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Pancreastatin Modulates Insulin Signaling in 
Rat Adipocytes

Mechanisms of Cross-Talk
Carmen González-Yanes and Víctor Sánchez-Margalet

Pancreastatin (PST), a chromogranin A–derived pep-
tide, has counterregulatory effects on insulin in the
hepatocyte and the adipocyte, suggesting a possible
role in insulin resistance. The mechanism of PST
action on glucose and lipid metabolism is typical of a
calcium-mobilizing hormone and involves a receptor
Gq /11 protein–phospholipase C (PLC)-� pathway. In the
rat adipocyte, PST inhibits insulin-mediated glucose
transport, glucose utilization, and lipid synthesis, and
it has a lipolytic effect but stimulates basal and insulin-
stimulated protein synthesis. We have also recently
studied the PST receptor-effector system in adipocyte
membranes. To further investigate the mechanisms of
PST effect on insulin action, we studied the cross-talk
of PST with insulin signaling in the rat adipocyte. We
found that PST inhibits insulin-stimulated GLUT4
translocation to the membrane, which may explain the
reported inhibition of glucose transport. Tyrosine
phosphorylation of the activated insulin receptor,
insulin receptor substrate (IRS)-1, and p60–70 was also
blunted, preventing their association with p85 phos-
phatidylinositol 3-kinase (PI3K) and their activity. The
mechanism of this inhibition involves the activation of
the “classical” protein kinase C isoforms and the serine
phosphorylation of insulin receptor and IRS-1. On the
other hand, PST activates the mitogen-activated protein
kinase (MAPK) signaling module and enhances the
effect of insulin. This pathway may account for the
described effect of PST on protein synthesis. In con-
clusion, PST seems to inhibit the insulin-stimulated
PI3K pathway in the adipocyte, whereas it activates
the MAPK pathway. These data provide some clues to
the PST cross-talk with insulin signaling that may
explain the PST effects on glucose metabolism and pro-
tein synthesis. Diabetes 49:1288–1294, 2000

P
ancreastatin (PST) is a chromogranin A–derived
peptide (1,2) widely distributed throughout the
neuroendocrine system (3–6). In islets, PST is
present in �-, �-, and �-cells (4–6). PST may be

secreted from the neuroendocrine cells after the precursor
glycoprotein chromogranin A is processed (7,8). Postsecre-
tory processing of chromogranin A also occurs (9,10). A PST-
like sequence has been found in different species, including
the rat (11–13).

PST was named after its first described effect inhibiting
insulin secretion (1). However, many other different biologic
effects have been reported (14). The best characterized effect
of PST was studied in the rat liver (15), in which it has a
glycogenolytic effect (16–18) and a counterregulatory effect to
insulin (19). PST action in the liver is mediated by a specific G
protein–coupled receptor (20–22), activating G�q/11, which then
activates PLC-�3 in the plasma membrane (23). This signaling
pathway leads to an increase in intracellular calcium concen-
tration ([Ca2+]i) and activation of protein kinase C (PKC),
which may finally mediate PST action (24,25). Recently, we
found that PST also has metabolic effects in rat adipocytes (26).
Thus, PST has a lipolytic effect and inhibits insulin action.
PST dose-dependently blocks insulin-stimulated glucose trans-
port and metabolism and inhibits insulin-dependent lipogene-
sis within a physiological range of concentrations. On the
other hand, PST stimulates protein synthesis and enhances the
effect of insulin, increasing protein synthesis in isolated
adipocytes (26). We have also characterized PST receptors
and signaling in adipocyte membranes (27). We have found a
single class of binding sites, with a maximum binding capac-
ity (Bmax) of 5 fmol/mg protein and a binding affinity (Kd) of
1 nmol/l. Studies with blocking antibodies and GTP binding
revealed that PST activates G�q/11 protein and, to a lesser
extent, G�i1,2 protein in adipocyte membranes. The pertussis
toxin–insensitive G�q/11 protein leads to the specific PST acti-
vation of PLC-�3, which may finally mediate PST action in the
adipocyte by increasing [Ca2+]i and activating PKC.

