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Abstract The prisoner’s dilemma (PD) is the leading
metaphor for the evolution of cooperative behavior in
populations of selfish agents. Although cooperation in the
iterated prisoner’s dilemma (IPD) has been studied for over
twenty years, most of this research has been focused on
strategies that involve nonlearned behavior. Another
approach is to suppose that players’ selection of the preferred
reply might be enforced in the same way as feeding animals
track the best way to feed in changing nonstationary
environments. Learning mechanisms such as operant
conditioning enable animals to acquire relevant characteristics
of their environment in order to get reinforcements and to
avoid punishments. In this study, the role of operant
conditioning in the learning of cooperation was evaluated in
the PD. We found that operant mechanisms allow the learning
of IPD play against other strategies. When random moves are
allowed in the game, the operant learning model showed low
sensitivity. On the basis of this evidence, it is suggested that
operant learning might be involved in reciprocal altruism.

1 Introduction

Natural selection can be conceived as a struggle for life in which only those living
organisms that are best adapted to existing conditions and to changing environments
are able to survive and, fundamentally, to reproduce. From this point of view, one of
the most important apparent paradoxes of evolutionary theory is cooperation among
individuals. In The Origin of Species, Darwin [15] noted that cooperation in social insects
was a special difficulty which at first appeared to be insurmountable and fatal to the
whole theory of evolution. However, he outlined a possible solution, stating that the
difficulty disappears if we realize that selection may be applied to the family as well as
to the individual.

Hamilton [24] in 1964 solved the paradox theoretically. There are groups of animals
that sacrifice their own reproduction in collaborating with the reproduction of others
that are related genetically. He found that these groups leave on average more copies
of their own genes than noncollaborative ones. In this way, he concluded that there is
selection at the family level. This process has been called kin selection; it explains, from
the perspective of evolutionary theory, the existence of sterile castes in social insects
such as bees, wasps, and ants. There are other theories to explain the evolution of
cooperative behavior [17]: trait group selection [70], by-product mutualism [13], and
reciprocal altruism [64, 65].
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Table 1. PD payoff matrix: points earned by each player (A, B).

Player A

Cooperate (C) Defect (D)
Player B

Cooperate (C) (R=3, R=3) (S=0, T=5)
Defect (D) (T=5, S=0) (P=1, P=1)

Reciprocal altruism involves the exchange of a benefit among two or more interactors
and an associated cost of each altruistic act. If no individual fails in the reciprocity, in
a long-term interaction each participant will experience a net benefit. This mechanism
of cooperation will be selected if there is protection against lack of reciprocity in the
altruistic act [5]. Using game theoretical analysis, Trivers [64] was the first to formalize
these principal traits. He analyzed a nonzero-sum game, the well-known prisoner’s
dilemma (PD). The PD is the leading metaphor for the evolution of cooperative behavior
in populations of selfish agents [38].

The PD has been studied in diverse areas such as evolutionary biology, sociology,
philosophy, and economics. In the game, a player may either cooperate (C) or defect
(D), and each player receives a payoff defined by Table 1. Generically we can establish
the following equations so that the game maintains its characteristics:

T > R > P > S (1)

2R > T + S (2)

Two players have adopted a Nash equilibrium if each is playing a strategy that is
the best reply to the other’s strategy. Thus, if the PD is played only once, the only
Nash equilibrium is defection, because it pays better regardless of what the opponent
chooses. As a result, both players obtain 1 point instead of the 3 they would have
obtained if they had chosen to cooperate.

In the iterated prisoner’s dilemma (IPD), players face their opponents repeatedly.
In order to maximize the payoff, the players can change their moves according to the
opponent’s strategy. If there is a fixed, known number of interactions between a pair of
players, defecting is still the only strategy that is evolutionarily stable. But if the number
of interactions is not fixed in advance, there is no single best strategy regardless of the
behavior of the opponent [5].

In the evolutionary prisoner’s dilemma (EPD), the scores that each player has ob-
tained in an IPD are used to simulate the evolution of a population. Each new gen-
eration has a different arrangement of players proportional to the total score obtained
against all adversaries. Thus, the total score for each strategy changes in each new
generation, because the proportion of opponents changes.

Trivers was the first to relate reciprocal altruism to the IPD. Axelrod and Hamilton
[5] used computer simulations to evaluate the performance of a group of strategies,
seeking those that were evolutionarily stable (ESSs). Moreover, they considered not
only the final stability of a given strategy, but also the feasibility of each one in an
environment dominated by selfish strategies. They found that if the probability of
meeting a given partner was above a threshold, then besides the success of ALLD
(defect always), another strategy, TFT (tit for tat) emerges as a successful one.

In the tournament organized by Axelrod, 15 strategies were confronted. The winner
was TFT. Then the tournament was modified to allow a simulation of evolution [6].
Once more, the winner was TFT. Stemming from Axelrod’s article, a great amount of
research appeared with interesting modifications in the game. One of them was the

434 Artificial Life Volume 10, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/10/4/433/1662134/1064546041766479.pdf by guest on 28 Septem
ber 2021



D. A. Gutnisky and B. S. Zanutto Operant Conditioning Mechanisms

possibility of making wrong moves [10], since it is more realistic to think that animals
have random variation in their behavior. In that case the conclusion about the stability
of previously analyzed strategies changes remarkably. For example, if two players
both play TFT but one of them changes its move from C to D, the opponent will copy
that mistake. They will alternate between CD and DC, reducing their performance
significantly.

The IPD has been the most used framework for studying the potential of coopera-
tion when there is a short-term temptation to cheat. Despite predictions, it has been
very difficult to observe sustained reciprocity in animal cooperation experiments [12].
Recently, Stephens et al. [61] proposed that one possible explanation for the fragility of
cooperation in the IPD is strong temporal discounting. This hypothesis is supported by
psychological studies showing the animals’ preference for receiving small immediate
rewards instead of delayed large ones [2, 35, 36, 42].

Although cooperation in the IPD has been studied for over twenty years, most of this
research has been focused on strategies that involve nonlearned behavior. Macy and
Flache [34] pointed out that game theorists tend to look for solutions for games played
by people like themselves. However, the choices that should be made according to the
theory have little resemblance to actual decision making. Macy and Flache proposed
the use of agent-based models to study the dynamics by which a population moves from
one equilibrium to another. They pointed out that, in contrast with the conventional
assumption of forward-looking calculation, these models explore backward-looking
alternatives based on evolutionary adaptation and learning. Analytical game theory
assumes that players have sufficient cognitive skill to make accurate predictions about
the consequences of the different decisions; learning theory lightens this requirement
by allowing players to base their predictions on their past experience rather than on
logical deduction.

Stephens and Clements [60] pointed out that it would be surprising if the mecha-
nisms that enforce animals to achieve a strategic equilibrium were solely genetic. They
suggested that a single behavioral mechanism guided by economic principles might
provide a mechanism of equilibrium maintenance. Thus, players’ selection of the pre-
ferred reply might be enforced in the same way that feeding animals track the best way
to feed in changing nonstationary environments. Their proposal for learning guided
by economic forces was to implement a simple model of Thorndike’s law of effect.

