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Abstract This article describes the design of neural control
architectures for locomotion using an evolutionary approach.
Inspired by the central pattern generators found in animals,
we develop neural controllers that can produce the patterns
of oscillations necessary for the swimming of a simulated
lamprey.

This work is inspired by Ekeberg’s neuronal
and mechanical model of a lamprey [11] and follows
experiments in which swimming controllers were evolved
using a simple encoding scheme [25, 26]. Here, controllers
are developed using an evolutionary algorithm based on the
SGOCE encoding [31, 32] in which a genetic programming
approach is used to evolve developmental programs
that encode the growing of a dynamical neural network.
The developmental programs determine how neurons located
on a two-dimensional substrate produce new cells through
cellular division and how they form efferent or afferent
interconnections. Swimming controllers are generated when
the growing networks eventually create connections to the
muscles located on both sides of the rectangular substrate.
These muscles are part of a two-dimensional mechanical
simulation of the body of the lamprey in interaction with water.

The motivation of this article is to develop a method for
the design of control mechanisms for animal-like locomotion.
Such a locomotion is characterized by a large number of
actuators, a rhythmic activity, and the fact that efficient
motion is only obtained when the actuators are well
coordinated. The task of the control mechanism is therefore
to transform commands concerning the speed and direction
of motion into the signals sent to the multiple actuators. We
define a fitness function, based on several simulations of the
controller with different commands settings, that rewards the
capacity of modulating the speed and the direction of
swimming in response to simple, varying input signals.
Central pattern generators are thus evolved capable of
producing the relatively complex patterns of oscillations
necessary for swimming. The best solutions generate
traveling waves of neural activity, and propagate, similarly to
the swimming of a real lamprey, undulations of the body
from head to tail propelling the lamprey forward through
water. By simply varying the amplitude of two input signals,
the speed and the direction of swimming can be modulated.
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1 Introduction

This article presents an experiment in which dynamical neural networks are developed
for controlling the locomotion of a simulated fish. The experiment takes inspiration
from biology at three levels: the type of locomotion, the type of control mechanisms,
and the type of design method. Its aim is to develop a method for the automatic
generation of control mechanisms for animal-like locomotion. It can also be considered
as an experiment in computational neuroethology [1, 7], in the sense that we study
how a network of neurons can generate a (simple) behavior, locomotion, in a (simple)
environment, water.

Most animal locomotion is fascinating by its agility and energy efficiency. Using
muscles as basic actuators, animals can fly, run, swim, and so forth with great dexterity.
This allows them to move easily in environments in which man-made robots have
significant difficulties. As wheeled robots, for instance, are strongly limited in the kind
of environments in which they can move, some engineers have turned to biological
systems for inspiration and developed robots that move using more animal-like types of
gaits [4, 8]. The means of locomotion are then more complex than powered wheels and
involve a greater number of actuators generally used in a rhythmic way. Biological types
of locomotion require therefore complex control mechanisms, as motion is obtained
only when the different actuators are well coordinated.

The control mechanisms in animals are provided by networks of neurons. For many
animals, both vertebrate and invertebrate, the control of locomotion is distributed and
the patterns of oscillations are produced by circuitries called central pattern generators
(CPGs) [10, 17, 19]. These circuits can produce the different patterns of oscillations
necessary for locomotion without oscillating input from the brain or from sensory feed-
back. In the cat, for instance, the walking gait can be induced by sending a simple
signal to the brain stem. Different gaits can then be obtained by increasing the ampli-
tude of the signal, with the gait passing from walking to trotting to running [18]. A CPG
therefore provides the template of neural activity necessary for locomotion that can be
modulated, when necessary, by higher control and by sensory feedback depending on
the external conditions.

The bodies and nervous systems of animals are the result of two adaptation phenom-
ena: natural evolution and development. In this work, we will design neural controllers
for locomotion using a method that takes inspiration from these phenomena in the form
of two abstract ideas: (a) an evolutionary algorithm that creates potential solutions by
breeding and mutating other solutions and that selects the best solutions according
to a fitness criterion, and (b) a representation that encodes solutions through a de-
velopmental program containing the rules of how a solution is grown. Evolutionary
algorithms are now commonly used for designing neural networks [37, 48], and several
developmental encoding schemes have recently been designed (see [30] for a review).

We study in particular the swimming of the lamprey. A lamprey is a fish that pro-
pels itself in water by undulation of its body, without the use of fins. The undulation
is a traveling wave propagating from head to tail, with a constant wavelength along
the spinal cord. The neural circuitry for locomotion of the lamprey has been stud-
ied extensively by neurobiologists (see [20] for a review), who developed models of
the CPG whose capacity to reproduce most of physiological observations has been
demonstrated through simulation [13, 45]. In previous work [25, 26], we showed that
a genetic algorithm with a simple direct encoding scheme and a staged-evolution ap-
proach could be used to design a connectionist model of the CPG of the lamprey with
several similarities with the biological circuitry. That work was inspired by Ekeberg’s
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connectionist model of the biological CPG and his mechanical simulation of the lam-
prey [11] and investigated the space of possible neural configurations for the control of
anguiliform locomotion. We showed, in particular, that a variety of architectures could
produce patterns of oscillations for anguiliform swimming, several of them showing a
better performance than the biological configuration (in terms of ranges of frequencies,
of oscillation, and of speeds of swimming that they can produce in the simulation).
We also demonstrated that the genetic algorithm could be useful in neurobiological
modeling as a tool for instantiating synaptic weights of a circuitry with known connec-
tivity. Ekeberg’s handcrafted model could thus be improved to better fit physiological
observations.

The work presented here is less close to neurobiology and concentrates on devel-
oping a method for the design of control mechanisms for animal-like locomotion. The
motivation is to generate automatically a neural controller given a high-level charac-
terization of the desired locomotion gait in terms of observable characteristics such as
the speed of locomotion or the capacity to change direction. Compared to [25, 26], the
new aspects are that (a) simpler dynamical neuron models are used, (b) controllers are
evolved in a single stage with a fitness function that is only based on observable behav-
iors of the mechanical simulation without taking into consideration the neural activity,
and (c) controllers are evolved using a genetic programming approach with a develop-
mental encoding, SGOCE (simple geometry oriented cellular encoding) [31, 32]. With
SGOCE, developmental programs are evolved that determine how neurons located on
a two-dimensional substrate produce new cells through cellular division and how they
form efferent or afferent interconnections. That method has been successfully used to
develop neural controllers for the walking of a virtual six-legged insect and for behav-
iors, such as gradient following and obstacle avoidance [31, 32]. The task here is to
generate neural controllers for swimming given a fixed body structure of the lamprey
and given a high-level characterization of the desired behavior defined by the fitness
function. Through two input signals applied to the network we want to be able to
initiate swimming and to modulate the speed and the direction of motion by simply
varying the amplitude of these signals. The evolved controllers could therefore eas-
ily be used by higher control centers for sensorimotor coordination experiments of a
lamprey-animat.