The insulin receptor is a tyrosine kinase (28) that upon acti-
vation undergoes autophosphorylation and phosphorylates
intracellular protein substrates such as insulin receptor sub-
strate (IRS)-1 and other proteins of 60–70 kDa (29). IRS pro-
teins then interact with other molecules such as Grb2 and p85,
the regulatory subunit of phosphatidylinositol 3-kinase
(PI3K) via their Src homology (SH)-2 domains (29). This
interaction results in the activation of the Ras–mitogen-
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activated protein kinase (MAPK) and PI3K pathways. PI3K
activity is important for many insulin-sensitive metabolic
processes, such as glucose transport (30,31) and glycogen syn-
thesis (32). On the other hand, the MAPK pathway has been
shown to mediate adipocyte protein synthesis in response to
insulin by phosphorylation of PHAS-I (33–35).

To further elucidate the mechanisms involved in the PST
counterregulatory effect of insulin in the rat adipocyte, we
studied the cross-talk of PST and insulin receptor signaling.

RESEARCH DESIGN AND METHODS

Materials. Pancreastatin was purchased from Peninsula Laboratories
(Merseyside, U.K.). Antibodies to phosphotyrosine (PY) and the p85 subunit
of PI3K (�-p85) were purchased from Upstate Biotechnology (Lake Placid, NY);
antibodies to insulin receptor �-subunit and IRS-1 were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). Monoclonal antibodies to phospho-
serine were from Sigma (Alcobendas, Madrid, Spain) and to “classical” PKC
isoforms (�, �I, and �II) from Calbiochem (AMS Biotecnologia, Madrid,
Spain). Protein A- and protein G-sepharose were from Amersham Pharmacia
Biotech (Barcelona, Spain). The PKC inhibitor (bisindolylmaleimide) was
purchased from Boehringer Mannheim (Barcelona, Spain). Other chemicals
were from Sigma unless specified otherwise.
Adipocyte isolation, incubation, and solubilization. Adipocytes were
prepared from the epididymal fat pads of ad libitum–fed 100- to 160-g male Wis-
tar rats according to the method described by Rodbell (36) with minor mod-
ifications (26). Fat pads were minced and then digested with collagenase at
37°C for 1 h in Krebs-Ringer buffer (113 mmol/l NaCl, 2 mmol/l CaCl2,
5 mmol/l KCl, 10 mmol/l NaH2CO3, 1.18 mmol/l KH2PO4, and 1.18 mmol/l
MgCl2), pH 7.4, supplemented with 20 mmol/l HEPES, 6 mmol/l glucose, and
1% bovine serum albumin (BSA). Aggregated material was removed by filtra-
tion through a mesh cloth. Isolated adipocytes were washed 3 times, and the
packed cells were subsequently suspended in the final volume of the same
buffer with 0.1% BSA for signaling experiments (3 � 105 cells/ml). In each con-
dition, 2 ml cell suspension was used. Typically, cells were treated with insulin
for 5 min at 37°C. When other agonists and agents were included in the exper-
iment, cells were preincubated for 10 min at 37°C. Cells were then solubilized
for 30 min at 4°C in lysis buffer (20 mmol/l Tris, pH 8, 1% Nonidet P-40,
137 mmol/l NaCl, 1 mmol/l MgCl2, 1 mmol/l CaCl2, 1 mmol/l dithiothreitol, 10%
glycerol, 1 mmol/l phenylmethylsulfonyl fluoride, and 0.4 mmol/l sodium
orthovanadate) (37,38). Protein concentration was determined by the Brad-
ford method using BSA as standard (39).
GLUT4 translocation. Adipocytes were incubated at 37°C in the same buffer
described above. Cells were treated for 20 min with insulin, after which the
presence of GLUT4 in the plasma membrane was assessed by Western blot-
ting using a specific rabbit anti-serum (OSCR6) (a gift from Dr. A. Zorzano, Uni-
versity of Barcelona, Barcelona, Spain) (40). Plasma and microsomal mem-
brane fractions were prepared as previously described (41). Plasma mem-
brane–enriched fractions were separated by SDS-PAGE and transferred onto
nitrocellulose membranes for detection by immunoblotting.
Immunoprecipitation and Western blotting analysis. Soluble cellular
lysates (0.5 mg protein) were precleared with 50 µl protein A-sepharose (Phar-
macia, Uppsala, Sweden) for 2 h at 4°C by end-over-end rotation. The pre-
cleared cellular lysates were incubated with appropriate antibodies for 3 h at
4°C (37). Next, 50 µl protein A-Sepharose was added to immune complexes,
and incubation was continued for 2 h at 4°C. The immunoprecipitates were
washed 3 times with lysis buffer. We added 40 µl SDS–stop buffer containing
100 mmol/l dithiothreitol to the immunoprecipitates and boiled for 5 min. The
soluble supernatants were then resolved by SDS-PAGE and electrophoretically
transferred onto nitrocellulose membranes (37). The membranes were
blocked with Tris-buffered saline–0.05% Tween 20 (TBST) containing 5% non-
fat dry milk for 1 h at 23°C. The blots were then incubated with primary anti-
body for 1 h, washed in TBST, and further incubated with secondary antibodies
linked to horseradish peroxidase. Bound horseradish peroxidase was visual-
ized by a high sensitive chemiluminescence system (SuperSignal; Pierce,
Rockford, IL) (42). The bands obtained in the Western blots were scanned and
analyzed by the PCBAS2.0 program.
PI3K activity. PI3K activity was measured directly in immunoprecipitates in
50 µl of a reaction mix containing 0.2 mg/ml phosphatidylinositol (Sigma),
20 mmol/l HEPES, pH 7.1, 0.4 mmol/l EGTA, 0.4 mmol/l sodium phosphate,
10 mmol/l MgCl2, and [�-32P]ATP (40 µmol/l and 0.1 µCi/µl) (37,43). After 5 min,
the reaction was stopped by the addition of 15 µl of 4 N HCl and 130 µl chloro-
form/methanol (1:1). Then, 20 µl of the lower organic layer was spotted on a sil-
ica gel-60 plate (Merck, Darmstadt, Germany), which was preactivated with 1%