Sandholm and Crites [45] evaluated how a popular reinforcement learning algorithm,
Q-Learning [68], could learn to play the IPD. The results were discouraging in that Q-
Learning could not learn to cooperate with another Q-Learning adversary.

Arita and Suzuki [1] analyzed the interaction between learning and evolution by
incorporating the Baldwin [7] effect in the IPD. They have shown that the strategy
generated by these mechanisms is an ESS. This work gives insights into how learning
can alter the course of evolution in dynamic systems, although neither the mechanism
of learning nor the evolution mechanisms used in [1] has biological support. Thus, one
interesting proposal is to develop models of learning and evolution with biologically
plausible hypotheses in order to analyze their interaction.

Although there are many examples of cooperation by reciprocity in animals [17],
the learning mechanisms in cooperation have not been sufficiently analyzed. Since
reciprocal altruism is found in different animal species whose evolutionary paths greatly
diverge [11, 17], it can be proposed that the mechanisms involved in the learning of
cooperation had similar components. Therefore, simple learning mechanisms that are
found in a great variety of species and that could be involved in reciprocal altruism
should be studied. Many different species are able to change their behavior in order to
get larger amounts of appetitive stimuli (food, sex, etc.); this kind of learning—behavior
guided by its consequences—is called operant conditioning. Operant conditioning
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seems to have appeared early in evolutionary history, and it occurs in organisms whose
evolutionary paths diverge considerably from that of vertebrates, such as insects like
ants [48] and honeybees [22]. These invertebrates have nervous systems that are very
different from those of vertebrates; thus, it can be suggested that the ability to learn
through operant conditioning has evolved independently in different genetic lines.
Here, we propose that the learning of cooperation could have appeared in animals as
a mechanism for guaranteeing a higher proportion of appetitive stimuli to them and
therefore as a way to increase their own fitness.

In addition to proposing that operant learning can lead to success in the PD against
some known strategies, the purpose of this work is to explore the possibility that
reciprocal altruism can be explained by simple reinforced learning mechanisms. In this
respect, this work is motivated by the finding of Stephens et al. [61] that blue jays learn
to play a modified version of the IPD instead of showing innate behavior.

In this article, the role of operant conditioning in the IPD and the EPD will be
analyzed. The work is focused on learning mechanisms through a theoretical model
presented in [32] and [71] (for both a learning and an evolutionary approach see Arita
and Suzuki [1] ). That theory (see next sections) provides a new way to understand the
role of reinforcement in the learning of cooperation.

2 General Concepts of Operant Conditioning

Staddon [56] pointed out that “Organisms are machines designed by their evolution to
play a certain role. This role, together with the environment within which it is played,
is called the organism’s niche.” For simple niches, all that an organism has to do is to
make direct responses to specific kinds of stimuli (e.g., most nonsocial invertebrates).
The animal does not need to keep any record of its past history to succeed; it is sufficient
to avoid aversive stimuli and approach appetitive ones. However, in more complex
niches, adaptive behavior requires greater dependence on the animal’s past experience
that might affect its future behavior in a variety of ways.

The animal’s niche affects what it learns and the way that it learns. Niches differ in
many respects, and so do learning mechanisms through evolution. However, different
niches share many similarities. In the same way, different learning mechanisms have
many properties in common. Space and time are common to all niches. The properties
of causality—whether an important event is dependent on or independent of a prior
event or the animal’s own behavior—are also almost the same for every niche. Conse-
quently, a wide range of animal species are able to show adaptation to the temporal,
spatial, and causal properties of the environment in similar ways. Like other properties
of an organism, the capacity to learn is a product of evolution. Learning occurs be-
cause it promotes the propagation of the genetic code of the organism that possesses
the capacity to learn [40].

Thus, psychologists have identified classical and operant conditioning as two pri-
mary forms of learning that enable animals to acquire relevant characteristics of their
environment in order to get reinforcements or to avoid punishments. It is usual to
understand classical conditioning as an open-loop experimental procedure where the
controlled stimulus delivered by the experimenter is not contingent on the animal’s
behavior. The learning occurs by repeated association of a conditioned stimulus (CS)
with an unconditioned stimulus (US) that elicits an unconditioned response (UCR).
For example, in Pavlov’s experiment, the dog hears a bell (the CS), and after a short
time a piece of meat is presented (US), which elicits salivation (UCR). After repeating
the experiment several times, the presentation of the CS elicits the salivation response
(conditioned response, or CR).
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On the other hand, operant conditioning is a closed-loop experimental procedure,
in the sense that stimuli received by the animal are contingent on its behavior. The
animal learns to perform the actions that lead to a reward more frequently, and the
ones that lead to punishments less frequently. For example, a pigeon can be trained
to press a key when it sees a red light as CS , in order to receive a food reward (US).
The evolutionary advantage of operant conditioning is most clear when the animal’s
environment is a changing one. A location that once provided food may no longer do
so. An unfamiliar animal may turn out to be harmless or a dangerous predator. To be
able to survive and pass on its genetic material, an animal must adapt to this variety of
situations, and having learning capacities is a fundamental characteristic that permits it
to do so.

There are two basically different types of US , pleasant and unpleasant ones.
Thorndike defined a pleasant stimulus as one that the organism seeks to attain and
preserve, and an unpleasant stimulus as one that the organism seeks to avoid or termi-
nate. An experiment can consist in presenting or removing the stimulus in response to
a specific behavior. If a pleasant stimulus is presented when the animal performs the
desired behavior, the learning is called appetitive. On the other hand, if an unpleasant
stimulus is presented and is removed when the animal performs the desired behavior,
the learning is called aversive. A brief introduction to appetitive and aversive stimuli is
provided in Appendices A and B, respectively.

3 A Theory of Operant Conditioning

3.1 Psychological, Anatomical, and Neurobiological Bases
The theory of adaptive systems, cybernetics, and experimental psychology contributed
to the theoretical study of higher brain functions [4, 16, 29, 46, 55, 69]. More recently,
fundamental aspects of animal behavior have been included in this approach [46, 47,
55, 58, 59, 71]. From this point of view, Zanutto and Lew [32, 71] presented a neural
network model (we will call it ZL) of operant conditioning for appetitive and aversive
stimuli.

There are many nonmathematical theories to explain operant conditioning; some-
times there is no agreement about their hypotheses and about the role of prediction,
especially in theories to explain escape and avoidance. In the one-factor theory [27],
the avoidance response is reinforced by the US (e.g., shock). In the two-factor theory
[37], instead, the avoidance response is reinforced by the reduction in fear due to the
lack of the fear-eliciting CS . In the cognitive theory of avoidance [51], it is assumed
that during the acquisition phase, animals develop expectations depending on their
responses. However, Seligman and his colleagues [39] have proposed that under cer-
tain circumstances, animals develop the expectation that their behavior will have little
or no effect on their environment, and that this expectation may generalize to a wide
range of situations. They called this effect learned helplessness. There are also other
nonquantitative theories to explain the appetitive data, and only a few mathematical
theories to explain operant conditioning. Only a few of them are able to describe
the most relevant experimental features for appetitive stimuli [16] and for the aversive
stimuli [46, 71].

