had a slightly higher ATP efficacy (92.3% vs. 88.9%) and percent of detected VT/VF events treated with ATP (78.4% vs. 73.6%). Therefore, standardized programming resulted in a slightly lower number and proportion of shocked VT/VF episodes.

Conclusions: A standardized programming regimen for VT/VF detection and therapy utilizing extensive ATP can effectively terminate 92.3% of MVT episodes. This programming approach decreased the number of shocked VT/VF episodes when compared to usual physician ICD programming.

MONDAY, 27 JUNE 2005, 16:30-18:00

ROOM 3A

Mechanisms of atrial fibrillation

476

Chronic left atrial volume and pressure overload in the goat: a new model of sustained atrial fibrillation

J. Remes 1, T. van Brakel 2, F. Van de Veen 2, J. Maessen 2

1CHU Rangueil, Department of Cardiology, Toulouse, France; 2AZ VUB, Cardiac Surgery, Brussels, Belgium; CARIM, Cardiothoracic Surgery, Maastricht, Netherlands

Purpose: The relationship between left atrium (LA) dilatation and atrial fibrillation (AF) has been extensively proved. The aim of this study was to develop an animal model of sustained AF, induced by controlled chronic left atrial overload.

Methods: In 12 goats, a left thoracotomy was performed to implant a 8mm vascular graft (gore-tex®) between the thoracic aorta and the LA. Intra-operative atrial overload was monitored by volume and invasive pressure measurements. The LA was chronically instrumented with ultrasonic crystals and bipolar sensing/pacing electrodes. LA dilatation and electrophysiology were regularly evaluated in the conscious goats and compared with a control group with a non-functional shunt. Sustained AF (1 week) was the ultimate purpose. A new invasive LA pressure was measured ahead of sacrifice.

Results: Operatively there was manifest LA overload with calculated volume augmentation of 59.3±42.2% (from 42.3 to 76.4 mm³; p<0.05) and mean pressure elevation from 9.2±6.9 mmHg to 18.8±8.5 mmHg (p<0.05). One animal was lost during follow up. At sacrifice (52±9.7 days), shunt patency was confirmed in 9 animals. In those, mean LA pressure was 18.8±12.8 mmHg (p<0.05). AF duration increased significantly from 4.7±4.9 sec (day 0) to 113±82.3 hours (p<0.05) after 16.1±6.9 days of open shunt. Six animals presented sustained AF. In the control group, AF duration changed not significantly.

Conclusion: Chronic left atrial pressure/volume overload, can induce sustained AF in goats in a span of weeks. This model may provide new insights in the relationship between atrial dilatation and atrial fibrillation.

477

Effect of chronic amiodarone therapy on the excitability gap during typical human atrial flutter

P. Lamy 1, M. Zimmermann 2, M. Delay 2, P. Coindre 2, D. Ceule 3

1CHU Rangueil, Département de Cardiologie, Toulouse, France; 2CHU Rangueil, Cardiovascular Department, Meyrin, Switzerland; 3University hospital rangueil, Cardiology, Toulouse, France

Class I antiarrhythmic drugs increase duration of the excitable gap (EG) during typical atrial flutter (AF) whereas intravenous class 3 drugs decrease the EG. The effect of chronic oral amiodarone therapy on the EG is unknown.

Methods: EG was prospectively determined by introducing a premature stimulus and by analyzing the response pattern during typical AF in 30 patients without antiarrhythmic drugs and in 20 patients under chronic oral amiodarone therapy. EG was calculated by the difference between the longest coupling interval leading to resetting and the effective atrial refractory period (EARP). A fully EG was defined by the portion of EG where the response curve of the return cycles was flat. A partially EG was defined by the portion of EG where the return cycle increases while coupling interval decreases. A resetting response curve was constructed by plotting the duration of the return cycle against the value of the coupling interval.