potassium oxalate at 100°C and analyzed by thin-layer chromatography in chlo-
roform/methanol/water/ammonia (60:27:11:2 [vol/vol]). Dried plates were then
exposed to a film for 3–7 days, with intensifying screens for autoradiography.
Activation of PKC. Cells were treated for 10 min at 37°C in the incubation
buffer described above with or without 10 nmol/l PST. Subsequently, cells were
lysed in the same lysis buffer described above but without Triton X-100 for
membrane preparation. Then, cells were centrifuged at 40,000g for 30 min, and
the pellet was made soluble with lysis buffer containing 1% Triton X-100.
Lysates were next centrifuged at 14,000g for 15 min, and the supernatant was
taken and analyzed by Western blotting, as described previously (44), to
detect PST-induced PKC translocation.
MAPK activation. Adipocytes were incubated in the same conditions described
above and stimulated with or without 10 nmol/l insulin and 10 nmol/l PST for 10
min. Next, cells were solubilized as described above. Cell lysates were then dena-
tured and separated by SDS-PAGE. MAPK activation was analyzed by Western blot-
ting with the �-phospho-MAPK monoclonal antibody, which specifically recognizes
the Tyr/Thr phosphorylated form of MAPK because mitogen-activated protein
kinase kinase (MEK), the upstream kinase, is known to activate MAPK through
phosphorylation of threonine and tyrosine residues (45).

RESULTS

PST impairs insulin-stimulated GLUT4 translocation.

PST has been shown to inhibit insulin-stimulated glucose
transport in isolated adipocytes (26). GLUT4 is the end point
of insulin-induced glucose transport; therefore, we deter-
mined whether insulin stimulation of GLUT4 translocation to
the plasma membrane was affected. PST (10 nmol/l)
impaired GLUT4 translocation to the plasma membrane
when adipocytes were stimulated with 10 nmol/l insulin
(Fig. 1). Densitometric analyses demonstrated that PST pro-
duced a significant inhibition (56 ± 7%, n = 4) of insulin-stim-
ulated GLUT4 translocation, whereas it decreased only
slightly (8 ± 3%) the presence of GLUT4 in basal conditions.
PST inhibits insulin-stimulated tyrosine phosphoryl-

ation of insulin receptor and insulin receptor sub-

strates associated with PI3K. To examine the effect of
PST on insulin-stimulated tyrosine phosphorylation, cells
were preincubated with 10 nmol/l PST for 10 min before
stimulation for 5 min with 10 nmol/l insulin. Cell soluble

FIG. 1. PST inhibits insulin-stimulated GLUT4 translocation in isolated

adipocytes. Rat adipocytes were treated with or without PST for

10 min. Cells were then treated with or without 10 nmol/l insulin for

20 min and fractionated to obtain plasma membranes. Plasma mem-

branes were separated by SDS-PAGE and immunoblotted for GLUT4.