The main hypotheses of the model are based on psychological, anatomical, and
neurobiological bases:

• Behavioral experiments suggest that learning is driven by changes in the
expectation about salient future events, mainly reward and punishment. In operant
and classical conditioning, the conditioned stimulus (CS) anticipates the
unconditioned stimulus (US). Rescorla and Wagner [43] proposed that animals learn
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by comparing what they expect in a given situation and what actually happens. As
Staddon [56] has pointed out, animals act because the CS allows them to elaborate
an expectation or prediction of the unconditioned stimulus. Furthermore, there are
neural substrates of prediction and reward, such as the involvement of dopamine
neurons of the ventral tegmental area (VTA) and substantia nigra (SN), identified
with the processing of prediction and reward [50]. Moreover, Waelti et al. [66]
found that the firing of these neurons corresponds with the predictive behavior
described by the Rescorla-Wagner rule (explained below). Also, when human
beings play the IPD, areas linked with reward processing are consistently activated,
such as the nucleus accumbens, caudate nucleus, ventromedial frontal and
orbitofrontal cortex, and rostral anterior cingulate cortex [44].

• The pathways that connect the different blocks that were proposed as participating
in the operant mechanisms have their bases in anatomical studies in vertebrates
such as rats and primates. In monkeys, the prefrontal cortex is a region of
convergence of five corticocortical pathways originating in the primary somatic,
auditory, visual, olfactory, and gustatory areas. These pathways are relatively
independent of one another until they reach the prefrontal cortex, an associative
area [19]. In the primate, the prefrontal cortex is the origin of a cascade of
reciprocal connective links that flow down from it to the premotor cortex, and
from there to the primary motor cortex [8, 67]. As was said before, the VTA is
involved in the prediction of the US ; here its effect is computed by one neuron.
The VTA neurons are connected with the prefrontal cortex through the
mesocortical dopaminergic system [41].

• In primates, the orbitofrontal cortex is involved in working memory [8, 23].
Neurons in this area continue to discharge for several seconds after the stimulus
offset. This short-time memory is able to maintain active useful information to
perform specific tasks and to associate CSs, actions, and USs.

• The cortical effect of the lateral interaction in the premotor and primary motor
cortex is simulated by assuming that there are groups of cells that fire in a similar
fashion and with high correlation. In this model it is assumed that each response is
generated by a cluster of neurons simulated by one neuron representing the effect
of the cascade of motor links.

• Learning in this model is controlled by the VTA and SN neurons, which are
represented by a prediction neuron. Schultz and colleagues [50] found that there
are neurons in the VTA and SN that report an error in the prediction of reward, and
when the association between CS and US is learned, the same neurons fire on the
occurrence of the CS , predicting that the US will follow it. Schultz [49] suggested
that the action of a teaching signal can be formalized by applying the
Rescorla-Wagner learning rule to synaptic weight. A dopamine teaching signal
could modify the weights of the prefrontal synapses according to a Hebbian
learning rule. In the proposed model, dopamine neurons control the learning of
the prefrontal neurons, by Hebbian or anti-Hebbian learning according to whether
the prediction is above a predetermined threshold or not.

In [32] it was shown that the model predicts such relevant features of operant con-
ditioning for appetitive stimulus as the matching law [26], response selection [57], the
partial reinforcement extinction effect [30], spontaneous recovery [33], and the succes-
sive contrast effect [14]. It can also explain learned helplessness and its reversal [3, 39,
52], delay avoidance [9, 31], and the experiments simulated in [46].

This model is able to explain formally the experimental results on escape and avoid-
ance that were previously interpreted under different theories with contradictory hy-
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Figure 1. Neural network model. There is one artificial neuron computing the prediction (P), and one for each
response R[ j] that the animal can make. P is a nonlinear function applied to the output of the prediction neuron
(X). VC: visual cortex; AC: auditory cortex; OC: olfactory cortex; GC: gustatory cortex; LS: limbic system; PFC:
prefrontal cortex; PMC: premotor cortex; MC: primary motor cortex; MDS: mesocortical dopaminergic system;
VTA: ventral tegmental area. The traces (TCS[i]) representing the short-term memory of the conditioned stimuli
are computed by a group of cells in the PFC-M [23]. The unconditioned stimulus (TUS) and the responses (TR[ j])
are inputs to the neurons computing P and R[ j]. The synaptic weights V[CS[i]], V[R[ j]], and V[US] represent the
associations between the inputs and P. The synaptic weights W[R[ j], TS] are associations between P, TCS[i] and TUS,
and the PFC-L [8]. The responses performed by the animal are inputs to the different sensory cortices (i.e., VC,
AC). These responses generate short-term memory in the PFC-M (bottom of the figure). Finally, the traces from
response neurons are fed back to the prediction neuron.

potheses [27, 37, 51]. In [71] it was shown how the model explains experiments that
support the two-factor theory. The model also explained how the experiment of Herrn-
stein and Hineline [28] that supports the one-factor theory does not need a variable such
as fear or prediction. The model also explained experiments that support the cognitive
theory and show how, under certain circumstances, animals develop the expectation
that their behavior will have little effect on their environment (learned helplessness).
Finally, this model also explained imitation in the same terms as Schmajuk and Zanutto
[46]. In this way, based on biologically plausible hypotheses, this theory explains many
relevant features of operant conditioning for appetitive and aversive stimuli.

3.2 The Operant Conditioning Model
The model is shown in Figure 1. The inputs to the model are all the conditioned
stimuli (CSs) and the unconditioned stimulus (US), and the outputs are all the possible
animal responses (Rs). The network has three functional blocks: the stimulus and
response traces, the prediction neuron, and the response neurons. In the model, all
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the neurons make a summation of their inputs weighted by their synaptic weights,
and then a nonlinear function is applied, as is usual in neural network models. Also,
synaptic weights are limited in their maximum strength by biological constraints.

The prediction neuron has all the traces of stimuli and responses as inputs. The
synaptic weights are modified by the Rescorla-Wagner rule, except for the US ’s weight,
which remains fixed. From the point of view of the two-factor theory, this means that
the US provokes fear; for the appetitive stimulus, it means that the animal raises its
expectation for food (previous models included this hypothesis [46]). The response
neurons have all the CS and US traces and the prediction as inputs. If it exceeds a
certain threshold, the learning in the response neurons will be Hebbian in the appetitive,
and anti-Hebbian in the aversive, case. If the prediction is below the threshold, the
learning is computed inversely. When one of the response neurons exceeds a certain
level, the associated response is executed.

3.2.1 Stimulus Traces
There are two types of traces, one corresponding to stimuli, and the other to the re-
sponses representing the short-term memory. In the case of the US , there are three
different traces: short, medium, and long duration. Short-term memories allow the or-
ganism to associate a CS with a US when their presentations are not simultaneous. This
hypothesis is supported by neurobiological evidence [23]. The medium- and long-term
memories are necessary to explain the influence of reinforcers in learning across several
trials. It was previously suggested [16] that medium- and long-time traces can explain
the experimental data obtained in learning paradigms such as the partial reinforcement
extinction effect (Crespi effect), behavioral contrast, and spontaneous recovery.