Results: Cycle length (CL): (222 ± 17 vs. 267 ± 20 ms, p<0.0001), EARP (128 ± 16 vs 152 ± 18 ms, p<0.0001) and EG (54 ± 19 vs 70 ± 21 ms, p=0.01) were significantly larger in patients taking amiodarone than in controls. When compared to CL, the relative part of the EARP (57 ± 7 vs 57 ± 6%, p=0.96) and EG (24 ± 7 vs 26 ± 8%, p=0.41) were comparable in both groups. The fully EG was larger in patients under chronic amiodarone therapy than in controls (39 ± 21 vs 26 ± 20 ms, p=0.03). Neither duration of the partially EG (28 ± 15 vs 31 ± 15 ms, p=0.42) nor slope of the ascending portion of the resetting response curve (1.15 ± 0.5 vs 1.13 ± 0.4 ms/ms, p=0.71) differed between the two groups.

Conclusion: The EG in patients under chronic amiodarone therapy is significantly larger than in controls, mainly because of a longer fully EG. This observation may be explained by opposite effects on conduction velocity and refractoriness.

478

The role of matrix metalloproteinases in the development of atrial fibrillation

W. Tolls 1, R. Willems 2, T. Roskams 2, P. Holsmans 2, H. Ector 2, H. Heidbuchel 1

1UZ Gasthuisberg, Cardiovascular Department, Leuven, Belgium; 2UZ Gasthuisberg, Pathology, Leuven, Belgium

Background: atrial fibrillation (AF) is associated with important extracellular matrix remodeling which involves atrial fibrosis and atrial dilatation. Angiotensin II mediated pathways and matrix metalloproteinases (MMP) have been implicated in these processes. The aim of this study was to assess atrial structural remodeling and the expression of the angiotensin receptor subtypes (AT-1 and AT-2), MMPs and their inhibitors (TIMPs) in patients with mitral valve disease with or without AF.

Methods: biopsies from right and left atrial appendages were taken from patients undergoing CABG (n=9), all in sinus rhythm (SR) or mitral valve surgery (MVS; n=19; 9 with permanent AF and 10 in SR). Left atrial size was assessed by echocardiography and the degree of atrial fibrosis was scored on a scale of 1 to 4. The expression of MMP-1, MMP-4, TIMP-1 and TIMP-2 was evaluated by Western blotting and by quantitative set-PCR analysis. Results: patients with MVS&AF (6.8 ± 0.2 cm) had significantly larger atria compared to patients with MVS&SR (5.8 ± 0.3 cm; p=0.02) and CABG (5.2 ± 0.2; p<0.01). Patients with MVS had significantly more atrial fibrosis than patients undergoing CABG (MVS: 3.2 ± 2, CABG: 2.3 ± 0.3; p<0.01). A significantly lower total amount of MMP-1 was present in patients with mitral valve disease when compared to patients undergoing CABG. However, there was no difference between mitral valve patients in SR or in AF (p=0.95) (relative MMP-1 expression: CABG: 100 ± 7%, MVS&SR: 78 ± 6%, MVS&AF: 78 ± 4%). ProMMP-2, MMP-9 and TIMP-2 were also significantly down-regulated in the MVS patients compared to CABG, without a difference between the MVS&SR and MVS&AF groups (pro-MMP-2: CABG: 19 ± 5 optical density (OD), MVS&SR: 3.0 ± 1 OD, MVS&AF: 3.2 ± 1 OD, p<0.01; MMP-9: CABG: 7.5 ± 1 OD, MVS&SR: 2.6 ± 1 OD, MVS&AF: 5.0 ± 1 OD, p<0.01; TIMP-2: CABG: 4.9 ± 1 counts/field, MVS&SR: 2.1 ± 1 counts/field, MVS&AF: 3.7 ± 1 counts/field, p<0.04). Protein expression of AT-1, AT-2, TIMP-1 and -2 by immunohistochemistry.