Swimming controllers have been evolved by other researchers. In [42, 43], for in-
stance, the parameters of algorithmic controllers are evolved for the swimming of simu-
lated swimming creatures. Another example is Sims’ evolution of swimming controllers
composed of “neural nodes” that represent simple mathematical functions such as sum,
product, sine, cosine, and so on. [38]. In [40, 41], simulated annealing is used to de-
velop algorithmic swimming controllers that minimize energy consumption as well as
the final distance from a target location, for instance. Finally, algorithmic controllers for
anguiliform swimming were also developed using self-organizing rules (adaptive ring
rules) [34]. The research presented here differs from these works in that we develop
controllers implemented as dynamical neural networks. There are several motivations
behind this choice: First, developing potential neural controllers for swimming may give
some insights into the functioning of corresponding biological control systems; second,
neural networks present interesting properties such as rich dynamics, distributed con-
trol, and robustness against noise; and, finally, parameters of neural networks such as
synaptic weights and time constants are ideal low-level primitives on which to apply
artificial evolution. Similar considerations have led numerous researchers to combine
neural networks and evolutionary algorithms for the control of animal-like locomotion,
in particular legged locomotion [3, 9, 22, 31, 35]. Except for a few exceptions [32], these
works, however, only considered the problem of pattern generation, without consid-
ering how to control these patterns for modulating the locomotion, namely the speed
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Figure 1. Schema of the mechanical simulation, as developed in [11]. The body is composed of 10 rigid links
connected through nine one-degree-of-freedom joints. The torque of each joint is determined by the contraction
of two muscles fixed in parallel.

and the direction of movement. As mentioned earlier, this last point is one of the main
motivations of this article.

In the next sections we describe the neuronal and mechanical model of the lamprey
(Section 2), the developmental encoding scheme (Section 3), the evolutionary algorithm
(Section 4), the fitness function (Section 5) and the results of 10 evolutions (Section 6).
The method and the results are further discussed in Section 7.

2 Neuronal and Mechanical Model of the Lamprey

The CPG of the lamprey has been modeled at several levels of abstraction. Models
based on biophysical simulations of neurons have proved that the current knowledge
of the CPG circuitry and the type of interneurons involved is sufficient to produce
simulations that agree with the physiological observations [13, 45]. At a more abstract
level, connectionist models have been made that demonstrate that the connectivity in
itself can produce most of the observed patterns of oscillations without the need for
complicated neuronal mechanisms [5, 11, 46]. Finally, at the most abstract level, the
CPG has been modeled as a chain of abstract oscillators for the study of interoscillator
coupling [33, 47].

In this work, we develop connectionist models, that is, models composed of neu-
rons of intermediate complexity between abstract binary neurons used traditionally in
artificial neural networks and detailed compartmental models used in computational
neuroscience. Instead of simulating each activity spike of a real neuron, a neuron unit
is modeled as a leaky-integrator that computes the average firing frequency [23]. Ac-
cording to this model, the mean membrane potential mi of a neuron Ni is governed by
the equation:

τi · dmi/dt = −mi +
∑

wi, j xj

where xj = (1+e(mj+bj ))−1 represents the neuron’s short-term average firing frequency,
bj is the neuron’s bias, τi is a time constant associated with the passive properties of
the neuron’s membrane, and wi, j is the synaptic weight of a connection from neuron
Nj to neuron Ni . Each neuron exhibits an internal dynamics and even small networks
of these neurons have proven able to produce rich dynamics [2].

The network of neurons determines the muscular activity of a simple mechanical
simulation of the body of the lamprey in interaction with water (Figure 1). The two-
dimensional simulation used in this work is based on that developed by Ekeberg [11].
The body of the lamprey is simulated as 10 rigid links connected by one-degree-of-
freedom joints. Two muscles are connected in parallel to each joint and are modeled as
a combination of springs and dampers. Muscles can be contracted when they receive an
input; their spring constant is then increased proportionally to the input, thus reducing
the resting length. The motion of the body is calculated from the accelerations of the
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Table 1. Set of instructions used in the developmental programs.

Instruction Definition
DIVIDE α r create a new cell
GROW α r w create a connection to another cell
DRAW α r w create a connection from another cell
SETBIAS b modify the bias parameter
SETTAU τ modify the time constant parameter
SETINPUTW w modify the input weight
DIE trigger cellular death

links. These accelerations are due to three forces: the torque due to the muscles, the
inner forces linked with the mechanical constraints keeping the links together, and the
forces due to the water (for more details, see [11, 24]).

3 Developmental Encoding Scheme

Swimming controllers are evolved using an encoding scheme that relates the animat’s
genotype—a developmental program—and phenotype—a dynamical neural network;
and an evolutionary algorithm that breeds and selects the developmental programs
within a space defined by some syntactic constraints.

We use SGOCE [31, 32] for encoding the controllers. This encoding scheme is a
geometry-oriented variation of Gruau’s cellular encoding [22]. In the scheme, devel-
opmental programs are evolved that determine how neurons divide and become con-
nected to each other on a two-dimensional metric substrate. The substrate contains
precursor cells that will develop into sets of neurons, and nodes that correspond to
inputs (the control signals) and outputs (the signals sent to the muscles).

