOT vertical
 - No error (0)
 - Error (1)
8. Medial knee position at initial contact: knee medial to midfoot
 - No error (0)
 - Error (1)
9. Wide stance width: > shoulder width
 - No error (0)
 - Error (1)
10. Narrow stance width: < shoulder width
 - No error (0)
 - Error (1)
11. Maximum internal-rotation foot position: toes > 30° of internal rotation
 - No error (0)
 - Error (1)
12. Maximum external-rotation foot position: toes < 30° of internal rotation
 - No error (0)
 - Error (1)
13. Knee-flexion displacement: > additional 45° of flexion after initial contact
 - No error (0)
 - Error (1)
14. Trunk-flexion displacement: hips DO NOT flex more than at initial contact
 - No error (0)
 - Error (1)
15. EXCESSIVE trunk-flexion displacement: trunk flexion past parallel with lower leg
 - No error (0)
 - Error (1)
16. Maximum medial knee position: > great toe
 - No error (0)
 - Error (1)
17. Asymmetrical loading: a weight shift is present (1 side is loaded more than the other)
 - No error (0)
 - Error (1)
18. Joint displacement: sagittal plane
 - Soft (0)
 - Average (1)
 - Stiff (2)
19. Overall impression
 - Excellent (0)
 - Average (1)
 - Poor (2)

Table 6. Landing Error Scoring System Scores

<table>
<thead>
<tr>
<th>Group</th>
<th>Score (Mean ± SD)</th>
<th>Change</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury-prevention program</td>
<td>7.03 ± 2.10</td>
<td>6.63 ± 1.99</td>
<td>-0.40 ± 1.24*</td>
</tr>
<tr>
<td>Static warm-up</td>
<td>6.95 ± 1.85</td>
<td>7.38 ± 1.84</td>
<td>0.43 ± 1.35</td>
</tr>
<tr>
<td>Dynamic warm-up</td>
<td>6.50 ± 2.04</td>
<td>6.77 ± 2.04</td>
<td>0.27 ± 1.09</td>
</tr>
</tbody>
</table>

* Indicates difference between groups ($F_{2,83} = 3.48, P = .04$).

Figure 2. Mean Landing Error Scoring System score by group across time. * Indicates difference ($P = .04$).
In many recent studies, researchers36–39 have used IPPs to target high school athletes, and Grandstrand et al40 reported that some coaches may be concerned that an IPP involves exercises that are too difficult for young children to complete. However, the average participant’s age in our study was 13 ± 2 years, and the IPP group members successfully completed the entire warm-up during their first exposure; no one dropped out of the program due to discomfort or injury. Given that youth athletes have not reached their neuromuscular growth spurts and are continuously developing motor-learning skills41 and that high school-aged athletes are at dramatically increased risk for sustaining ACL injuries,3 a middle school population should be targeted to receive instruction in correct movement patterns.

Investigators42–46 have shown that providing adults and youths with oral cues on which to focus can acutely modify lower extremity movement patterns during a jump-landing task. In agreement with these findings, the youth athletes in our study who completed the IPP achieved relatively more improvement in jump-landing technique than the athletes who completed the other 2 warm-up programs. Whereas the change within the IPP group was not different (change score 95% CI = −0.88, 0.09), we believe this acute effect may still be clinically meaningful. This result suggests that the athletes translated the instructions and feedback provided during the single session of the IPP and made preliminary improvements during the standardized jump-landing task compared with the other programs. We recognize that the magnitude of change is relatively small, but acute benefits after a single session may have an additive benefit of athletes exhibiting increased improvements after each session. Although we did not study these patterns postpractice or over the course of a season, Padua et al47 showed that long-term retention of biomechanical movement patterns is linked to the duration of the program, with the optimal program length exceeding 3 months. Therefore, it is necessary to identify other benefits that could encourage proper, continued, repetitive use of IPPs to increase the likelihood of sustaining long-term effects.

Using surveys on coaching and player attitudes, Saunders et al48 also observed that coaches and players alike would prefer to couple injury-prevention efforts with athlete performance enhancement. Coaches are concerned that their athletes may become overly fatigued if they perform an IPP before athletic events.48 We are the first, to our knowledge, to address this concern and evaluate the acute effects of an IPP on performance gains in youth athletes compared with other warm-up methods. DiStefano et al25 showed improved balance ability and vertical-jump performance in youth athletes after a 9-week IPP. We studied a similar age group but did not observe any acute performance improvements. Consistent implementation of an IPP over the course of a season may be necessary to see performance gains in a neuromuscularly immature population.25 Most importantly, our observations indicated that the IPP is not acutely detrimental to performance. The IPP was just as effective as the DWU in preparing the athletes for performance tasks. This indicates that the IPP athletes were adequately prepared to complete performance tasks and were not too fatigued from the program, which are 2 common concerns of coaches when considering implementation of an IPP.

