High affinity IgG binding by FcγRI (CD64) is modulated by two distinct IgSF domains and the transmembrane domain of the receptor

Patrick T. Harrison¹ and Janet M. Allen²

Division of Biochemistry and Molecular Biology and Department of Medicine and Therapeutics, The University of Glasgow, Glasgow G12 8QQ, UK

¹Present address: Department of Veterinary Pathology, Royal (Dick) School for Veterinary Studies, Summerhill, University of Edinburgh, Edinburgh, EH9 1QH, UK

²To whom correspondence should be addressed

The high affinity IgG receptor, FcγRI, is comprised of three immunoglobulin superfamily (IgSF) domains (EC1, EC2 and EC3), a single transmembrane spanning region, and a short cytoplasmic tail. We have shown a role for three separate domains of FcγRI in the high affinity binding of IgG. Affinity measurements of chimeric FcγRs in which EC1 and EC2 of FcγRII have been replaced with the homologous EC1 and/or EC2 domains of the low affinity IgG receptor, FcγRII, indicate that both EC2 and EC3 are essential for high affinity binding of monomeric IgG. Identification of EC3 from FcγRI as the binding site for the monoclonal antibody 10.1, which blocks IgG binding, provides further evidence for the role of this domain in binding. In addition, we have found that the affinity of FcγRI is increased threefold when co-expressed with its accessory molecule, γ-chain. Affinity measurements of further chimeras indicates that the transmembrane domain of FcγRI has a negative influence upon the affinity of the receptor. To account for these observations, we propose that receptor dimerization is required for maximal affinity of FcγRI. Dimerization may serve as the mechanism by which IgG binding triggers several FcγRI-mediated events.

Keywords: CD64/FcγRI/γ-chain/IgG/receptor chimeras

Introduction

Receptors for the Fc domain of IgG (FcγR) play a pivotal role in linking the humoral and the cellular arms of the immune system. Both low affinity (FcγRII) and high affinity (FcγRI) IgG receptors mediate a variety of biological responses, including endocytosis, phagocytosis, antibody-directed cellular cytotoxicity and cytokine release (for reviews see Ravetch and Kinet, 1991; van de Winkel and Capel, 1993; Ravetch, 1997; Daёron, 1997). The low affinity IgG receptor, FcγRII, is a type I integral membrane protein whose ligand binding extracellular region is comprised of two IgSF V-like domains (for review see Raghavan and Bjorkman, 1997). Analysis of the interaction between IgG and FcγRII has shown that the membrane proximal IgSF domain (EC2) is the principal site of interaction with IgG (Hogarth et al., 1992; Hulett and Hogarth, 1994; Hulett et al., 1994 and 1995). Moreover, a clinically relevant polymorphism that affects the binding of specific IgG isotypes is the result of a single amino acid change in this domain (Parren et al., 1992). In contrast, the high affinity IgG receptor, FcγRI, has an extracellular ligand binding region comprised of three IgSF V-like domains. The outer two domains (EC1 and EC2) of FcγRII show considerable homology to the respective domains of FcγRII, but the third domain (EC3) appears unique. It has been postulated that the third IgSF may confer upon FcγRII the ability to bind monomeric IgG (Allen and Seed, 1989; Sears et al., 1990). Previous studies have shown that EC3 is indeed necessary, but not sufficient, for high affinity IgG binding (Hulett et al., 1991; Porges et al., 1992). A more detailed understanding of how IgG binds FcγRI is particularly relevant in light of several recent reports showing that IgG binding to the receptor can elicit a biological response (Harrison et al., 1994a; Pfefferkorn et al., 1995); previous dogma was that FcγR-mediated events required receptor cross-linking and that binding of IgG to the receptors was functionally passive.

In this study we have constructed three FcγRI chimeric receptors in which EC1 and EC2 of FcγRII have been replaced with EC1 and/or EC2 of FcγRI; the homologous domains of the two receptors. These chimeras have been used to investigate the influence that each domain has on the capacity of the receptor to bind monomeric human IgG. Only the FcγRII-based chimera which retains EC2 and EC3 of FcγRI (II EC1.I EC2.I EC3) binds monomeric IgG with high affinity. In contrast, the FcγRI-based chimera which has both EC1 and EC2 from FcγRII (I EC1.I EC2.I EC3) can only bind IgG with low affinity. We have also investigated the influence of expression of γ-chain on the affinity of FcγRI for IgG. The measured affinity of FcγRI for ligand increased nearly threefold when co-expressed with the γ-chain; the measured affinity of FcγRI co-expressed with γ-chain corresponds with the affinity of FcγRII for IgG observed in endogenously expressing cells. Affinity measurements of additional FcγRII-chimeras in which the transmembrane domain of FcγRII has been removed or replaced with TM domains of other receptors suggests a novel mechanism by which this occurs.