Each cell within the control architecture is assumed to hold a copy of the devel-
opmental program. The developmental program has a treelike structure like those of
genetic programming. The nodes in the tree belong to a small set of developmental in-
structions (see Table 1) or are structural instructions added to help define the grammar
(see below). A local coordinate frame is attached to each precursor cell (Figure 2). A
cell division instruction (DIVIDE) makes it possible for a given cell to generate a copy
of itself. A direction parameter (α) and a distance parameter (r ) associated with that
instruction specify the position of the daughter cell to be created in the coordinates
of the local frame attached to the mother cell. Then, the local frame associated to the
daughter cell is centered on that cell’s position and is oriented as the mother cell’s
frame. Each time a cell divides, its daughter cell receives a copy of its afferent and
efferent connections. Two instructions (GROW and DRAW) respectively create one
new efferent and one new afferent connection. The cell or the input-output node to
be connected to the current one is the closest to a target position that is specified by
the instruction parameters, provided that the target position lies on the substrate. No
connection is created if the target is outside the substrate’s limits. The synaptic weight
of the connection is given by the parameter w. Two additional instructions (SETTAU
and SETBIAS) specify the values of a neuron’s time constant τ and bias b. Finally the
instruction DIE causes a cell to die. In addition to the connections created by the de-
velopmental program, we cause each created neuron to draw automatically an afferent
connection from the input node of the side of the precursor cell it stems from. The
synaptic weight of that connection can be modified by the SETINPUTW instructions.
An example of how a developmental program is decoded into the corresponding set
of neurons is given in Figure 2.
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Figure 2. Example of the decoding of a developmental program into a set of neurons. First, a connection is grown
by the precursor cell to an output cell (Step 1). Second, another connection is drawn by this precursor cell from
the input cell (Step 2). In both cases, the cell with which the connection is made is the closest one to a target
point whose polar coordinates are given in the local frame of the cell by the instruction’s parameters. At the next
developmental step (Step 3), the precursor cell creates a daughter cell that reads the right subnode of the DIVIDE
instruction while the mother cell reads the left subnode and is killed, because the corresponding instruction is a DIE
instruction. Note that the DIVIDE instruction has duplicated the connections of the initial cell. Finally, the daughter
cell grows a new connection to another output cell (Step 4) and modifies the value of its time constant parameter.
After the development, this cell is considered as a neuron with its specific connections and parameters.

We use a substrate that corresponds to the body of the lamprey (Figure 3). Nine
output nodes are fixed on each side of the body. These nodes are connected to the
muscles such that the signals sent to them determine the contraction of the muscles.
We also fix the position of 18 precursor cells, located symmetrically on both sides of the
body. The substrate can therefore be seen as made of nine segments, with two output
nodes and two precursor cells each, corresponding to the nine joints of the mechanical
simulation. Each of the 18 precursor cells holds a copy of the same developmental
program. However the local frame attached to each cell need not have the same
orientation, and in particular we make the precursor cells on each side (left and right)
of the body have opposite orientations, which forces the developed controllers to be
symmetrical. The two input nodes are also included in the substrate, but as each
neuron automatically has an afferent connection from them, their exact position is not

Muscles

HEAD

Output NodeTonic Input Precursor Cell

TAIL

Figure 3. Substrate of the developmental process. The rectangular substrate extends over the length of the me-
chanical body. It contains 18 output nodes located symmetrically on both sides of the substrate that determine the
contraction state of the muscles (Figure 1). It contains also two input nodes that provide the left and right tonic
input of the CPG. Eighteen precursor cells are spread over the substrate. Left and right precursor cells have local
frames that are oriented with a left-right symmetry. As all precursor cells develop using the same developmental
code, this means that a left-right symmetry of the developed network is automatically created.
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Table 2. Grammar used to restrict the trees that can be evolved. The production rules organize the development
into several stages that schedule the development and restrict the maximum number of neurons.

Terminal symbols
DIVIDE, GROW, DRAW, SETBIAS, SETTAU, SETINPUTW, DIE,
NOLINK, DEFBIAS, DEFTAU, DEFINPUTW, SIMULT4

Variables
Start1, Level2, Neuron, Bias, Tau, InputW, Connex, Link

Production rules
Start1−→DIVIDE(Level2, Level2)
Level2−→DIVIDE(Neuron, Neuron)
Neuron−→SIMULT4(Bias, Tau, InputW, Connex) | DIE
Bias−→SETBIAS | DEFBIAS
Tau−→SETTAU | DEFTAU
InputW−→SETINPUTW | DEFINPUTW
Connex−→SIMULT4(Link, Link, Link, Link)
Link−→GROW | DRAW | NOLINK

Starting symbol
Start1

important. Note that connections created by the GROW and DRAW instructions are
not limited to neurons issued from the same precursor cell but these instructions can
potentially connect any cell on the substrate within a fixed range that corresponds
to the maximal value of the parameter r of the GROW and DRAW instructions. This
means that networks can in principle be evolved with paths of connections between all
neurons of the substrate. In the present article, the range of connection is limited such
that only connections between neurons of neighboring segments can be developed.

To reduce the size of the genetic search space and the complexity of the generated
networks, a context-free tree grammar is used to force each evolvable program to have
the structure of a well-formed tree (Table 2). The set of terminal symbols consists of the
developmental instructions listed in Table 1 and of additional structural instructions that
have no side effect on the developmental substrate. The grammar of Table 2 permits
the scheduling of the development to be organized into several marked stages. First,
cell divisions will occur and the connections from the command nodes to the precursor
cells will be copied. Second, the different cells created will either die or modify their
time constant, bias, and input weight parameters. Finally, each surviving cell will create
connections with its surrounding cells. As no more than two successive cell divisions
can occur, this grammar limits the total number of neurons in a controller to 72 neurons.

4 Evolutionary Algorithm

We used the SGOCE encoding with a steady-state genetic algorithm. To slow down
convergence and to favor the apparition of ecological niches, the algorithm involves a
population of N randomly generated, well-formed developmental programs distributed
over a circle. Its functioning is sketched in Figure 4. The same algorithm was used for
the evolution of legged-locomotion controllers [31, 32].

The following procedure is repeated until a given number of individuals have been
generated and tested:

1. A position P is chosen on the circle.
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ReplacementSelection
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Local
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Figure 4. The evolutionary algorithm.

2. A two-tournament selection scheme is applied, in which the best of two programs
randomly selected from the neighborhood of P is kept (more details can be found
in [27]).

3. The selected program is allowed to reproduce and three genetic operators possibly
modify it. The first operator, the recombination operator, is applied with probabil-
ity pc . It exchanges two compatible subtrees, that is, subtrees that can be derived
from the same grammatical rule, between the program to be modified and another
program selected from the neighborhood of P . Two types of mutation are used.
The first mutation operator is applied with probability pm. It changes a randomly
selected subtree into another compatible, randomly generated one. The second
mutation operator is applied with probability 1. It modifies the values of a random
number of parameters, implementing a constant perturbation strategy [39]. The
number of parameters to be modified is drawn from a binomial distribution B(n, p).

4. The fitness of the new program is assessed by collecting statistics while the
swimming of the lamprey mechanical model, controlled by the corresponding
artificial neural network, is simulated over a given period of time (see below).

5. A two-tournament anti-selection scheme, in which the worse of two randomly
chosen programs is selected, is used to decide which individual (in the
neighborhood of P) will be replaced by the modified program.

In all the experiments reported here pc = 0.6, pm = 0.2, n = 6, and p = 0.5.