Table 7: Performance Variable Measurements (Mean ± SD)

<table>
<thead>
<tr>
<th>Performance Variable</th>
<th>Group</th>
<th>Measurement</th>
<th>Pretest</th>
<th>Posttest</th>
<th>Change Score</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injury-prevention program</td>
<td>Vertical jump, in (cm)</td>
<td>17.06 ± 2.19 (16.65 ± 3.91)</td>
<td>17.45 ± 4.11 (17.01 ± 6.45)</td>
<td>0.39 ± 2.19 (0.06 ± 3.45)</td>
<td>0.23, 1.54 (-0.58, 3.91)</td>
</tr>
<tr>
<td></td>
<td>Dynamic warm-up</td>
<td>Vertical jump, in (cm)</td>
<td>17.45 ± 4.11 (17.01 ± 6.45)</td>
<td>17.83 ± 3.45 (17.38 ± 7.77)</td>
<td>0.38 ± 3.45 (0.06 ± 5.11)</td>
<td>-0.70, 0.47 (-1.27, 2.01)</td>
</tr>
<tr>
<td></td>
<td>Static warm-up</td>
<td>Vertical jump, in (cm)</td>
<td>17.45 ± 4.11 (17.01 ± 6.45)</td>
<td>17.83 ± 3.45 (17.38 ± 7.77)</td>
<td>0.38 ± 3.45 (0.06 ± 5.11)</td>
<td>-0.70, 0.47 (-1.27, 2.01)</td>
</tr>
<tr>
<td></td>
<td>Injury-prevention program</td>
<td>Long jump, in (cm)</td>
<td>66.95 ± 14.12 (66.79 ± 27.87)</td>
<td>66.78 ± 13.73 (66.62 ± 29.77)</td>
<td>0.17 ± 13.73 (0.04 ± 9.91)</td>
<td>-0.16, 0.40 (-0.41, 10.19)</td>
</tr>
<tr>
<td></td>
<td>Dynamic warm-up</td>
<td>Long jump, in (cm)</td>
<td>66.95 ± 14.12 (66.79 ± 27.87)</td>
<td>66.78 ± 13.73 (66.62 ± 29.77)</td>
<td>0.17 ± 13.73 (0.04 ± 9.91)</td>
<td>-0.16, 0.40 (-0.41, 10.19)</td>
</tr>
<tr>
<td></td>
<td>Static warm-up</td>
<td>Long jump, in (cm)</td>
<td>66.95 ± 14.12 (66.79 ± 27.87)</td>
<td>66.78 ± 13.73 (66.62 ± 29.77)</td>
<td>0.17 ± 13.73 (0.04 ± 9.91)</td>
<td>-0.16, 0.40 (-0.41, 10.19)</td>
</tr>
<tr>
<td></td>
<td>Injury-prevention program</td>
<td>Shuttle run, s</td>
<td>10.59 ± 1.26 (10.27 ± 2.02)</td>
<td>10.58 ± 1.03 (10.22 ± 2.42)</td>
<td>0.02 ± 1.03 (0.02 ± 0.82)</td>
<td>-0.02, 0.04 (-0.02, 0.02)</td>
</tr>
</tbody>
</table>
We also observed that the SWU and DWU protocols neither improved nor decreased performance measures. Our DWU results are in contrast with the current literature, in which researchers\(^\text{28,29}\) have detected acute improvements with DWUs. Aguilar et al\(^\text{28}\) recently demonstrated that a DWU program can elicit acute strength and flexibility improvements compared with an SWU, and Faigenbaum et al\(^\text{29}\) showed that a youth population might also experience acute performance gains after a DWU. Although our study population was similar to that of Faigenbaum et al.,\(^\text{29}\) our between-groups design, and thus between-groups variability, may have reduced our capacity to detect changes in the performance measures.

Overall, our IPP demonstrated acute improvements in jump-landing technique and did not negatively affect performance variables. Athletes between the ages of 11 and 15 were able to take generalized cues, such as “land softly” and “knees over toes,” and immediately translate them into sport-specific movement tasks, theoretically reducing the risk of lower extremity injury. Furthermore, we did not observe negative performance effects, indicating that IPPs are as effective as both SWUs and DWUs in preparing an athlete for competition. These results can help to encourage teams to implement IPPs and alleviate concerns of coaches and athletes that an IPP will impair performance before sport participation.

REFERENCES

Address correspondence to Lindsay J. DiStefano, PhD, ATC, Department of Kinesiology, University of Connecticut, 2095 Hillside Road, U-1110, Storrs, CT 06269-1110. Address e-mail to lindsay.distefano@uconn.edu.