The stimulus traces receive as input all the stimuli coming from the visual cortex
(VC), auditory cortex (AC), olfactory cortex (OC), gustatory cortex (GC), or limbic
system (LS). The outputs of the short-term traces are inputs to response neurons and
to the prediction, and the traces from response neurons are fed back to the prediction
neuron.

The equation to calculate the short-term traces (TS ) of the stimuli (S) of the CS as
well as the US , at instant n, is a first-order linear difference equation:

TS (n) = TS (n − 1) · (1 − ε)+ ε · S(n) if S(n) > 0. (3)

TS (n) = TS (n − 1) · (1 − β) if S(n) = 0 (4)

TR(n) = TR(n − 1) · (1 − β)+ ε · (1 − TR(n − 1)) · R(n) (5)

The medium- and long-term traces of the US are

TU S med(n) = TU S med(n − 1) · (1 − ρ)+ ρ · U S(n) (6)

TU S long(n) = TU S long(n − 1) · (1 − δ)+ δ · U S(n) (7)

3.2.2 Prediction Neuron

3.2.2.1 The Rescorla-Wagner Rule

It can be assumed that it is useful for an animal to be able to predict or anticipate impor-
tant events in its environment, both favorable and unfavorable. Classical conditioning
can be seen as a means of learning what CSs predict relevant events (USs).

The Rescorla-Wagner model states that each time a particular CS is presented, one
of three things can happen. The first is that the magnitude of the US received is higher
than expected; in this case, the CSs presented shortly before the US will strengthen the
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UCR. The second possibility is that the US received is lower than the expected; in this
case, the CSs will weaken the UCR. The last possibility is that the US received is equal
to the expected, and no modification occurs. Rescorla and Wagner suggested that the
amount of associative strength a US center will ultimately support depends on the size
of the US . They proposed that the change in association (
Vi) between CSi and U Sj

is given by


Vi = Si ·
(

Aj −
N∑

j=1

Vi

)

where Aj is the asymptote of associative strength for a given U Sj , and Vi is the asso-
ciative strength between stimulus i and U Sj at a specific time. As Aj represents the
magnitude of the perceived event, V = ∑n

i=1 Vi represents what the animal expects to
receive in a given situation.

If Aj > V , then each time a CS is presented in the trial, there will be an increase in
the associative strength; if Aj < V , there will be a decrease; and if Aj = V , there will
be no modification. The model states that the learning is proportional to the difference
Aj − V , with a proportionality factor Si that represents the salience of the stimulus CSi .
One stimulus can be more salient than another because it is more intense or because
it is more noticeable. This simple model is able to explain experimental results such
as blocking, extinction, conditioned inhibition, and the overexpectation effect, but it
cannot explain experimental results such as latent inhibition.

As stated above, Waelti et al. [66] found that single neurons in the VTA and SN fire
according to this formalism. However, the Rescorla-Wagner rule cannot account for
time-dependent conditioning phenomena, because it is a trial-based rule. That rule
was modified in this operant learning theory to explain real-time conditioning.

3.2.2.2 Model of the Prediction Neuron

The inputs to the prediction neuron are all the short-term traces of CSs, US , and Rs.
Each response neuron has as input the output of the prediction neuron (P). It has the
additional function of controlling its learning. We have

X (n) = VU S (n)TU S (n)+
NCS∑
i=1

VCSi(n)TCSi(n)+
NR∑
i=1

VRi(n)TRi(n) (8)

P(n) = ξ

1 + e−v(X (n)−σ) (9)

Here P is the output function, the V ’s are the weights, and the T ’s the corresponding
traces to the US, CS, and R . The number of CSs is NCS , and the number of responses
NR . The synaptic weight VU S (n) remains fixed at 0.1.

If an animal is trained to respond with an appetitive amount of reward, when the
amount diminishes, the expectation is modified in such a way that if the reinforcer is still
appetitive, animals can stop responding [17]. This effect (some times called the Crespi
effect) is simulated by modifying the Rescorla-Wagner model, considering not only the
reinforcer value, but also the changes in it. This was done by adding to the reinforcer
value the difference between what the animal received in the medium term and in the
long term, modulated by a sigmoid. The modulation is to prevent the difference from
affecting the intratrial learning, since the Crespi effect is an intertrial effect. This means
that if the animal receives a reinforcer of lower value, the sum of the two terms is lower
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than the value of the actual reinforcer. The updating of the prediction neuron’s weight
is based on the Rescorla-Wagner model [43], in which the term f (DU S(n)) is added to
explain the Crespi effect [14]:

V XS (n) = V XS (n − 1)+ η(U S) · TS (n) · (U S(n)+ f (DU S(n))− X (n)) (10)

VS (n) = 2

1 + e−κ·V XS (n)
− 1 (11)

The associative strength is represented by V XS (n). Equation 11 clamps the synaptic
weights in the range of −1 to 1. The V X values are bounded between 10 and −10 in
order to limit the maximum associative strength. Here the salience is represented by
the stimulus trace TS (n); this means that a CS ’s salience depends on its memory trace.
The rate of learning is represented by η(U S), which depends on whether the US is
present or not, due to attentional modulation:

η(U S) = ηi if U S > 0, and η(U S) = ηd if U S = 0

The term f (DU S(n)) is defined in the following way:

DU S(n) = TU S med(n)− TU S long(n) (12)

f (DU S(n)) = χ · (τ + DU S(n)) · tanh(γ · DU S(n))10 (13)

3.2.3 Response Neurons
As was said above, there is an output neuron for each of the possible responses of the
animal. The output of these neurons is determined by

Rj (n) = g(Yj (n))

Yj (n) = Wj pred(n) · P(n)+ Wj U S (n) · TU S (n)+
NCS∑
i=1

Wj CSi(n) · TCSi(n)+ noise(n)

g = 0 if Yj (n) < 0; g = 1 if Yj (n) > µ; else g = Yj (n) (14)

where Wj pred(n) is the j th response synaptic weight corresponding to the output of
the prediction neuron at instant n, Wj U S (n) is the weight corresponding to the US , and
Wj CSi(n) is the weight corresponding to each of the CSs. The output of the prediction
neuron is P(n), the US short-term memory is TU S (n), and the CS short-term memories
are TCSi(n).

The animal executes a response Rj whenever Yj exceeds the threshold µ. At any
instant, only one response can be executed. The updating is done asymmetrically. At
each instant, one neuron is selected randomly, and only its weights are updated.

If no response is executed after a fixed time, a neuron is randomly selected. This
differs from [32], where it is possible that during a trial no response is executed.
However, in the particular case of the PD it is mandatory to choose a determined
move.

The equation to compute the learning of these neurons is based on the Hebb rule
[25], which states that the change in synaptic efficacy is proportional to the presynaptic
and postsynaptic activity. If the US is predicted, the learning will be Hebbian in the
appetitive case. The association between stimuli and the selected response will be re-
inforced because it produces the procurement of a positive reinforcement. The weights

442 Artificial Life Volume 10, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/10/4/433/1662134/1064546041766479.pdf by guest on 28 Septem
ber 2021



D. A. Gutnisky and B. S. Zanutto Operant Conditioning Mechanisms

of the executed neuron are updated in the following way:

Wj q(n) = ψWj q(n − 1)+ φ�Q(n)TRj (n) (15)

where Q is the input (P, TU S , or TCSi), q is the respective index (P,U S , or i), and
TRj (n − 1) is the j th short-term response trace at instant n − 1. The coefficient ψ
is a constant that represents the synaptic weight forgetting rate. The learning rate is
controlled by φ and �. Here � can take either of two values: if the US is appetitive
and P < λ, then � = −λ, and if P ≥ λ then � = λ. The reverse rule is applied in the
case that the US is aversive. The constant λ is the learning threshold: if the prediction
is higher, it means that the active CSs will signal that a US is likely to come; if the US is
appetitive, the response that leads to reinforcement procurement will be strengthened.