5 Fitness Function

A developmental program is given a fitness value that depends on the capacity of its
corresponding network to control swimming efficiently. Our aim is to develop con-
trollers that can produce patterns of oscillations necessary for swimming when receiving
tonic (i.e., nonoscillating) input, and that can modulate the speed and the direction of
swimming when the amplitude of the left and right control signals are varied.1

1 For reasons of simplicity, a measure of muscle effort is not taken into account in this fitness function. In future work, it would be
interesting not only to optimize the controllability of the swimming gait, but also to minimize its energy consumption.
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Table 3. Variables and boundaries for the fitness function. A contortion is measured as the passage of the center of
the body from one side to the other of the line between head and tail. The speed range is measured relative to the
maximum speed.

Function Variable [bad,good ] Boundaries
fit contortion Number of contortions [0,10] contortions
fit max speed Maximum speed [0.0,1.0] m/s
fit speed range Relative speed range [0.0,1.0]
fit turning Deviation angle [0.0,0.75π ]

We therefore define a fitness function, based on observable behaviors in the me-
chanical simulation, rewarding controllers that

1. produce contortions, where a contortion is defined as the passage of the center of
the body from one side to the other of the line between head and tail

2. reach high swimming speeds

3. can modulate the speed of swimming when the tonic input is varied, with the
speed increasing monotonically with the level of input

4. can change the direction of swimming when an asymmetrical tonic input (between
the two sides of the body) is applied

The evaluation of a developmental program consists of a series of simulations of
the corresponding developed controller with different commands settings. Fixed-time
simulations (6,000 ms) are carried out with different levels of tonic input to determine
the range of speeds the controller can produce. Asymmetrical initial states for the
neurons are created by applying an asymmetrical input during the first 50 ms of the
simulation. Starting from a fixed level of input (1.0), the input is varied by increasing
and decreasing steps of 0.1 and the range of speed in which the speed increases
monotonically with the tonic input is measured.2 If the range of speeds includes a
chosen3 speed (0.15 m/s), a simulation is performed (at the tonic level corresponding
to that speed) with a short period of asymmetric tonic input to evaluate the capacity
of the controller to induce turning.4 Turning is evaluated by measuring the deviation
angle between the directions of swimming before and after the asymmetric input.

The mathematical definition of the fitness function is the following:

fitness = fit contortion · fit max speed · fit speed range · fit turning ∈ [(0.05)4, 1.0]

where fit contortion, fit max speed, fit speed range, and fit turning are functions that
are limited between 0.05 and 1.0 and that vary linearly between these values when their
corresponding variables vary between two boundaries, a bad and a good boundary.
The variables for each function and their corresponding boundaries are given in Table 3.
If the speed range does not include the chosen speed of 0.15 m/s, the turning ability
is not measured and fit turning = 0.05. The fact that the fitness function is a product
rather than a sum ensures that controllers that perform equally in all four aspects will
be more favored compared to controllers performing well in some aspects but not in
others.

2 The speed of swimming is measured as the average speed during the second half of the simulation.
3 This value corresponds to approximately half the maximum speed reached by the best solutions.
4 The sequence of control signals for the turning evaluation is symmetric left and right signals for 3,000 ms, asymmetric (±10%

between left and right) for 1,000 ms, and symmetric for the last 2,000 ms.
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Table 4. Results of the evolutions of central pattern generators. See text for details.

Run Fitness Speed [m/s] Frequency [Hz] Relative Lag [%]
1 0.00 [0.00, 0.08] – –
2 0.00 [0.00, 0.11] – –
3 0.01 [0.00, 0.11] – –
4 0.14 [0.00, 0.15] – –

5 0.24 [0.00, 0.16] [1.16, 1.60] –
6 0.27 [0.06, 0.27] [0.46, 2.50] –

7 0.01 [0.00, 0.12] [0.69, 1.75] [0.0, 0.0]
8 0.05 [0.02, 0.16] [0.94, 0.95] [0.0, 8.2]
9 0.24 [0.00, 0.27] [0.57, 2.31] [1.5, 11.2]

10 0.49 [0.09, 0.47] [1.24, 5.38] [16.0, 20.7]

6 Results

6.1 Evolutions
We carried out 10 evolutions with populations of 50 controllers. Each run started
with a different random population. A run was allowed to evolve for 100 generations
(5,000 tournaments), taking approximately 450 CPU hours on an Ultra 1 Model 140s
SUN station. Table 4 gives the performances of the best evolved controllers of each
run (controllers 1 to 10 respectively). The evolved controllers can be classified into
three categories: those that do not produce oscillations (controllers 1, 2, 3, and 4),
those that produce chaotic behavior (controllers 5 and 6) and those that produce stable
oscillations (controllers 7, 8, 9, and 10). Controllers 1, 2, 3, and 4 do not produce
oscillations. For these controllers, the given speeds indicate the range of speeds that
can be reached through the initial thrust after 6,000 ms. Controllers 5 and 6 produce
unstable oscillations, that is, oscillations without a constant period. The given frequen-
cies correspond therefore to the average (minimal and maximal) frequencies and the
given speeds correspond to minimal and maximal speeds, although the speed does not
depend monotonically on the excitation. Also, because the shape of the signals is too
variable, the relative lag is not given. The controllers 7, 8, 9, and 10 produce stable
oscillations. For these controllers, the speed, frequency, and lag values correspond to
the minimal and maximal values obtained within the range of excitations for which the
speed depends monotonically on the excitation. Figure 5 shows the swimming behav-
ior they induce. We describe next the main characteristics of the evolved controllers;
for a more detailed analysis see [27].

6.2 Nonoscillating Networks
Four evolutions converged to nonoscillating solutions (controllers 1,2,3, and 4). These
controllers do not have the circuitry to sustain oscillations but still manage to propel the
body forward by creating a few contortions that give the body an initial thrust. These
contortions are due to the delayed transitions of the neurons from their initial state to
their equilibrium state. The delays in the transitions lead to delays in the contraction of
the muscles, which happen to propel the body forward. Once the equilibrium states
are reached, the contortions of the body cease and the lamprey eventually comes to
a standstill. As the duration of the simulations was limited, these controllers were
rewarded for their remaining speed at the end of the simulation.
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Controller 1: Controller 2:

Duration: 7000 ms Duration: 6000 ms 

Controller 3: Controller 4:

Duration: 6000 ms Duration: 6600 ms 

Controller 5: Controller 6:

Duration: 1800 ms Duration: 1800 ms 

Controller 7: Controller 8:

Duration: 3000 ms Duration: 2400 ms 

Controller 9: Controller 10:

Duration: 1200 ms Duration: 800 ms 

Figure 5. Swimming produced by controllers 1 to 10. The horizontal lines are separated by 200 mm.

