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Rapid Publication
Mice With Gene Disruption of Both Endothelial and
Neuronal Nitric Oxide Synthase Exhibit Insulin
R e s i s t a n c e
R. Ravi Shankar, Yongang Wu, Hua-qiong Shen, Jin-Su Zhu, and Alain D. Baron

Studies from our laboratory using acute pharmacologic
blockade of nitric oxide synthase (NOS) activity have
suggested that nitric oxide (NO) has an important role
in regulating carbohydrate metabolism. We now report
on insulin sensitivity in mice with targeted disruptions
in endothelial NOS (eNOS) and neuronal NOS (nNOS)
genes compared with their wild-type (WT) counter-
parts. Mice underwent hyperinsulinemic-euglycemic
clamp studies after a 24-h fast, during an insulin infu-
sion of 20 mU · k g– 1 · min– 1. Glucose levels were mea-
sured at baseline and every 10 min during the clamp.
Insulin levels were measured at baseline and at the
end of the clamp study. Glucose infusion rates (GIRs)
during the last 30 min of the clamp study were in a
steady state. Tritiated glucose infusion was used to
measure rates of endogenous glucose output (EGO)
both at baseline and during steady-state euglycemia.
Glucose disposal rates (GDRs) were computed from
the GIR and EGO. Fasting and steady-state glucose and
insulin levels were comparable in the 3 groups of mice.
No differences in fasting EGO were noted between the
groups. GIR was significantly reduced (37%, P = 0.001)
in the eNOS knockout (KO) mice compared with the WT
mice, with values for the nNOS mice being intermediate.
EGO was completely suppressed in the nNOS and WT
mice during insulin infusion, but not in the eNOS mice.
Even so, the eNOS mice displayed significantly reduced
whole-body GDRs compared with those of the WT mice
( 8 2 . 6 7 ± 10.77 vs. 103.67 ± 3.47 m g · k g– 1 · min– 1, P =
0.03). eNOS KO mice are insulin resistant at the level
of the liver and peripheral tissues, whereas the nNOS
KO mice are insulin resistant only in the latter. These
data indicate that NO plays a role in modulating insulin

sensitivity and carbohydrate metabolism and that the
eNOS isoform may play a dominant role relative to
nNOS. Diabetes 49:XXX–XXX, 2000

Nitric oxide (NO) has emerged as an important
molecule with diverse biological functions. In
the blood vessels, NO mediates endothelium-
dependent vasodilation (1–3) in response to

diverse stimuli such as shear stress (4–6), insulin (7), acetyl-
choline (8,9), and bradykinin (3,10). In the central nervous sys-
tem (CNS) and peripheral nervous tissue, NO is an unusual
neurotransmitter (11–13). NO is generated when the amino
acid L-arginine is converted to citrulline by the enzyme NO
synthase (NOS) (14,15). Three separate genes encode the
known isoforms of NOS (16): endothelial NOS (eNOS or NOS
III) and neuronal NOS (nNOS or NOS II) catalyze the consti-
tutive production of NO in a calcium-dependent manner pre-
dominantly in the blood vessels and neural tissues, respec-
t i v e l y. The third isoform, inducible NOS (iNOS or NOS I) is
located in macrophages and catalyzes NO formation in
i n flammatory cells.

Intravenous administration of NG- m o n o m e t h y l -L- a r g i n i n e
(L-NMMA), a competitive inhibitor of all NOS isoforms, acutely
induces hypertension and insulin resistance in rats ( 1 7 ) . M o r e
r e c e n t l y, we reported that acute pharmacologic blockade of
NOS activity in the CNS by intracerebroventricular (ICV)
a d m i n i s t r a t i o n of L-NMMA resulted in peripheral insulin
resistance and insulin secretory defects in unrestrained con-
scious rats (18). We now report on the studies undertaken to
confirm the findings above in eNOS and nNOS knockout
(KO) mice. The phenotype and other biological effects noted
in these KO animals have been described elsewhere (19–32).