Results: patients with MVS&AF (6.8 ± 0.2 cm) had significantly larger atria compared to patients with MVS&SR (5.8 ± 0.3 cm; p=0.02) and CABG (5.2 ± 0.2; p<0.01). Patients with MVS had significantly more atrial fibrosis than patients undergoing CABG (MVS: 3.2 ± 2, CABG: 2.3 ± 0.3; p<0.01). A significantly lower total amount of MMP-1 was present in patients with mitral valve disease when compared to patients undergoing CABG. However, there was no difference between mitral valve patients in SR or in AF (p=0.95) (relative MMP-1 expression: CABG: 100 ± 7%, MVS&SR: 78 ± 6%, MVS&AF: 78 ± 4%). Pro-MMP-2, MMP-9 and TIMP-2 were also significantly down-regulated in the MVS patients compared to CABG, without a difference between the MVS&SR and MVS&AF groups (pro-MMP-2: CABG: 19 ± 5 optical density (OD), MVS&SR: 3.0 ± 1 OD, MVS&AF: 3.2 ± 1 OD, p<0.01; MMP-9: CABG: 7.5 ± 1 OD, MVS&SR: 2.6 ± 1 OD, MVS&AF: 5.0 ± 1 OD, p<0.01; TIMP-2: CABG: 4.9 ± 1 counts/field, MVS&SR: 2.1 ± 1 counts/field, MVS&AF: 3.7 ± 1 counts/field, p<0.04). Protein expression of AT-1, AT-2, TIMP-1 and -2 by immunohistochemistry.

Downloaded from https://academic.oup.com/europace/article-abstract/7/s1/107/2803236 by guest on 07 April 2019
Conclusions: re-arrangement of MMP expression is involved in structural atrial remodeling in patients suffering from mitral valve disease. AF in itself however did not lead to an altered expression pattern of MMPs and angiotensin receptor subtypes in this specific population.

479

Role of Bachmann’s bundle during chronic atrial fibrillation in patients with mitral valve disease
N.M.S. de Groot 1, P. Voigt 1, J. Braun 2, M.J. Schalij 3, M.A. Allessie 2
1 Leiden University Medical Centre, Cardiology Dept., Leiden, Netherlands; 2 Leiden University Medical Center, Cardiology, Leiden, Netherlands

Introduction
Animal studies have shown that bachmann’s bundle (BB) is essential for development of multiple reentrant circuits perpetuating atrial fibrillation (AF). Mapping of BB in humans has so far not been performed. In this study, high density epicardial mapping of BB was performed to study conduction characteristics of fibrillation waves across BB during chronic AF in humans.

Methods
Epicardial mapping studies of BB were performed in pts (n=10, age 58±3 yrs) with chronic AF during cardiac surgery for mitral valve disease with a template containing 60 unipolar electrodes (inter-electrode distance 1.5 mm). Ten seconds of AF were recorded from the middle (MBB), right (RBB) and left site of BB (LBB). Isochronal maps were off-line constructed. For each mapping site, AF cycle length (ACFL), conduction velocity (CV) and the incidence of conduction block (CV< 7.5 cm/s) was determined. Fibrillation potentials were classified according to the degree of fractionation.

Results
398±12039 fibrillation potentials and 197±56 fibrillation mapsets were analysed. In most pts, multiple waves separated by arcs of conduction block were observed. In 3 pts, only single waves propagating at high CV were present. There were no preferential conduction directions. Electrophysiological variables are summarized in Table 1. CV was slower and conduction block occurred more frequently at MBB compared to RBB and LBB (CV: MBB:29±18cm/s vs RBB:46±30cm/s, LBB:52.6±20cm/s, p<0.02, conduction block: MBB:20±10% vs RBB:5±3%, LBB:7±2%, p<0.01).

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean/sd (Minimum, Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCL (ms)</td>
<td>193±35 (143, 252)</td>
</tr>
<tr>
<td>CV (cm/s)</td>
<td>49±21 (21, 71)</td>
</tr>
<tr>
<td>Conduction block (%)</td>
<td>11±8 (0.48, 23)</td>
</tr>
<tr>
<td>Degree of fractionation (%)</td>
<td>31±17 (4, 51)</td>
</tr>
</tbody>
</table>

Conclusion
There is a large inter-individual variation in activation patterns across BB during chronic AF in MVF patients. The results of this study suggest that BB is 1) a crucial pathway of conduction for fibrillation waves propagating from the right to the left atria or vice versa, or 2) a perpetuator of chronic AF.