6.3 Chaotic Networks
Two evolutions converged to solutions producing chaotic oscillations with variable cy-
cle duration and variable signal shapes (controllers 5 and 6). As the phase lag between
segments is on average positive (i.e., the neural activity travels from head to tail), these
solutions still manage to propel the lamprey forward but with a speed and a direc-
tion of swimming that are not constant. Because of these variations of speed, these
solutions do not present a monotonic relation between the tonic excitation and the
speed. However they received a high fitness value because the speeds measured in
the evaluation function happened to increase monotonically for the excitation steps
tested. The nonmonotonicity is revealed when the control of speed is analyzed with
smaller excitation steps than those used for the evaluation. Note that it is not surprising
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that chaotic oscillators have been evolved, as systems made of as few as three intercon-
nected neurons can already present chaotic dynamics with this mathematical model of
a neuron [2].

6.4 Oscillating Networks
Four evolutions converged to solutions producing permanent and stable oscillations,
with all segments being phase locked and oscillating at the same frequency (controllers
7, 8, 9, and 10). The phase relation between segments varies, however, from one
controller to the other, as do their configurations, which vary in the number of oscillators
for producing the oscillatory activity. By oscillator, we mean the circuits that could
potentially oscillate by themselves when isolated from the rest of the network (provided
that the simulated neurons receive adequate tonic input). It can be shown that the
smallest oscillator with this model of neurons is composed of two neurons with self
connections [2].

Controller 7 has the peculiarity of being made of two separate chains of oscillators
on both sides of the body that are connected through excitatory contralateral connec-
tions (data not shown, see [27]). Neurons on the same side oscillate in synchrony,
and, because neurons on contralateral sides belong to different oscillators, the con-
tralateral phase relation depends on the initial conditions. With the asymmetrical initial
conditions of the evaluation function, the body produces a “C” bending, but with a
contralateral phase relation that is not perfectly out of phase. Because of the differ-
ent inertial forces between head and tail segments, this results in the body making an
asymmetrical traveling undulation with a large wavelength, which slowly propels the
body forward (see Figure 5). If the simulation is started with nearly symmetrical initial
conditions, left and right muscles contract in phase and the lamprey does not progress.

Controller 8 is composed of one oscillator per segment interconnected over the
spinal cord (data not shown, see [27]). Each oscillator is distributed over both sides
through inhibitory contralateral connections, and the left and right neurons of each
segment are therefore perfectly out of phase. The phase relation between segments
is slightly negative between segments closest to the head and gradually increases to
become positive toward the tail. This means that the muscle activity travels forward
to the head and backward to the tail from a segment in the middle of the trunk. As
the negative phase difference between the first segments is small, the corresponding
swimming is not unlike carangiform swimming in which most of the body is rigid
except the tail, which moves back and forth (Figure 5).

The two controllers that produce regular oscillations and reach the highest speeds
(controllers 9 and 10), exhibit an anguiliform swimming, which is very similar to that of
the real lamprey. Similarly to the lamprey, they have left and right neurons oscillating
out of phase, and phase lags between segments that are almost constant over the
spinal cord (although, for controller 10, the signal shapes slightly vary from head to
tail), leading to caudally directed traveling waves (Figures 6 and 7).

Controller 9 has the peculiarity of including only one oscillator. It is also the con-
troller with the smallest number of neurons, with one oscillatory circuit in the first
segment (closest to the head) and two neurons per segment in the other segments
(Figure 8). That rostral oscillator entrains the neurons in the other segments through
a chain of caudally directed excitatory connections. Because of the synaptic time con-
stants, these neurons oscillate with a lag compared to their rostral neighbors, which
leads to the observed anguiliform swimming. The fact that only the first segment
contains an oscillator is due to the border effect of the substrate. The same DRAW
instruction is responsible both for the creation of a connection completing an oscillator
circuit in the first segment, and for the creation of intersegmental links connecting each
of the other segments to the preceding one (Figure 9). Before evaluating this controller,
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Figure 6. Neural activity in controller 9. Left: Neural activity of left and right neurons and the signals sent to
the muscles in segment 1 (the oscillator segment, see text). Right: Signals sent to the left muscles along the nine
segments.
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Figure 7. Neural activity in controller 10. Left: Neural activity of left and right neurons and the signals sent to the
muscles in segment 5. Right: Signals sent to the left muscles along the nine segments.

ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9

AL1

BL1

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9

XL

MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9

AR1

BR1

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9

XR

HEAD

Parameters:

Tau:

A: 56.9

B: 50.0

C: 50.0

Bias:

A: −11.90

B: −2.10

C: −8.45

Weights:

Segment 1 Segment 5 Segment 9

CL1 → ML1  22.40 CL5 → ML5  22.40 CL9 → ML9  22.40

XL → AL1   1.00

CR1 → AL1  19.95

XL → BL1   1.00

AR1 → BL1 −11.80

XL → CL1   1.00

CR1 → CL1 −11.90

CL1 → CL1   7.30

BL1 → CL1  26.65

XL → CL5   1.00

CR5 → CL5 −11.90

CL5 → CL5   7.30

CL4 → CL5  26.65

XL → CL9   1.00

CR9 → CL9 −11.90

CL9 → CL9   7.30

CL8 → CL9  26.65

Figure 8. Architecture of controller 9, one of the two controllers producing anguiliform swimming. Left: Neurons
on the substrate. For reasons of clarity, the lateral axis of the substrate has been multiplied by ten. Mli and Mri
represent the left and right muscle nodes of segment i, Xl and Xr are the input nodes. A, B, and C are three types of
neurons. Excitatory and inhibitory connections are represented through continuous and dashed lines, respectively.
Each neuron also receives a connection from the input nodes, which is not shown here. Right: Parameters and
connection weights. Only the weights of the connections to the left neurons are given; the others are symmetric.
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Figure 9. Side effect during the development of controller 9: During the development, a DRAW instruction was
read by all cells C, and a connection was created toward each cell C from the cell closest to the instruction’s target
point (in the coordinates of the local frame attached to the cell C, and represented as a cross on the figure). In
all but the first segment, this led to the creation of an intersegment connection with the homologous cell C in the
preceding segment. In the first segment, however, as there was no preceding segment, the closest cell to the target
point was cell B in the first segment itself. Therefore, a connection from cell B to cell C was created in the first
segment. That connection complements a recurrent circuit implementing an oscillator whose periodic activity is
propagated into the other segments of the animat by the intersegment connections. Note that for reasons of clarity,
we have reversed left and right cells A compared to Figure 8.

the neurons labeled A and B in the figure are pruned in all but the first segment because
they have no efferent connections toward the muscles or the C neurons, which implies
that these cells cannot influence the behavior of the simulated lamprey and thus need
not be simulated.