RESEARCH DESIGN AND METHODS
Animals. Breeding colonies of eNOS and nNOS KO mice and their wild-type
(WT) counterparts (4 colonies of each type) were obtained from the Cardio-
vascular Research Center, Massachusetts General Hospital, Boston, Massa-
chusetts, courtesy of Paul Huang and Mark Fishman. The mice were housed and
bred in the Indiana University Laboratory Animal Research Center on a 12-h
light/dark cycle with standard diet and water available ad libitum. The study pro-
tocol was approved by the Indiana University Animal Use Committee.
Insertion of jugular venous catheters. Specially prepared catheters were
inserted into the right atrium of each mouse under ketaset (Fort Dodge Lab-
oratories, Fort Dodge, IA) anesthesia as described previously (33).
Hyperinsulinemic clamp studies. These studies were performed 2–3 days
after insertion of the jugular catheters to allow the animals to recover from
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CNS, central nervous system; EGO, endogenous glucose output; eNOS,
endothelial nitric oxide synthase; GCR, glucose clearance rate; GDR, glu-
cose disposal rate; GIR, glucose infusion rate; ICV, intracerebroventricular;
KO, knockout; L-NMMA, NG- m o n o m e t h y l -L-arginine; nNOS, neuronal nitric
oxide synthase; NO, nitric oxide; NOS, nitric oxide synthase; PCR, poly-
merase chain reaction; Ra, rate of glucose appearance; WT, wild-type.

D
ow

nloaded from
 http://diabetesjournals.org/diabetes/article-pdf/49/5/684/365591/10905473.pdf by guest on 04 D

ecem
ber 2023



the surgery. Evidence that the animals were ready for surgery included a
healthy appearance, normal activity, and weight regained after surgery. The
animals were studied after a 24-h fast while the animals were awake, unre-
strained, and unstressed in their regular cages. All of the mice were studied
at an insulin infusion rate of 20 mU · k g– 1 · min– 1 as described by our group (33).
Glucose turnover. The rate of glucose appearance (Ra) was determined iso-
topically in the basal and insulin-stimulated states.
Endogenous glucose output. Endogenous glucose output (EGO) repre-
sents residual glucose output from hepatic and renal sources during insulin
infusion. EGO was calculated from the Ra and glucose infusion rate (GIR)
( E G O = Ra – GIR). In cases in which the Ra was underestimated (i.e., Ra < GIR),
EGO was considered to be 0.
Glucose disposal and glucose clearance rates. When Ra > GIR, the glucose
disposal rate (GDR) was considered to be equal to the Ra. When Ra < GIR, then
the latter was considered to represent the GDR. To adjust for the variation that
clamped glucose concentration can have on glucose utilization rates, the glu-
cose clearance rate (GCR) was calculated as follows: GCR (ml · k g– 1 · min– 1) =
GDR/steady-state plasma glucose.

Three animals from each group were randomly selected and DNA was
obtained and the KO status was confirmed by polymerase chain reaction
(PCR) analysis for the eNOS and nNOS gene transcripts.
Data analysis. Data are reported as means ± SE. The results are expressed
in the following order: eNOS versus nNOS versus WT animals. Comparisons
between these groups were performed with analysis of variance using
S t a t View 5.0 program (Abacus Concepts, Berkeley, CA), followed by a Fisher
protected least-significant difference test. A P value <0.05 was considered sta-
tistically significant.

R E S U LT S

PCR analysis of DNA from each group of animals demon-
strated that the lines were pure for the gene knocked out,
whereas the gene transcripts were intact in the WT animals (data
not shown). The characteristics of the 3 groups of animals are
described in Ta b l e 1. The animals in the 3 groups had compa-
rable body weights, fasting glucose and insulin levels, and EGO.
Euglycemic clamp studies. During the clamp study, plasma
glucose concentrations stabilized by 40 min and remained
unchanged for the next 30 min. Steady-state glucose levels
were comparable in all of the groups (Ta b l e 1, Fig. 1). Figure 2
illustrates the GIRs during the 70-min clamp study. Steady-

state GIR was achieved by 40 min and remained unaltered dur-
ing the remainder of the study. Steady-state GIR was highest
in the WT mice and lowest in the eNOS mice, and intermediate
in the nNOS mice (65.62 ± 5.49 vs. 86.80 ± 4.21 vs. 103.67 ±
3 . 4 7 m g · k g– 1 · min– 1, P < 0.0001). EGO was completely sup-
pressed in the nNOS and WT mice, but the eNOS KO mice
continued to exhibit residual EGO (20.85 ± 8.60 m g · k g– 1 ·
m i n– 1) during steady-state hyperinsulinemia (P = 0.041). GDR
(GIR + residual EGO) was 82.67 ± 10.77 m g · k g– 1 · min– 1 in the
eNOS mice, which was lower than the GDR in the other
groups of mice (P = 0.0189). GCR was lowest in the eNOS
mice and highest in the WT mice, and intermediate in the
nNOS mice (P = 0.0196).