3.3 How the Model Works
In order to understand the basic workings of the model, we will explain how the
animal can associate the presentation of a stimulus, a selected action, and an appetitive
reinforcement. Let us suppose that a light is turned on for 5 seconds (CS), and if the
animal presses a certain lever, it receives food (US). The light, coming from the visual
cortex, generates a short-term memory. If the animal executes the appropriate action
by chance, it will receive a reinforcement. Since the synaptic weight of the US in
the prediction neuron is 0.1, if the US is sufficiently high it will make the prediction
neuron fire with an output above the threshold, raising the synaptic weight of the CS
connected to the right response neuron and the one corresponding to the prediction.
In addition, as there is a discrepancy between the received US and what the prediction
neuron has predicted, the synaptic weight of the CS connected to the prediction neuron
will be updated in proportion to the discrepancy between the US and the prediction.
In the following trials, the correct answer will have a higher chance than the others
to be selected, since the CS will have a synaptic weight greater than 0. The CS ’s
synaptic weight in the prediction neuron will rise gradually until it can completely
predict the US . The sole presentation of the CS will make the prediction neuron fire,
and the animal will respond sooner to the presentation of the light. The reverse happens
when the animal chooses an incorrect answer: The prediction neuron does not fire, the
learning becomes anti-Hebbian, and the synaptic weight that associates the CS with the
incorrect response neurons decreases, causing its probability of firing to be reduced in
subsequent experiments. It is important to notice that without short-term memory these
associations could not be made, since the CS offset is previous to the US presentation.

4 Iterated Prisoner’s Dilemma

In the present experiment, we evaluated the role of operant conditioning in the learning
of cooperation in the IPD game. We compared its performance against some previously
commonly proposed strategies. Each pair of players was matched in 1000 rounds. We
performed 100 repetitions to calculate the average. The same analysis was done with
four different probabilities of making a random move. The chosen probabilities (pr)
were 0, 0.01, 0.02, and 0.05. In the case where two ZL players are matched, two
independent implementations of the ZL model that learn separately from each other
are used.

The inputs to the model are a stimulus to signal the beginning of a new trial, where
the animal chooses to cooperate or to defect, and two more stimuli; one indicates that
the opponent’s move was C in the previous round, and the other indicates that it was
D. The response is computed in 100 time units. The two participants received points
according to Table 1, depending on the actions performed by both players; here the
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US value is 2 times the number of earned points (to keep the same constants as in the
ZL model).

One critical issue for an operant behavior experiment is to decide whether the US is
rewarding (appetitive) or punishing (aversive). The operant learning model used here is
able to learn from both appetitive and aversive stimuli. However, during an experiment
it has to receive all appetitive or all aversive reinforcers; it cannot alternate between
rewarding and punishing. Here, the model was used in its appetitive alternative; this
means that even if it does not receive any reward, the model will not consider that it was
punished. If the opponent decides to defect, the model will receive a low reward that
will not be enough to reinforce any response. In the terms of the theory, due to the low
value of each reinforcer when the opponent defects, the output of the prediction neuron
is below the Hebbian learning threshold, and no response is reinforced. When animals
learn that their behavior has little effect on their environment, they stop responding
(this is called learned helplessness).

The model is able to predict this behavior. Let us suppose that an animal can press
one lever that corresponds to the action of cooperation, or another that corresponds to
the action of defection. If the animal is playing against ALLD, receiving very little food,
it will press each lever randomly, and after several trials it will stop responding. Thus,
the animal will not learn to defect against an ALLD strategy, and in an IPD game it will
be exploited by it. This means that operant conditioning alone is not able to survive in
such conditions. We propose that in addition to operant conditioning, in order to be
able to learn to play the IPD, a mechanism of protection against defectors is needed;
otherwise, cooperation will be an advantage to the selfish player, and animals that
cooperated according to an operant behavior would be exploited by the defectors.
This assumption poses an additional hypothesis to be tested in animals that cooperate
according to reciprocal altruism.

We simulated this requirement by a long-time memory trace of the opponent’s de-
fections. If the level of the trace (TR) is above a certain defection threshold th = 0.9,
then ZL will execute D (α = 0.05):

T RD(n) = α · D(n)+ (1 − α) · T RD(n − 1) (16)

Table 2 summarizes the strategies used in the simulations. To evaluate different experi-
ments, two groups of strategies are analyzed. Group 1 comprises the strategies that the
behavior of which is not influenced by the actions of the adversary. They are ALLD,
ALLC, ALTDC, RANDOM. Group 2 comprises the strategies that change their actions
depending on the behavior of the opponent. They are ZL, TFT, PAVLOV, S MAJO, TF2T,
and S TFT.

4.1 IPD Results
Figures 2 and 3 show ZL’s average score against group 2 adversaries for pr = 0 and 0.02
for iteration. To compare the general performance of each of the strategies against the
others, confrontations were simulated between each pair. Tables 3–6 show the results
for different probabilities of random moves: 0, 0.01, 0.02, and 0.05.

When ALLD played against ZL, the first strategy got a higher score than the second
one, because it takes some rounds to exceed the defection threshold. ZL did not
cooperate in all the encounters with ALLC, as group 2 strategies do. This is because
whatever the ZL’s response is, it obtains enough reinforcement.

Because ZL has to learn a strategy in order to obtain reinforcers, it takes more time
to stabilize the responses. Consequently, the average score obtained by ZL against
another ZL was a little lower than against TFT. This was a disadvantage in the EPD (see
below). Figure 4 shows the total score for each strategy and the probability of wrong
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Table 2. Description of the strategies employed.

Strategy Description
TFT First move C, and then repeat the adversary’s previous move.
ALLC Always C.
ALLD Always D.
ALTDC Alternate D and C.
ZL Move depends on the response of the model’s neurons.
RANDOM D with probability 0.5, C otherwise.
SOFT MAJORITY C on the first move, and then play the opponent’s most used
(S MAJO) move (C in case of equality).
SLOW TFT C on the first two moves, then begin to defect after two
(S TFT) consecutive D of its opponent, and return to cooperation after

two consecutive C.
PAVLOV C on the first move, and then cooperate only if the two players

made the same move.
TF2T C on the first move; then D if the opponent has defected two

consecutive times, and C otherwise.

Figure 2. Average score obtained by ZL against group 2 opponents as a function of the iteration number (pr = 0).
ZL learned faster against genetic strategies than against another ZL. The only scheme that ZL did not learn to
cooperate with was S MAJO.

moves. ZL got the second highest total score with pr = 0 (after TFT), and for the other
pr s, ZL was the winner. Figure 5 shows the score of ZL against each strategy with the
different pr .