Controller 10 has a similar organization to controller 8, with one oscillator per seg-
ment being distributed over both sides of the spinal cord through inhibitory contralat-
eral connections (Figure 10). The segments are interconnected over the spinal cord
by closest neighbor coupling (because of the limitation of the length of a connection,
parameter r of the GROW and DRAW instructions, no longer coupling was developed).
Note that of the two controllers producing anguiliform swimming, controller 10 is more
robust against “lesions” than controller 9 in the sense that destroying neurons or con-
nections in the head oscillator or in the coupling between segments of the controller 9
has a significantly larger impact on the swimming pattern than for controller 10.

These four swimming controllers (controllers 7, 8, 9, and 10) modulate the speed of
swimming when the level of tonic input is varied. They need the tonic input to produce

ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9

AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 AL9

BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9

XL

MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9

AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9

XR

HEAD

Parameters:

Tau:

A: 1600.0

B: 29.2

C: 16.5

Bias:

A: −16.00

B: −16.00

C: 2.00

Weights:

Segment 1 Segment 5 Segment 9

AL1 → ML1  27.00 CL4 → ML5  31.80

AL5 → ML5  27.00

CL8 → ML9  31.80

AL9 → ML9  27.00

CL9 → ML9  31.80

XL → AL1  28.45

BL1 → AL1  −6.10

CL2 → AL1 −24.75

AL1 → AL1 −23.95

XL → AL5  28.45

BL5 → AL5  −6.10

CL6 → AL5 −24.75

AL5 → AL5 −23.95

XL → AL9  28.45

CL9 → AL9  −6.10

CL9 → AL9 −24.75

AL9 → AL9 −23.95

XL → BL1   1.00

BL1 → BL1 −16.20

AL1 → BL1  24.70

XL → BL5   1.00

BL5 → BL5 −16.20

AL5 → BL5  24.70XL → CL1   1.00

CR1 → CL1  −6.95

AR1 → CL1 −27.90

AL1 → CL1  30.70

XL → CL5   1.00

CR5 → CL5  −6.95

AR5 → CL5 −27.90

AL4 → CL5  30.70

XL → CL9   1.00

CR9 → CL9  −6.95

AR9 → CL9 −27.90

AL8 → CL9  30.70

Figure 10. Architecture of controller 10, one of the two controllers producing anguiliform swimming. Left: Neurons
on the substrate. Right: Parameters and connection weights. For details, see Figure 8 caption.
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Figure 11. Top: slow turning induced by controller 10. Bottom: Sharp turning induced by controller 9.

oscillations; they converge to an equilibrium state, and hence a motionless body, when
no input is given. Once sufficient input is applied, the speed of swimming increases
with the level of input, and these controllers have a range of excitations in which the
speed increase is monotonic with the excitation (even with smaller excitation steps than
those used in the evaluation of the fitness value). Table 4 gives the speed ranges that
can be obtained within that monotonic region. This monotonic relation is important,
from a control point of view, to ensure that an increase of excitation amounts to an
increase of speed.

Controllers 9 and 10 also offer good control of the direction of swimming. When,
during swimming, an asymmetrical excitation is applied to these networks for a fixed
duration, the lamprey turns proportionately to the asymmetry of excitation. The effect
of the asymmetry is to change the duration of bursts between left and right muscles
leading to a change of direction toward the side with the longest bursts. If the asym-
metry is small (e.g., ±10% of the excitation level), the lamprey goes on propagating
a traveling undulation and therefore swims in a circle until the asymmetry is stopped
(Figure 11, top). If the asymmetry is large (for instance ±30% of the excitation level),
the undulations almost stop as one side becomes completely contracted. This bending
leads the lamprey to turn very sharply and allows important changes of direction when
the duration of the asymmetry is short (Figure 11, bottom).

7 Discussion

7.1 Method
We have presented how an evolutionary algorithm with a developmental encoding
scheme could be used to develop interesting swimming controllers. This demonstrated
that the method has the potential to develop, given a fixed body structure, efficient
neural controllers for animal-like locomotion, namely controllers that can transform
simple commands concerning the speed and direction of motion into rhythmic signals
sent to the multiple actuators.
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7.1.1 Evolution and Search Space
The fact that the evolutionary process determines the number of neurons, the number
of connections, and the parameters (synaptic weights, time constants, and biases) of the
neurons leads to a search space with, in principle, an infinite number of dimensions, and
we therefore canalized the search in several ways to make the task of the evolutionary
algorithm easier.

First, we chose the initial positions and orientations of the precursor cells and output
nodes in the substrate, which allowed us to force the developed controllers to be
symmetrical and organized in segments, thus reducing the overall number of parameters
to be evolved. While such symmetry hypotheses are commonly used when evolving
locomotion controllers with fixed topologies [3, 28, 35], SGOCE allows evolution of
variable symmetric topologies.

Second, the choice of a specific grammar made it possible to reduce further the
size of the search space by considering only a subspace of the developmental pro-
gram space. Moreover, the grammar indirectly limited the numbers of neurons in the
evolved controllers, therefore restricting the search space to a finite number of dimen-
sions. The limited numbers of neurons also helped to keep the evaluation time of the
corresponding neural networks within reasonable bounds.

As mentioned, the evolved controllers depend on several geometrical parameters
fixed by the experimenter, such as the number and the position of the precursor cells,
the position of the muscle nodes, the maximum length of a connection, and so on, that
have partly determined the architecture of the evolved solutions. An interesting exten-
sion of this work would be to analyze the effect of these parameters, and potentially
having them evolving as well.

7.1.2 Evolutionary Algorithms for Neural Networks
From a general point of view, using evolutionary algorithms is an interesting technique
for designing neural networks compared to traditional learning algorithms (such as
variations of the backpropagation algorithm for dynamical networks; see, e.g., [36])
because of their flexibility. The fitness function of an evolutionary algorithm does not,
for instance, need to be differentiable or even continuous like error functions minimized
by most learning algorithms. There is also no need to provide a specific oscillation (limit
cycle) that the network should learn. This has allowed us to characterize the desired
behavior of the controller at a higher level, by determining desired characteristics of
the swimming control in the mechanical simulation. These features make evolutionary
algorithms a popular design technique in the field of neural networks applied to the
control of animats (see [3, 9, 22, 31, 35] for evolutions of locomotion controllers and
[15, 16] for a review of evolutions of behavior controllers).