D I S C U S S I O N

The demonstration that mice deficient in eNOS and nNOS
activity via gene disruption display insulin resistance confir m s
our earlier observations obtained with acute pharmacologic
antagonism of NOS activity in rats (18,33).

nNOS (or type 1 NOS) activity was originally described in
the neurons of the CNS as well as the various peripheral nerve
plexi (16,34). It has also been described in skeletal muscle
where it is complexed with dystrophin (35). eNOS is highly
expressed in the endothelial cells of blood vessels (36), but it
is also observed in the epithelial cells of the bronchial tree (37)
as well as in the pyramidal cells of the hippocampus (38).
Based on this pattern of distribution, it is logical to expect mul-
tiple phenotypes when these genes are disrupted.

Thus far, the described phenotypes of mice lacking the
nNOS gene have included hypertension (20), pyloric stenosis
(20), resistance to vascular stroke (21), impaired recovery
from viral encephalitis (24), defective nocturnal motor coor-
dination (26), abnormal neurotransmitter release in the brain
(23), aggressive behavior (25,39), and resistance to hypoxic-
ischemic injury in the neonatal period (19). Mice congenitally
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TA B L E 1
Characteristics of the groups of animals

e N O S n N O S W T P

Weight (g) 2 6 ± 1 (42) 2 7 ± 0.3 (56) 2 7 ± 1 (22) > 0 . 0 5 * † ‡ §
Fasting glucose (mg/dl) 8 9 . 7 1 ± 2.39 (42) 9 0 . 2 9 ± 1.95 (55) 9 5 . 2 8 ± 3.16 (21) > 0 . 0 5 * † ‡ §
Fasting insulin (µU/ml) 1 3 . 4 8 ± 3.09 (10) 1 9 . 0 0 ± 8.04 (13) 1 9 . 4 6 ± 5.65 (5) > 0 . 0 5 * † ‡ §
Basal EGO (mg · kg– 1 · min– 1) 3 7 . 7 9 ± 11.67 (4) 3 5 . 8 3 ± 6.84 (6) 4 3 . 3 5 ± 8.96 (3) > 0 . 0 5 * † ‡ §
Steady-state glucose (mg/dl) 1 1 1 . 8 ± 6.26 (25) 1 0 3 . 1 5 ± 5.88 (31) 9 0 . 8 6 ± 5.65 (19) > 0 . 0 5 * † §

0 . 0 2 8 9 ‡
Clamp insulin (µU/ml) 3 0 7 . 2 3 ± 69.12 (22) 4 8 4 . 9 9 ± 126.06 (22) 5 0 7 . 0 0 ± 111.68 (14) > 0 . 0 5 * † ‡ §
Steady-state GIR (mg · kg– 1 · m i n– 1) 6 5 . 6 2 ± 5.49 (25) 8 6 . 8 0 ± 4.21 (31) 1 0 3 . 6 7 ± 3.47 (19) < 0 . 0 0 0 1 *

0 . 0 0 1 1 †
< 0 . 0 0 0 1 ‡

0 . 0 1 4 8 §
Steady-state GDR (mg · kg– 1 · m i n– 1) 8 2 . 6 7 ± 10.77 (7) 8 6 . 8 0 ± 4.21 (31) 1 0 3 . 6 7 ± 3.47 (19) 0 . 0 1 8 9 *

> 0 . 0 5 †
0 . 0 3 3 1 ‡
0 . 0 1 0 1 §

Steady-state GCR (dl/min) 0 . 6 9 ± 0.09 (7) 0 . 9 4 ± 0.09 (31) 1 . 2 4 ± 0.10 (19) 0 . 0 1 9 6 *
> 0 . 0 5 †

0 . 0 1 0 3 ‡
0 . 0 3 4 6 §

Residual EGO (mg · kg– 1 · m i n– 1) 2 0 . 8 5 ± 8.60 (8) 0 (7) 0 (4) 0 . 0 4 1 *

Data are means ± SD (n). *Comparison between all groups; †comparison between eNOS and nNOS; ‡comparison between eNOS
and WT; §comparison between nNOS and WT.
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d e ficient in eNOS have been reported to have hypertension
(22,30), enhanced blood pressure variability (31), abnormal
neurotransmitter release (23), abnormal long-term potentia-
tion in the brain (29), normal cerebral glucose utilization
(40), normal coronary hemodynamics (27) but abnormal car-
diac oxygen consumption (28), and exaggerated myocardial
reperfusion injury (32).