Anti-G protein � subunit (�-G�com) was used for control of plasma

membrane protein loading. An immunoblot representative of 4 sepa-

rate experiments is shown. O.D., optical density; WB, Western blotting.
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extracts were denatured and analyzed by Western blot with
anti-PY antibodies to assess general tyrosine phosphoryla-
tion levels of adipocyte proteins (Fig. 2A). PST impaired
insulin-stimulated tyrosine phosphorylation of different
proteins, which according to their apparent molecular
weight, may be the insulin receptor �-subunit, IRS-1, and
p60–70 substrates. To further assess this issue, we next per-
formed the same experiment, but the cell lysates were sub-
jected to immunoprecipitation with insulin receptor–specific
and anti–IRS-1 antibodies and analyzed by Western blot
with anti-PY antibody (Fig. 2B and C). PST inhibited insulin-
stimulated autophosphorylation of the insulin receptor
�-subunit (79 ± 9% inhibition, n = 3) (Fig. 2B). It had no effect
on basal tyrosine phosphorylation of the insulin receptor
(data not shown). Moreover, PST inhibited insulin-stimulated
tyrosine phosphorylation of IRS-1 (89 ± 8% inhibition, n = 3)

(Fig. 2C). PST alone had no effect on basal tyrosine phos-
phorylation of IRS-1 (data not shown).

We also studied postreceptor signaling complexes. PST
(10 nmol/l concentration) inhibited the tyrosine phosphoryl-
ation of insulin receptor substrates (IRS-1 and p60–70) asso-
ciated with PI3K (IRS-1, 84 ± 5; p62, 30 ± 6%, n = 4) (Fig. 3).
PST alone had no effect on basal tyrosine phosphorylation of
these substrates (data not shown).
PST inhibits insulin-stimulated PI3K activity. To check
whether the PST inhibition of tyrosine phosphorylation of sub-
strates and their association with p85-PI3K actually led to
changes in the P13K activity, we measured PI3K activity in
anti-PY immunoprecipitates of adipocytes incubated in the
absence and presence of insulin and PST (Fig. 4). As
expected, insulin (10 nmol/l) stimulated the phosphorylation
of phosphatidylinositol ~5-fold (386 ± 23% increase, n = 3),
and this effect was significantly blunted by 10 nmol/l PST (62 ±
7% inhibition, n = 3). PST alone had no effect on basal PI3K
activity (data not shown).
PST stimulates serine phosphorylation of insulin

receptor �-subunit and IRS-1. To further evaluate the pos-
sible mechanisms of cross-talk between PST and insulin
receptor signaling, we studied the phosphorylation of insulin
receptors in serine using Western blots with specific phos-
phoserine antibodies in insulin receptor immunoprecipitates.
PST (10 nmol/l) increased the serine phosphorylation level of
the insulin receptor �-subunit ~2-fold (120 ± 9% stimulation,

FIG. 2. PST inhibits insulin-mediated tyrosine phosphorylation of

adipocyte proteins, the insulin receptor, and IRS-1. A: Isolated

adipocytes were incubated with and without 10 nmol/l insulin for 5 min

in the presence or absence of 10 nmol/l PST. Cells were then solubi-

lized and denatured. Samples were next subjected to SDS-PAGE and

analyzed by Western blotting with anti-PY antibodies (�-PY). B: Cells

were treated as described above, but the soluble cell lysate was sub-

jected to immunoprecipitation with anti–insulin receptor antibodies.

Samples were then denatured and electrophoresed in SDS-PAGE and

analyzed by Western blotting with anti-PY antibodies. C: IRS-1 was

immunoprecipitated from cell lysates obtained in the conditions

described above and analyzed by Western blotting with anti-PY (�-PY).