7.1.3 Comparison with Previous Evolutions of Swimming Controllers for the
Lamprey

In [26], we used a staged evolution approach to generate swimming controllers, with
a first stage in which we evolved segmental oscillators and a second stage in which
we evolved the coupling between the oscillators. We used the same neuron models as
Ekeberg [11], which have three state variables instead of one. For the first stage, the
fitness function was based on neural aspects, such as the range of frequencies of oscil-
lation, and in the second stage, the fitness function was based on both neural aspects
and mechanical aspects, such as the speed of swimming. We used a direct encoding
of the synaptic weights in the first stage, and of the extent of the interconnections in
the second stage.

The experiment reported here concentrates on producing control mechanisms for
animal-like locomotion rather than visiting the space of potential neural configurations
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around the biological solution. In contrast to [26], we use simpler neurons and a more
compact encoding—the developmental encoding SGOCE—and we evolve swimming
controllers in a single stage with a fitness function only based on observable characteris-
tics of the mechanical simulation. This new approach brings several interesting features.

First, an interesting aspect of the developmental encoding is the fact that the number
of neurons and of connections is not fixed a priori but is determined by the evolutionary
process. In [26], we evolved the number of neurons and connections indirectly by fixing
a maximum number of neurons and evolving the weights of all possible connections
while using a random pruning operator that little by little led to circuits with fewer
connections and potentially fewer neurons.

Second, another interesting aspect of the developmental encoding is that the devel-
opmental instructions can participate in the construction of different neural mechanisms
depending on the local context, as illustrated in the development of controller 9, when
the same DRAW instruction was used either to complete an oscillatory circuit in the first
segment or create intersegmental connections in the other segments. Such a property
is due to the side effects that occur at the extremities of the segment chain and to
the fact that the instructions for developing connections are context-dependent. The
evolutionary algorithm was opportunistic enough to take advantage of that property.
One idea to make such opportunistic solutions appear more frequently would be to
define more context-dependent developmental mechanisms (e.g., by having values of
synaptic weights that depend on the position of the neuron).

Finally, swimming controllers have been developed in one stage only, with a fitness
function that only specifies desired characteristics for the mechanical simulation, with-
out considering neural aspects. Although the staged approach of the previous work
allowed swimming controllers to be generated in less computational time, having a
fitness evaluation only based on mechanical aspects is necessary for control problems
where neural requirements are not known and where only the desired behavior of the
mechanical system can be characterized. An interesting application of the technique
could be the generation of a locomotion controller for a swimming or walking robot,
for instance. An external camera filming the locomotion gait could then be used for
measuring the characteristics taken into account by the fitness function (see below).

7.1.4 Comparison with Previous Applications of SGOCE
In [31] walking controllers for a six-legged animat were evolved and several similarities
can be noticed between the corresponding experiments and the ones described here.
First, the same model of neurons and a similar model of muscles were used in both
cases. Moreover, a left-right symmetry and a segmental organization of the body and
nervous system were hypothesized. Second, the set of developmental instructions and
the syntactical constraints used were nearly identical, the only difference being the
addition of the instruction SETINPUTW in the current work. Furthermore, the same
parameter values were used by the evolutionary algorithm for solving both tasks, the
only difference to [31] being that in the work reported here the population size was
reduced because of the longer time required by the evaluations. Finally, in both cases,
locomotion controllers involving central pattern generators were successfully evolved.

The main differences between the experiments described here and those of [31]
lie in the evaluation strategies and in the inclusion of command cells. While the six-
legged animat experiments used a global fitness criterion involving measures of body
speed and leg movements, the current work uses a more elaborate fitness function
that combines four criteria and calls for several evaluations of a given individual with
different command settings.

Also, command cells were explicitly included in the current work, which allowed
neural circuitries to be developed whose swimming patterns could be initiated and
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modulated by simple input signals. Note that while no command input was used
in the first stage of the evolution of six-legged locomotion controllers—which led to
the evolution of constant-speed, straight-walking controllers—those controllers were,
however, found to be able to stop [31] or to turn [32] when connected to a second,
higher-level neural network. More experiments are needed to determine to what extent
command inputs are useful or necessary for solving tasks that involve controlling the
speed and direction of locomotion. Preliminary arguments in favor of the inclusion of
command cells (instead of first evolving a neural layer for pattern generation, followed
by a layer for the control of speed and direction) include the generation of more
compact neural networks and an optimized controllability. In [14], where SGOCE is
applied to the control of a real hexapod robot, an incremental strategy involving such
command inputs is proposed.

7.2 Evolved CPGs
In the work described here, a variety of different controllers have been evolved. The
controllers differ both in their behaviors and their configurations. The evolved con-
trollers present three kinds of neural activity: nonoscillating signals that propel the
lamprey forward through an initial thrust, chaotic oscillations, and stable oscillations.
The corresponding configurations differ in the number of neurons, their parameters,
and their connectivity. In particular the solutions can be classified depending on their
numbers of oscillators: no oscillators, only one oscillator, and one or more oscillators
per segment.

7.2.1 Evolved Swimming Patterns
The controllers without oscillators, which propel the body forward by an initial thrust,
are not very interesting from a control point of view as they cannot sustain the speed
of motion. These controllers have taken advantage of the limited duration of the
evaluations. To prevent the emergence of this kind of solution, further evolutions
should be carried out with longer simulations that would significantly reduce their
fitness value. The controllers producing unstable oscillations are also of limited interest
because their speed and direction of swimming are not constant. These controllers
would therefore be difficult to use by higher control centers. A simple way to prevent
these solutions from being generated could be to add a factor in the fitness function
rewarding regularity of both the speed and the direction.

Four controllers have been developed that can be described as central pattern gen-
erators. They generate stable and permanent oscillations when receiving a tonic (i.e.,
nonoscillating) input. Of these controllers, the two that reach the highest speeds pro-
duce an anguiliform swimming very similar to that of the lamprey. Segments oscillate
with left and right neurons out of phase, and there is a constant phase lag between
segments that leads to a wave of neural activity traveling from head to tail. These two
controllers offer good control of the speed and the direction. Increasing the ampli-
tude of both tonic inputs amounts to increasing the speed of swimming. One of our
requirements was that this increase be monotonic, to facilitate control and to be cer-
tain that an increase of excitation amounts to an increase of speed. We can therefore
define for both controllers a range of excitations in which that condition is respected.
When asymmetrical levels of inputs are applied, turning is induced because of a dif-
ference in the duration of the muscular bursts between both sides. Although we have
not required a monotonic relation between the turning capacity and the asymmetry of
excitation (turning was tested at only one asymmetry), the turning angle increases with
the amount of asymmetry. For both controllers, two kinds of turning can be obtained:
A small asymmetry leads to slow turning in which the undulations continue to travel,
and a large asymmetry leads to sharp turning with a strong bending of the body. Al-
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though this means that the body loses speed, it allows turning on the spot. For both
types of turn, straight swimming resumes when the asymmetry ceases.