480

RR intervals have an individually specific pattern in atrial fibrillation
A. Roka 1, B. Merkely 2
1 Budapest, Hungary; 2 Semmelweis University, Dept. of Cardiovascular Surgery, Budapest, Hungary

Ventricular rhythm in atrial fibrillation is irregular. Current data are conflicting on the randomness of the RR intervals. We investigated the RR intervals to determine whether any individually specific parameters of ventricular response can be proven. A method to differentiate one patient’s data from others was developed and validated.

245 records of 100 RR interval length from 20 patients with atrial fibrillation were examined. 343 statistical parameters were calculated in each sample, which described the mean, distribution, variability and randomness of the RR intervals. Differentiation of samples was accomplished with the following method: a sample was chosen from a patient, thereafter a set of 5 samples, which contained 1 sample from the same patient and 4 samples from other patients. Our method to find the corresponding sample used iteration to find the most effective combination of individually specific statistical parameters of RR intervals for differentiation. To determine the success ratio, all calculations were repeated 6 times to diminish the effect of random sample selection. Theoretically, the chance to find the correct sample was 20%, if the selection is random. Our algorithm showed a 71.7±3.036% success ratio to identify the correct sample. To validate the method, it was tested using random numbers instead of the RR intervals. Here it showed a 23.65±0.35% success ratio; even if the consecutive numbers are random, specific parameters can be found with a sensitive method in arbitrary determined sets of samples of limited length. The sensitivity of the method was demonstrated using chi square distributed random numbers (degree of freedom 6 - it was chosen to have a distribution similar to RR intervals in atrial fibrillation, which are usually skewed to the right), where each set of 100 numbers had the same average as the original patients’ data. The algorithm showed a 45.2±1.43% success ratio to identify the correct sample: it is efficient to find individually specific parameters for differentiation, if they exist.

This study showed that there are individually specific statistical parameters of RR intervals in atrial fibrillation and these can be used to differentiate the patients’ samples from each other. The developed iterative method of differentiation can be used to demonstrate differences or similarities in various groups of data.

481

Posterior wall of left atrium and pulmonary veins refractory period is related to atrial fibrillation inducibility in pigs
I. Fernandez Lozano 1, J.M. Escudier 2, J. Toquero 2, C. Escudero 2, V. Moivas 2, P. Ortiz 2, E. Castedo 2, L.A. Pulpon 2
1 Madrid, Spain; 2 Clínica Puerta de Hierro, Cardiología, Madrid, Spain

Introduction
The ectopic activity from inside of pulmonary veins (PVs) has demonstrated to cause paroxysmal atrial fibrillation (AF) episodes in some patients. However, the exact role played by PVs and by the posterior wall of left atrium in maintaining the AF is unknown.

Methods
We assessed the relation between the refractory period (RP) in the lateral wall of the right atrium (RA), the lateral wall of the left atrium, the posterior wall of left atrium (PLA) and the PVs and the AF inducibility in a pig experimental model. We evaluated the inducibility of atrial fibrillation by means of programmed pacing before and after administration of high doses of intravenous methacholine in 20 pigs with median sternotomy.

Results: AF was induced in 17 out of 20 pigs. All refractory periods were related to AF inducibility, with a proportionally inverse relation in the univariate analysis; for a shorter refractory period a higher AF inducibility was demonstrated. In the multivariate analysis only PLA and PVVP refractory periods were related to inducibility. We also assessed the relation between local cycle length AF and RP; a good correlation only existed in lateral RA (Pearson correlation coefficient 0.97).

<table>
<thead>
<tr>
<th>Non inducible</th>
<th>Inducible</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA RP</td>
<td>167.3±13</td>
<td>144.5±11</td>
</tr>
<tr>
<td>LA RP</td>
<td>190.7±9</td>
<td>107.3±8</td>
</tr>
<tr>
<td>PLA RP</td>
<td>170.7±6</td>
<td>86.7±7</td>
</tr>
<tr>
<td>PVs RP</td>
<td>170.7±11</td>
<td>92.2±6</td>
</tr>
</tbody>
</table>

Conclusions: in a pig experimental model, AF inducibility is related to refractory periods both in pulmonary veins as well as in posterior left atrium wall.