The cooperation level decreases with higher pr . However, with pr = 0.05, ZL and
TFT cooperated 75% of the time, and ZL against itself cooperated 66% of the time.

5 Evolutionary Prisoner’s Dilemma

Tables 3–6 present the average score for each pair of strategies in a 1000-round game.
In the actual experiment, those scores were taken to simulate an evolution of the
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Figure 3. Average score obtained by ZL against group 2 opponents as a function of the iteration number (pr = 0.02).
Even with wrong actions, ZL learned to cooperate. These random moves allow better performance of ZL against
S MAJO.

Table 3. Average score in 1,000 rounds for the strategy in the row label when matched against the strategy in the
column label: pr = 0.

TFT ALLC ALLD ALTDC ZL RANDOM S MAJO S TFT PAVLOV TF2T Total

TFT 3.000 3.000 0.999 2.500 2.957 2.248 3.000 3.000 3.000 3.000 26.704

ALLC 3.000 3.000 0.000 1.500 1.440 1.503 3.000 3.000 3.000 3.000 22.443

ALLD 1.004 5.000 1.000 3.000 1.089 2.996 1.004 1.008 3.000 1.008 20.109

ALTDC 2.500 4.000 0.500 2.000 2.111 2.254 2.500 4.000 2.250 4.000 26.115

ZL 2.957 4.040 0.978 2.347 2.902 2.284 2.139 2.943 2.970 2.997 26.558

RANDOM 2.250 3.998 0.501 2.250 2.177 2.245 2.289 2.253 2.249 3.126 23.337

S MAJO 3.000 3.000 0.999 2.500 2.183 2.236 3.000 3.000 3.000 3.000 25.918

S TFT 3.000 3.000 0.998 1.500 2.950 2.246 3.000 3.000 3.000 3.000 25.695

PAVLOV 3.000 3.000 0.500 2.250 2.966 2.253 3.000 3.000 3.000 3.000 25.969

TF2T 3.000 3.000 0.998 1.500 2.986 1.873 3.000 3.000 3.000 3.000 25.356

Table 4. Average score in 1,000 rounds for the strategy in the row label when matched against the strategy in the
column label: pr = 0.01.

TFT ALLC ALLD ALTDC ZL RANDOM S MAJO S TFT PAVLOV TF2T Total

TFT 2.300 3.005 1.009 2.492 2.913 2.248 3.005 2.812 2.287 3.004 25.072

ALLC 2.980 2.995 0.020 1.508 1.479 1.512 2.994 2.995 1.551 2.995 21.027

ALLD 1.038 4.970 1.014 2.992 1.106 2.995 1.019 1.023 2.992 1.063 20.211

ALTDC 2.492 3.982 0.518 2.004 2.201 2.242 2.333 2.272 2.251 3.966 24.260

ZL 2.892 4.001 0.993 2.281 2.816 2.273 2.458 2.885 2.789 3.021 26.410

RANDOM 2.249 3.979 0.517 2.253 2.188 2.252 2.136 2.252 2.248 3.119 23.195

S MAJO 2.979 2.995 1.012 2.334 1.694 2.300 2.995 2.995 2.428 2.997 24.728

S TFT 2.792 2.995 1.014 2.239 2.876 2.248 2.995 2.937 2.960 2.995 26.049

PAVLOV 2.288 3.953 0.518 2.250 2.932 2.253 2.093 1.223 2.976 2.847 23.332

TF2T 2.980 2.995 1.003 1.515 2.775 1.874 2.993 2.994 2.091 2.996 24.213
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Table 5. Average score in 1,000 rounds for the strategy in the row label when matched against the strategy in the
column label: pr = 0.02.

TFT ALLC ALLD ALTDC ZL RANDOM S MAJO S TFT PAVLOV TF2T Total

TFT 2.296 3.009 1.020 2.486 2.893 2.251 2.990 2.466 2.275 3.009 24.694

ALLC 2.961 2.989 0.041 1.515 1.492 1.518 2.990 2.988 1.495 2.989 20.975

ALLD 1.073 4.939 1.028 2.984 1.124 2.987 1.033 1.041 2.986 1.115 20.309

ALTDC 2.486 3.966 0.539 2.011 2.125 2.248 2.237 2.300 2.252 3.930 24.092

ZL 2.852 3.981 1.005 2.329 2.717 2.276 2.667 2.823 2.641 3.026 26.317

RANDOM 2.255 3.964 0.535 2.255 2.198 2.245 2.309 2.258 2.251 3.111 23.382

S MAJO 2.941 2.989 1.029 2.350 1.648 2.217 2.990 2.989 2.555 2.991 24.699

S TFT 2.444 2.991 1.028 2.228 2.805 2.243 2.990 2.790 2.926 2.979 25.423

PAVLOV 2.276 3.979 0.535 2.250 2.872 2.257 1.644 1.156 2.952 2.838 22.756

TF2T 2.959 2.990 1.008 1.530 2.658 1.881 2.988 2.980 2.055 2.989 24.036

Table 6. Average score in 1,000 rounds for the strategy in the row label when matched against the strategy in the
column label: pr = 0.05.

TFT ALLC ALLD ALTDC ZL RANDOM S MAJO S TFT PAVLOV TF2T Total

TFT 2.276 3.019 1.046 2.465 2.792 2.249 3.023 2.213 2.262 3.018 24.363

ALLC 2.905 2.972 0.098 1.539 1.544 1.540 2.975 2.963 1.545 2.972 21.050

ALLD 1.171 4.853 1.073 2.966 1.188 2.967 1.081 1.091 2.964 1.265 20.618

ALTDC 2.463 3.912 0.583 2.019 2.132 2.252 2.298 2.310 2.252 3.832 24.051

ZL 2.710 3.908 1.043 2.323 2.574 2.275 2.415 2.743 2.434 3.010 25.436

RANDOM 2.254 3.911 0.586 2.248 2.197 2.255 2.268 2.254 2.246 3.083 23.303

S MAJO 2.900 2.972 1.074 2.281 1.493 2.239 2.971 2.965 2.618 2.971 24.482

S TFT 2.198 2.982 1.072 2.221 2.714 2.248 2.982 2.307 2.832 2.918 24.472

PAVLOV 2.259 3.907 0.587 2.248 2.744 2.248 1.429 1.297 2.877 2.828 22.422

TF2T 2.902 2.976 1.025 1.572 2.515 1.898 2.977 2.909 2.033 2.975 23.780

Figure 4. Total average score for each strategy and probability of random moves. TFT obtained the highest score
for pr = 0, followed closely by ZL. For the other prs, ZL was the best strategy. Its performance was not significantly
affected by pr.
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Figure 5. Average score obtained by ZL against each scheme for the different pr. The most important decrease
in performance was against PAVLOV. There is an important increment against S MAJO at higher pr. The random
moves did not significantly change the score obtained in the other cases.

population. The new generation is formed with a different arrangement of players,
proportional to the total score obtained against all other adversaries. Thus, the total
score for each strategy changes in each new generation, because the proportion of
opponents changes.