The immunoblots shown are representative of at least 3 separate

experiments. �-IR, anti–insulin receptor antibody; IP-AB, immuno-

precipitating antibody; IR-�, insulin receptor �-subunit; WB-AB,

Western blotting antibody.

A

B

C

FIG. 3. PST inhibits the association of insulin receptor substrates with

p85 PI3K (PIK). Isolated adipocytes were treated with and without

10 nmol/l insulin for 5 min in the presence or absence of 10 nmol/l PST.

Cells were then solubilized, and soluble cell lysates were subjected to

immunoprecipitation with anti-p85 PI3K antibodies. Then, samples

were analyzed by Western blotting with anti-PY (�-PY). An

immunoblot representative of 4 independent experiments is shown. IP-

AB, immunoprecipitating antibody; IR-�, insulin receptor �-subunit;

WB-AB, Western blotting antibody.
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n = 3) (Fig. 5A) after 10 min of incubation. Similar results were
obtained when IRS-1 was immunoprecipitated and analyzed
for serine phosphorylation (Fig. 5B). PST (10 nmol/l)
increased the serine phosphorylation level of IRS-1 ~3-fold
(320 ± 12% stimulation, n = 3). These effects of PST increas-
ing the serine phosphorylation of insulin receptor �-subunit
and IRS-1 were prevented by the presence of a specific PKC
inhibitor (50 nmol/l bisindolylmaleimide), with no significant
differences in serine phosphorylation with controls.
PST stimulates classical PKC isoforms in adipocytes.

PST (10 nmol/l) induced a 3-fold increase of PKC in the
plasma membrane after 10 min of incubation (215 ± 8% above
control, n = 3), as expected from the previously described
effect of PST on PLC-� by the activation of G�q/11 in adipocyte
membranes (27) (Fig. 6). Furthermore, the PKC isoform acti-
vated by PST belongs to the family of classical isoforms (�, �I,
and �II), as assessed by a specific immunoblot (Fig. 6).
PST inhibition of insulin receptor signaling is blocked

by the PKC inhibitor bisindolylmaleimide. Because PST
serine phosphorylates insulin receptor and IRS-1 by activation
of classical isoforms of PKC in rat adipocytes, we checked the
casual link between these effects of PST and the inhibition of
insulin receptor signaling. Thus, inhibition of PKC by
50 nmol/l bisindolylmaleimide prevented the PST inhibition
on insulin-stimulated GLUT4 translocation (Fig. 7A). More-

over, inhibition of PKC also blocked the inhibiting effect of
PST on insulin-stimulated tyrosine phosphorylation of the
insulin receptor �-subunit (Fig. 7B) and IRS-1 (Fig. 7C). In a
similar way, bisindolylmaleimide abrogated the effect of PST,
blunting the insulin-stimulated PI3K activity (Fig. 7D).

Bisindolylmaleimide did not modify the basal levels of
GLUT4 in plasma membranes, PI3K activity, or tyrosine
phosphorylation in rat adipocytes (data not shown).
Effect of PST and insulin on MAPK activation. We
finally checked the MAPK activation by PST in isolated
adipocytes by studying its tyrosine/threonine phosphorylation
level, which reflects the activation of MEK and, indirectly, all
of the MAPK module pathway. As shown in Fig. 8, PST
(10 nmol/l) stimulates tyrosine/threonine phosphorylation
of MAPK (extracellular-regulated kinase [ERK]-1 and ERK-2),
as assessed by a specific immunoblot. As expected, insulin
(10 nmol/l) stimulated MAPK phosphorylation. This effect of
insulin was potentiated by PST when adipocytes where chal-
lenged with both hormones at the same time (Fig. 8).

DISCUSSION

PST has been shown to inhibit both insulin secretion and
insulin action (14), and this result has helped create the
hypothesis that PST could have a role in insulin resistance (46).
Moreover, PST has been found in high concentrations in sub-
jects with type 2 diabetes, gestational diabetes, and hyper-
tension—conditions that are characterized by abnormal
insulin secretion and insulin resistance (47–51), i.e., like those

FIG. 4. PST inhibits insulin-stimulated PI3K activity. Cells were

treated with and without 10 nmol/l insulin for 5 min in the presence

or absence of 10 nmol/l PST. Anti-PY immunoprecipitates were then

used for PI3K activity as described in RESEARCH DESIGN AND METHODS.