7.2.2 Comparison of the Best Controllers with the Lamprey’s CPG
Controller 9 has a very simple neural configuration for creating the traveling wave of
neural activity. It is made of an oscillator in the first segment (the segment closest
to the head) that entrains, through closest neighbor excitatory connections, a chain
of single neurons on both sides of the spinal cord. Controller 10 has a more complex
configuration with oscillators in each segment. This controller is closer to the biological
connectivity found in the lamprey [6, 19, 20, 21]. The spinal cord of the lamprey is
indeed considered to be an interconnection of segmental oscillators, as small parts of the
spinal cord up to 2 segments can be made to oscillate in isolation (the whole spinal cord
is made of approximately 100 segments). Both evolved controllers share the property
of the lamprey that the frequency of oscillation increases with the level of excitation.
In the lamprey, this has been shown in vitro by measuring the frequency of oscillation
in excitatory baths with different concentrations. Another interesting property of the
lamprey is that the phase lag between segments relative to the cycle duration remains
constant for different frequencies of oscillation. This means that the lamprey maintains
a constant wavelength of the undulation (corresponding to approximately the length
of the body) for any frequency of oscillation. In controller 9 this is not the case, as the
relative lag between segments changes significantly with the frequency; in controller 10,
however, the change of relative phase lag changes only slightly for important changes
of the frequency (data not shown, see [27]). Controller 10 therefore shares the most
properties with the biological CPG of the lamprey.

By contrast with our previous work in which we developed swimming controllers
with some predefined similarities with the biological configuration and with some re-
quirements on the neural activity, we generated here controllers with only a character-
ization of the desired behavior in terms of the control of the speed and the direction of
swimming. It is therefore interesting to see that the combination of evolution, devel-
opment, and dynamical neurons has led to best controllers sharing several similarities
with the lamprey, the main one being the anguiliform swimming. Further experiments
would be needed to determine how much these similarities are due to mechanical
considerations (anguiliform swimming being optimal for our fitness function given the
lamprey body and the mechanical simulation) or to neuronal considerations (producing
a traveling wave with constant wavelength along the spinal cord is the best solution
available in the space of potential neural configurations), or both. In any case, the
similarities suggest that the fitness function, the mechanical simulation, and the space
of potential neural configurations have determined constraints for the artificial evolu-
tion that are not too different from those that have directed the natural evolution of the
swimming circuitry of the real lamprey.5

7.3 Further Directions
The evolved controllers work in an open loop manner, in the sense that the mechanical
simulation does not send feedback to the controller. In the lamprey, sensory feedback
is provided by stretch sensitive cells, the edge cells, which are located on both sides
of the spinal cord [44]. These cells are useful for coordinating the neural activity with
the actual body state when swimming in unstationary water. Ekeberg has shown in
particular that these cells are necessary for crossing a local speed barrier [12]. Similarly to

5 Note that our experiment is not intended to simulate natural evolution. A major difference with natural evolution, is, of course,
that in natural evolution, body structure and control mechanisms are coevolved. Furthermore, the “fitness function” of natural
evolution—the capacity to reproduce—creates significantly more constraints on the evolution of control mechanisms than our
simple fitness function.
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[26], where we evolved such a feedback, further experiments using the developmental
encoding should include these cells to close the control loop.

As the speed and the direction of swimming can be modulated through two input
signals, the movements of the simulated lamprey (in a plane) can be determined. The
evolved controllers can therefore be used by higher neural centers for the generation
of simple behaviors, with the two input nodes of the CPG providing the interface
between the CPG and the higher control centers. A natural continuation of this work
would therefore consist in extending the simulation by adding a simple simulated visual
system to it, and in evolving higher neural centers for simple sensorimotor coordina-
tion experiments such as avoiding obstacles or approaching and attaching to a host
(the lamprey is a parasite). In that respect, a long-term goal would be to reach the
behavioral capacities shown by the artificial fishes [40, 41], but with a neural-based
control mechanism. The aim of such a study would be to investigate how the evolved
CPGs react to continuously changing commands, and what type of neural architectures
are capable of making the transformation of sensory inputs into motor commands for
simple coordination behaviors.

In another, more artificial-life-like, direction, an extension would be to investigate
the dynamics of coevolution of body structures and control mechanisms. As mentioned
earlier, the whole body structure as well as several characteristics of the neural controller
were fixed by the experimenter, and several ways could be imagined to have them
evolve simultaneously with the neural controllers. We would then come close to Sims’
[38] and Ventrella’s [43] work, but with more realistic, or at least closer to biological life,
body structures and neural control mechanisms. Such an investigation may therefore
give some insights on the evolutionary dynamics of natural evolution.

Finally, an ultimate test for the method would be to evolve CPGs for controlling the
swimming of a real robot. This would require first developing controllers for a three-
dimensional simulation (see, e.g., [12]) which, depending on the degree of freedom of
the spinal joints, implies more muscles for controlling the pitch and roll movements and
some feedback from vestibular systems to achieve roll stability. Second, the controllers
would have to be transferred to the real robot with, potentially, online evolution to
further adapt the controllers to the robot. The motivations for a swimming robot are
numerous, the main ones being to obtain locomotion that is significantly more agile
and energetically efficient than propeller propulsion (see, e.g., the ongoing project
to build a lamprey robot [29] at the Marine Science Center, Northeastern University,
and the Robotuna and Robopike projects at MIT’s Department of Ocean Engineering).
Concerning the evolutionary approach we propose, the motivation would be to test
whether the method can be applied to a significantly more complex control problem
than the two-dimensional swimming treated here.

8 Conclusion

This article has presented how swimming controllers for a mechanical simulation of a
lamprey can be designed using an evolutionary algorithm with a developmental encod-
ing scheme. Developmental programs determine how neurons on a two-dimensional
substrate divide and get connected to each other. Swimming controllers are developed
given the fixed body structure of the lamprey and given a high-level characterization
of the desired behavior in terms of the control of the speed and the direction of swim-
ming.

Similarly to central pattern generators found in animals, neural circuitries are evolved
that can produce and modulate relatively complex patterns of oscillations when receiv-
ing simple tonic input. By simply varying the amplitude of two input signals, the speed
and the direction of swimming can be varied. The two best controllers produce an
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anguiliform swimming very similar to that of the lamprey, with a traveling wave of
neural activity propagating from head to tail.
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11. Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming.
Biological Cybernetics, 69, 363–374.
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