Let M be the matrix of average scores between each pair of strategies, and mij the
average score that strategy i gets against j . Let P(n) be the column vector that indicates
the proportion of each strategy in generation n, and T (n) the total average score in
generation n for each player. Then

M · P(n) = T (n) (17)

The total average score is used to calculate the population of the next generation. For
each strategy i,

Pi(n) ∝ Pi(n − 1) · Ti(n − 1) (18)

We will present results on the evolution of populations in different arrangements.
In the first experiment, the initial population consisted of ZL and group 1 strategies.
All the strategies of group 1 are degenerate and it is not trivial that ZL can survive in
such conditions. The behavior of ZL cannot be predicted easily without simulating it.
The second experiment consisted of all group 2 strategies. In the last experiment, all
the schemes were evaluated together. Finally, we studied the influence of learning in
ZL’s performance by pretraining it against all the other strategies and then analyzing its
behavior in the EPD simulation.

5.1 EPD Results
In the first experiment, we analyzed strategies with a population from group 1 and
ZL. We examined how ZL evolves in a population composed of the static schemes
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Figure 6. ZL and group 1 schemes in the EPD for pr = 0. In few generations, ZL reached 100% of the population.

(ALLD, ALLC, ALTDC, RANDOM). Figure 6 shows that ZL eliminated the others in a
few generations. The same effect happened for the other probabilities of random
moves.

In the second experiment, we evaluated the evolution of group 2 schemes. The aim
was to find if ZL could survive in an environment with players that punish selfish be-
havior. All the strategies, except ZL, correspond to a genetic trait. This is a disadvantage
for ZL, since it needs more time to reach its asymptotic behavior, decreasing its fitness.
This disadvantage is more clearly seen when results are compared with experiments
where ZL was previously pretrained against all other strategies (see below). It was
the only strategy that was extinguished when pr = 0. However, when random moves
were introduced, ZL survived throughout the generations. The results are shown in
Figures 7 to 10.

In the last experiment, all 10 schemes were evaluated, starting from a homogeneous
population. In Figure 11, with pr = 0, group 2 strategies (except ZL) and ALLC persisted
in the population throughout the generations. However, with pr = 0.01 (Figure 12)
the only two strategies that survived after a series of oscillations were S MAJO and TFT,
the latter being scarce.

Table 7 summarizes the final population of each strategy in the different experiments.
Finally, we show that ZL is not extinguished in any of the previous experiments

when it is first pretrained. We present only the EPD results where ZL extinguished
previously (group 2 with pr = 0, and all the schemes with pr = 0 and pr = 0.01).
Table 8 summarizes the final population of each strategy in the different experiments
when ZL is pretrained.

6 Discussion

In the IPD (Figure 2), ZL learned to cooperate with all the strategies of group 2, except
with S MAJO for pr = 0. This was because S MAJO remembers all the history of the
opponent actions. For this reason, it defects unless others change their actions. Thus,
S MAJO does not help to reverse a noncooperative tendency of the adversary. If the
round is prolonged for a certain time, then, due to S MAJO’s defection in each round,
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Figure 7. Group 2 schemes in the EPD for pr = 0. Despite the fact that ZL learned to cooperate with group 2
strategies, it was extinguished in this case. This was because ZL is a learned strategy, and it needs more time to
reach its asymptotic behavior. In this case, ZL had disadvantages against genetic schemes.

Figure 8. Group 2 schemes in the EPD for pr = 0.01. A small probability of random moves caused the extinction of
TFT, S MAJO, and PAVLOV. On the other hand, ZL reached stability in the population, despite its initial disadvantage.

ZL begins to defect all the time because the threshold in Equation 16 is exceeded. After
some iterations, any action changes the behavior of S MAJO very little. From an operant
point of view, ZL’s actions are not contingent on the obtained reinforcement. However,
these strategies learned to cooperate more frequently when pr = 0.02 (Figure 3). This
was because S MAJO could change its tendency because some actions were randomly
chosen.

We showed that ZL learned faster against TF2T, S TFT, PAVLOV, and TFT than against
another ZL (Figure 2). This was because the correlation between any of their actions
and ZL is stronger than with another ZL, due to its exploratory behavior. ZL learned
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Figure 9. Group 2 schemes in the EPD for pr = 0.02. In this case, TFT, TF2T, and ZL composed the final population.

Figure 10. Group 2 schemes in the EPD for pr = 0.05. In the final population were TFT, TF2T, and ZL.

to cooperate at a high rate even with pr = 0.05 (see Tables 2–5). In spite of the
random moves, the average score of ZL against each strategy did not vary significantly,
as happened with the others (Figure 5).

In the EPD we wanted to study how ZL evolved in a different population arrange-
ment. When we compared it with strategies of group 1, ZL was the dominant scheme
even with wrong moves. If we replace ZL with TFT and pr = 0.01 or higher, TFT is
no longer the only strategy that survives throughout the generations.

When ZL was compared with group 2 strategies and pr = 0, all schemes survived
except ZL. The reason is that ZL takes more time to cooperate, because, unlike the
others, it has to learn. The only players that survived for pr = 0.01 and 0.02 are ZL,
S TFT, and TF2T. For pr = 0.05, the survivors were ZL, TF2T, and TFT.
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Figure 11. All schemes in the EPD for pr = 0. With the exception of ZL, the only strategies that survived were
from group 2.

Figure 12. All schemes in the EPD for pr = 0.01. After a series of oscillations, S MAJO raised its proportion from
almost 0% to near 100%.

In the last experiment, the evolution of all strategies was studied (Figures 11–14).
When pr = 0.01, at the beginning S MAJO and TFT were almost extinguished, and
TF2T, S TFT, and ALTDC were the dominating schemes. S MAJO increased in pro-
portion when ZL decreased, since S MAJO gets the least score against ZL, with the
exception of ALLD (see Table 4). After a series of oscillations, S MAJO reaches almost
100% of the population, showing the important role of the participants’ interplaying in
the population’s dynamics.

ZL stopped extinguishing itself at pr s of 0.02 and 0.05 when the other survivors
were TF2T, S TFT, and ALTDC. Figure 14 shows that ZL had the greatest proportion at
pr = 0.05. EPD results showed that ZL survives against group 2 strategies only if the
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Figure 13. All schemes in the EPD for pr = 0.02. The final population is composed of TF2T, ZL, S TFT, and a small
proportion of ALTDC.

Figure 14. All schemes in the EPD for pr = 0.05. ZL had the highest proportion in the final population. The other
survivors were TF2T, TFT, and to a small extent ALTDC.

moves are noisy. This is because the other strategies can achieve perfect cooperation,
while ZL is always below its ideal score because it loses points while learning the best
reply to the opponent. However, when random moves are allowed in the game, ZL
showed a relatively low sensitivity to the noise, and the initial advantage that the other
strategies have diminished. In this way, ZL is able to survive under these conditions.

Animals learn to respond correctly to a CS , even when the US is presented with a
certain probability. Thus, animals do not extinguish or change their responses when
their actions do not produce what they expect for some trials without reward. As stated
previously, the results also showed that ZL can overcome its disadvantage against group
2 strategies when there is some probability of making random moves. On the other
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hand, the other strategies used in this article change their behavior in a predetermined
way. For example, if two players both play TFT but one of them changes its move
from C to D, the opponent will copy that mistake, resulting in an alternation between
CD and DC. The operant model does not change its behavior in any such dramatic
way, preventing the mistaken move from propagating. Other strategies, such as TF2T,
S TFT, PAVLOV, and S MAJO, show less sensitivity to noise than TFT.