Samples were chromatographed by thin-layer chromatography, and

an autoradiography representative of 3 experiments is shown. O.D.,

optical density; PIP3, phosphatidylinositol 3-phosphate.

A

B

FIG. 5. PST stimulates serine phosphorylation of the insulin receptor

and IRS-1. Cells were incubated for 10 min with and without 10 nmol/l

PST in the presence or absence of the PKC inhibitor (50 nmol/l bisin-

dolylmaleimide). Cells were then washed and solubilized. Cell lysates

were next immunoprecipitated with anti–insulin receptor (A) or

anti–IRS-1 (B), subjected to SDS-PAGE, and analyzed by Western

blotting with antiphosphoserine. Representative immunoblots of 3

experiments are shown. �-IR, anti–insulin receptor antibody; �-PSer,

anti-phosphoserine antibody; IP-AB, immunoprecipitating antibody;

IR-�, insulin receptor �-subunit; O.D., optical density; PKCi, PKC

inhibitor; WB-AB, Western blotting antibody.
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conditions in metabolic syndrome X (52). In this context, we
studied the possible effects of PST on insulin receptor signal
transduction in rat adipocytes, where we previously found
counterregulatory effects of PST on insulin action (26). Thus,
PST dose-dependently inhibited insulin-stimulated glucose
uptake, glucose utilization, and lipogenesis and had a lipoly-
tic effect in isolated adipocytes. Moreover, we studied the
signaling mechanisms of PST in adipocyte membranes (27)
and found a specific receptor G�q/11–PLC-�3 pathway.

Because we found that PST produces a 50% inhibition of
insulin-stimulated glucose transport (26), the important ques-
tion arose as to how PST impairs glucose uptake in
adipocytes. The final step of the signaling in the stimulation of
glucose transport by insulin is the translocation of GLUT4 to
the plasma membrane. Here, we found that PST impairs ~60%
of the insulin-stimulated GLUT4 translocation to the
adipocyte plasma membrane. These results are consistent
with the observed inhibition of glucose uptake in isolated
adipocytes, and therefore it may be the final cause of this
PST effect. Next, we further investigated the mechanisms of
PST cross-talk by dissecting the signaling pathway that leads
to the insulin-stimulated GLUT4 translocation. The best
known pathway to GLUT4 in insulin receptor signaling is
PI3K (31). PI3K consists of 2 subunits: a p110 catalytic subunit
(53) and a p85 regulatory subunit that contains 2 SH2 domains
and 1 SH3 domain (54). In the case of the insulin receptor, the
p110 catalytic subunit of PI3K is activated by interaction of SH2
domains of the p85 regulatory subunit with the tyrosine phos-
phorylated docking protein, IRS-1 (55), and the autophos-
phorylated insulin receptor �-subunit (56,57). In previous
studies, we showed that blocking PI3K activity inhibits
insulin-mediated stimulation of 2-deoxyglucose uptake and
glycogen synthesis in 3T3 fibroblasts and HTC hepatoma cells
transfected with insulin receptors, respectively (30,58). More-
over, the inhibition of PI3K has been reported to block the
effect of insulin inhibiting the isoproterenol-induced lipolysis
(31). In the present study, we have found that PST inhibits tyro-

sine phosphorylation of the insulin receptor and IRS-1 and its
association to p85 PI3K, which should result in impairing the
activation of the PI3K pathway. In fact, as assessed in anti-PY
immunoprecipitates, PST blocked the insulin-stimulated PI3K
activity to a similar extent to that observed for tyrosine phos-
phorylation (~80%). Therefore, these results provide some
evidence of the mechanisms of PST inhibition of insulin-stim-
ulated glucose and lipid metabolism.