Neither the tissue localization nor the previously
described phenotypes in the KO mice could have predicted
a role for NO in carbohydrate metabolism. However, previous
studies from our laboratory and others have demonstrated a
role for NO in carbohydrate metabolism, in as much as acute
pharmacologic blockade of NOS activity induces insulin
resistance in a rat model (17,18,41). Specific a l l y, intravenous
and intracranial administration of L-NMMA–induced hyper-
tension and significant reduction in steady-state GIRs during
euglycemic-hyperinsulinemic clamps in awake unrestrained
adult male Sprague-Dawley rats. These observations
prompted the current study, which was designed to evaluate
insulin sensitivity in awake unrestrained mice with targeted
disruption of the eNOS and nNOS genes compared with their
WT counterparts.

Our data suggest that both nNOS and eNOS KO mice have
insulin resistance compared with their WT counterparts. The
eNOS mice are the most resistant, exhibiting resistance to the
ability of insulin to suppress EGO, in addition to reduced
insulin-induced glucose uptake in peripheral tissues.

Insulin levels during steady-state hyperglycemia were not
statistically different in the 3 groups, and they exhibited large
variability within each group. Although the steady-state
insulin levels in the eNOS KO mice were somewhat lower, this
is likely to be due to the overall variability (in specimen col-
lection and assay) rather than as evidence for accelerated
insulin clearance in the eNOS KO mice (33). Previously, our
laboratory has demonstrated that the dose of insulin to
achieve maximal rates of insulin-stimulated glucose uptake
in normal mice during euglycemic clamps is 10 mU · k g– 1 ·
m i n– 1 (33), thus the insulin infusion rate of 20 mU · k g– 1 · min– 1

used in this study ensures that maximal insulin stimulation
was achieved.

Most insulin-resistant animals maintain fasting normo-
glycemia by secreting more insulin to overcome the resis-
tance. All 3 groups of animals had normal fasting plasma glu-
cose, and no differences were noted in the fasting insulin lev-

els. Although this discordance may merely reflect limitations
and variability of sample collection and insulin assay, it is also
possible that this reflects impaired insulin secretion. Indeed,
we previously demonstrated that ICV administration of
L-NMMA resulted in defects in both insulin action and secre-
tion (18). Interestingly, in that same study, we observed an
impairment in insulin’s ability to suppress EGO with central
NOS blockade, recapitulating our findings with the eNOS KO
but not with the nNOS KO animals. If we had studied the ani-
mals at a submaximally effective insulin concentration, per-
haps we might have observed resistance to EGO suppression.

This study was not designed to test the mechanism of the
effect observed, and we are in the process of evaluating this
important aspect. We speculate that the observed changes
may be due to alterations in regional blood flow that result in
impaired delivery of substrate and/or insulin to the target tis-
sues. Alternatively or additionally, absence of NO in the target
tissue may also contribute through alterations in insulin sig-
naling to the observed insulin resistance and insulin secretory
defect. Further studies will be required to sort out common
and differential features between eNOS and nNOS KO mice.

In summary, we have presented genetic evidence that both
eNOS and nNOS isoforms play a role in insulin action. Given
the extent of evidence that NO system dysfunction coexists
in many insulin-resistant states, it will be important to better
understand the role of NO in insulin action and, conversely,
the role of insulin in regulating the NO system. These rela-
tionships may reveal pathogenic links between insulin resis-
tance, hypertension, and macrovascular disease.
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FIG. 1. Blood glucose values during the clamp study. Steady-state glu-
cose levels were achieved by 40 min. The eNOS KO animals were
clamped at a much higher glucose level than the other 2 groups (P =
0.0289 compared with the WT animals).

FIG. 2. GIRs during the clamp study. Steady-state infusion rates were
noted by 40 min. Steady-state GIR was significantly reduced in both
the eNOS and nNOS animals compared with the WT animals (P <
0 . 0 0 0 1 ) .
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