Finally, we pretrained ZL against all the other strategies to demonstrate that ZL loses
valuable fitness because of its learning mechanisms (see Figures 15–17). The results
showed that ZL survives in all the proposed arrangements, and when there is some
probability of random moves, it achieves the major proportion in the population. These
results support the idea that although learning has the important property of adapting
to a variety of strategies, the time that learning takes represents a disadvantage in
evolutionary terms compared with nonlearning strategies. Two mechanisms that ZL
can use to overcome this disadvantage are imitation and the Baldwin effect.

The first mechanism provides a ZL player the possibility of observing how another
ZL confronts other players by imitating their moves. This allows the first ZL player to
learn other strategies without the disadvantage of losing fitness. It has to be mentioned
that there is no need to change the model, since it can already learn by imitation [46].

The second mechanism, the Baldwin effect, consists of the fact that organisms that
make nonhereditary physical or behavioral modifications to survive environmental dan-
gers will have a higher proportion in future generations than less adaptive animals.
Through natural selection, then, the capacity for such adaptation along with the ben-
eficial acquired traits will become universal. Simpson [53] reintroduced the Baldwin
effect as genetical reinforcement of advantageous but initially nonhereditary traits. He
stated that a genetic version of a seemingly nonhereditary adaptation may arise when
natural selection acts on the likelihood of having an adaptive trait not just on the trait
itself. Thus we may study the possibility that reciprocal altruism could have started as
a learned behavior, and then been incorporated genetically by means of the Baldwin
effect.

The experiments showed that our operant learning theory explained how an indi-
vidual learns to play the PD. However, reciprocal altruism has other properties than
the PD. Reciprocal altruism is not limited by simultaneous interactions as in the PD. In
addition, it requires that individuals recognize the other participants. These properties
can be simulated with an operant model, but that is not the purpose of this article.

The IPD has been the most used framework to study non-kin cooperation. However,
it has been shown experimentally that animals show a strong tendency to defect [12,
18, 20, 21]. Stephens et al. [61] proposed that this happens because animals strongly
discount future reward. They showed that cooperation between blue jays can be sta-
bilized if the influence of temporal discounting is diminished by implementing payoff
accumulation. They conducted a factorial experiment, manipulating discounting and
the strategy that blue jays confronted. It was shown that when the birds played against
an ALLD strategy, they defected most of the time regardless of whether they accumu-
lated the food or not. But when the birds played against a TFT strategy, the frequency
of cooperation was high in the case of food accumulation and was very low in the
other case. From this study we conclude that the role of reinforcement in the animal’s
behavior has many other characteristics and consequences that are not considered in
the IPD and that must be taken into account.

With the operant conditioning model, different relations between the payoffs and
reinforcement can be studied. Here, the amount of reinforcement obtained after mutual
defection was not enough to strengthen any response. When we tried using a higher
level of US for mutual defection (which can reinforce the defection response), ZL
defected frequently. Thus, the model predicted that if the amount of food that animals
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Figure 15. Group 2 schemes in the EPD for pr = 0 with ZL pretrained against all other strategies. In this case, ZL
did not extinguish as in the experiment shown in Figure 7.

Figure 16. All schemes in the EPD for pr = 0 with ZL pretrained against all other strategies. The only strategies that
survived were from group 2, except S MAJO. In contrast with the results shown in Figure 11, ZL did not extinguish.

receive for mutual defection is enough for them, they will defect more frequently
than predicted by the IPD. A more thorough study with real-time models of operant
conditioning may provide new hypotheses for why the theoretical study of non-kin
cooperation differs so much from that observed experimentally and give insight into
the way experiments can be designed to show cooperation among animals.

7 Conclusion

Here it was shown that individuals having operant conditioning capacities can learn
to play the prisoner’s dilemma. In the iterated prisoner’s dilemma, the operant condi-
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Figure 17. All schemes in the EPD for pr = 0.01 with ZL pretrained against all other strategies. ZL had the highest
proportion in the final population. The other survivor was TFT.

tioning model (ZL) learned to cooperate with all the strategies of group 2 (cooperative
strategies), except with S MAJO in the case of nonrandom moves (pr = 0). The re-
sults on the evolutionary prisoner dilemma showed that ZL only survives against these
strategies if the moves are noisy. This is because the other strategies can achieve per-
fect cooperation, while ZL is always below its ideal score because it loses points while
learning the best reply to the opponent. However, when random moves are allowed
in the game, ZL showed a relatively low sensitivity to noise, and the initial advantage
of the other strategies diminished. In this way, ZL is able to survive under these con-
ditions. It was also shown that ZL survives in all the proposed arrangements when
it is pretrained against all the other strategies. These results support the idea that, al-
though learning has the important property of adapting to a variety of strategies, the
time that learning takes represents a disadvantage, in evolutionary terms, compared
with nonlearning strategies.
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Appendix A: Appetitive Learning

Thorndike [62, 63] was the first researcher to study systematically how nonreflex be-
havior can be modified as a result of experience. His experiments consisted of placing
a hungry animal in a chamber. If the animal performed the appropriate response, the
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door to the puzzle box would be opened, and the animal could exit and eat some food
placed outside the door (appetitive reinforcement).

At the beginning of the experiments, the animals explored the chamber in a random
way, until by chance the right response to exit was performed. To determine how a
subject’s behavior would change as a result of its experience, Thorndike would return
an animal to the same puzzle box many times. He measured the amount of time it
took the subject to escape on each trial. As trials progressed, the animal latency (the
time between the presentation of the CS and the execution of the action) to escape
gradually declined. He attributed this gradual improvement over trials to the progressive
strengthening of a stimulus-response connection.

Appendix B: Aversive Learning

Solomon and Wynne [54] conducted an experiment showing many of the properties of
aversive behavior. Their subjects were dogs, and the experiment consisted of a chamber
with two rectangular compartments separated by a barrier several inches high where the
subjects could move from one compartment to the other by jumping the barrier. Each
compartment had a metal floor that could be electrified to deliver an electric shock,
and two lights above the animal that could illuminate each compartment separately. In
each trial, the light above the dog was turned off while the other light was turned on.
If the dog remained in the dark compartment, after 10 seconds the animal received a
shock until it jumped over the barrier. In this way, the animal could escape from the
shock, but if it learned to jump before 10 seconds of the light being turned off, it could
avoid the shock.

Solomon and Wynne measured latency as a function of the trial number. In the first
trials, the latency was usually higher than 10 seconds; thus, the action performed was
to escape from the shock. However, by the fifth trial the latency decreased below 10
seconds; thus, the action was to avoid the shock. They found that many dogs never
again experienced a shock after their first avoidance response. This experiment posed a
question that is called the avoidance paradox: How can the nonoccurrence of an event
serve as a reinforcer for the avoidance response? This paradox led to the development
of different theories of avoidance, such as the two-factor theory, the one-factor theory,
and the cognitive theory.
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