One of the possible mechanisms of inhibition of insulin
receptor tyrosine kinase activity by counterregulatory hor-
mones has been shown to be serine phosphorylation of the
insulin receptor (59). Moreover, serine phosphorylation of
IRS-1 may also suppress its tyrosine phosphorylation by the
insulin receptor (60,61). In this context, the observed serine
phosphorylation of both insulin receptor and IRS-1 on PST
stimulation may cause the inhibition of tyrosine phosphoryl-
ation. In fact, this effect of PST seems to be mediated by PKC

FIG. 6. PST induced translocation of classical PKC isoforms. Cells were

incubated for 10 min with or without 10 nmol/l PST, and plasma mem-

brane fraction was solubilized, subject to SDS-PAGE, and analyzed by

Western blotting with specific antibodies against classical PKC iso-

forms (�, �I, and �II). Anti-G� common blot was used for control of

sample loading. A Western blot representative of 3 experiments is

shown. O.D., optical density; WB, Western blotting.

FIG. 7. PST inhibition of insulin receptor signaling is blocked by PKC

inhibition. Cells were incubated with or without insulin in the presence

or absence of a PST and PKC inhibitor (50 nmol/l bisindolylmaleimide).

Samples were processed for analysis of GLUT4 translocation (A),

insulin receptor Tyr-phosphorylation (B), IRS-1 Tyr-phosphorylation

(C), and PI3K activity (D), as described in Figs. 1, 2, and 4. Represen-

tative experiments of 3 experiments are shown. �-G�com, anti–G protein

� subunit; �-IR, anti–insulin receptor antibody; IP-AB, immunoprecip-

itating antibody; IR-�, insulin receptor �-subunit; PIP3, phosphatidyli-

nositol 3-phosphate; PKCi, PKC inhibitor; WB, Western blotting; WB-

AB, Western blotting antibody.
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activity, since it is prevented by the presence of a PKC
inhibitor. We have previously described the PST activation of
classical isoforms of PKC in HTC hepatoma cells (43). Here,
we have confirmed this mechanism of action of PST in the
adipocyte. This result should be expected because we have
previously found the PST activation of PLC-�3 in adipocyte
membranes through the activation of G�q/11 (27). Classical
isoforms of PKC are known to modulate insulin receptor tyro-
sine kinase activity by serine phosphorylation of the insulin
receptor and IRS-1 (62,63). Thus, the activation of PKC by PST
in adipocytes may account for the serine phosphorylation of
the insulin receptor and IRS-1 produced by PST stimulation
and therefore may also mediate the inhibition in tyrosine
phosphorylation. This hypothesis was substantiated by the
data on the effect of PKC inhibition abrogating the inhibitory
action of PST on insulin-stimulated tyrosine phosphorylation,
PI3K activity, and GLUT4 translocation. Enhanced serine
kinase activity has been described in insulin resistance (64),
and PST may contribute to this pathophysiological feature
along with other counterregulatory hormones, such as cate-
cholamines, whose circulating levels correlate with those of
PST (49–51).

Even though PST has a counterregulatory effect on insulin
in glucose and lipid metabolism in rat adipocytes (26), it has a
dose-dependent stimulatory effect on protein synthesis (26).
Moreover, PST enhances the effect of insulin on protein syn-
thesis. Protein synthesis is started by the phosphorylation of
PHAS-I, which then dissociates from the initiation factor 4E
(eIF-4E), activating the translation process (65). In adipocytes,
the major insulin-stimulated PHAS-I kinase is MAPK (33,65,66).
Therefore, MAPK is a good candidate to be tested as a pathway
that controls protein synthesis by PST. Thus, we found that PST

activates the MAPK pathway, as assessed by phosphorylation
of ERK1/ERK2 (MAPK), and it enhances the activation of
MAPK by insulin stimulation in rat adipocytes. G protein–cou-
pled receptors are known to signal the MAPK pathway
through the G�� dimer of the heterotrimeric G protein (67). In
addition, Gq-coupled receptors have an alternative pathway to
connect with the MAPK module by activating PKC (67,68).
Therefore, PST activation of the MAPK pathway and the
potentiation of insulin effect is not striking, since PST signal-
ing is mediated by G�q/11–PLC-� PKC, and it may provide clues
to the mechanism of the observed effect of PST on protein syn-
thesis in rat adipocytes.

In conclusion, these results may help to explain the intra-
cellular mechanisms through which PST may eventually lead
to insulin resistance in vivo while still promoting protein syn-
thesis in adipose tissue.
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