Materials and methods

Cells and cell culture

COS-7 cells were maintained in Dulbecco's modified Eagle's medium (Gibco BRL) supplemented with 10% calf serum, 2 mM glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin. COS cells were plated at a density of approximately 4×10⁵ cells per 100 mm plate one day before transfection.

Transient expression

The SV40-based expression vector CDM (Seed and Aruffo, 1987) was used for the transient expression of the cDNAs of all clones in COS-7 cells using the DEAE-dextran method (Allen and Seed, 1989). The cDNAs for FcγRI (p135; Allen and Seed, 1989), FcγRIIaIR (PC23, Stengelin et al., 1988) and CD2 (Seed and Aruffo, 1987) were in CDM. The cDNA for the γ-chain of FcγRII (Küster et al., 1990) was in the vector pSVL. All experiments were performed two or three days post transfection, when surface expression is maximal. Transfection
efficiency was routinely of the order of 20–30% as assessed by immunofluorescence and FACS analysis (Figure 2).

Chimeric receptor construction
The FcγRI chimeras FcγRI-γ and FcγRI-GPI have been described elsewhere (Harrison et al., 1994b; Hutchinson et al., 1995). FcγRI-CD2 was constructed by PCR amplification of the transmembrane and cytoplasmic domains of CD2. The forward primer for the amplification of CD2 (5'-GAAAGGGTGCTAGATCTTCATCTC-3') contained a BglII site. The reverse primer (5'-GCTAATAGAGAACCCACTG-3') hybridises to the CDM vector. The PCR fragment, which contains an internal NsiI site, was then subcloned into the BamHI and NsiI sites of FcγRI-GPI (Harrison et al., 1994b) to create a clone (FcγRI-CD2) comprising the extracellular domain of FcγRI fused to the transmembrane and cytoplasmic domains of CD2.

Domain swap chimeric receptor construction
All FcγRI-FcγRII domain swap chimeras were constructed in the vector Bluescript II SK+ and then subcloned into CDM for expression. The domain boundaries were defined by the position of the exon boundaries in the gene sequence of FcγRI (van de Winkel et al., 1991). To construct the chimera FcγRII-I EC1 .I EC2 .I EC3 , a SaclI site was introduced into both FcγRI (using the oligonucleotide 5'-AGAGCTTTTCAGCCGAGCTTCGAGCATG-3') and FcγRII (using the oligonucleotide 5'-ACTTGTCAAAGAGCTTCGAGCATG-3') by site-directed mutagenesis (Künkel, 1985). The 647 bp HindIII-SaclI fragment that contained EC1 and EC2 of FcγRII was subcloned into the HindIII/SaclI sites of FcγRI. To construct the chimera FcγRII-I EC1 .II EC2 .I EC3 , a PsiI site was introduced into FcγRII (which already contained the new SaclI site) using the oligonucleotide 5'-CTGGTGCTGGCAACAGCGC-3' by site-directed mutagenesis. The 243 bp Psrl-SaclI fragment that contained EC2 of FcγRII was subcloned into the PsiI/SaclI sites in FcγRI (PsiI site already exists; SaclI site introduced by site-directed mutagenesis as above). To construct the chimera FcγRII-I EC1 .I EC2 .II EC3 , EC1 of FcγRII was amplified by PCR using a forward primer (5'-TTCCCTTCACCGAAGCTTCCTCT-3') that hybridises to the CDM vector and a reverse primer (5'-GGGGTGATCGTCAACCCAGCC-3') that hybridises to FcγRII and introduces an NsiI site. The amplified product, which contains an internal HindIII site, was subcloned into the HindIII/PsiI sites in FcγRI-Manx (Davis et al., 1995).

FACS analysis
The monoclonal antibody 10.1 (Dougherty et al., 1987) was a gift from Nancy Hogg (ICRF, London). All other antibodies were purchased from Sigma. Binding of mAb, 10.1, (10 nM) and human IgG (5 µM) was assessed by FACS analysis using a Becton Dickinson FACScan. Briefly, 48 h post-transfection, COS cells were harvested in phosphate-buffered saline/1 mM EDTA and incubated with human IgG (5 µM) or mAb (10 nM) for 30 min at 4°C. Binding of primary antibody was determined by using FITC-labelled goat anti-mouse IgG1 or goat anti-human IgG antibodies.

Determination of binding affinity
Human IgG1 (Serotec) was labelled with Na125I (Amersham International) as described (Fraker and Speck, 1978). Forty-eight hours post-transfection, COS cells were harvested as above and incubated with tracer amounts of 125I-human IgG1 (20 µM) in the presence of increasing concentrations of unlabelled human IgG1 (range 5 × 10⁻⁹ to 5 × 10⁻⁵ M) for 20 min in PBS/5% non-fat milk/0.2% sodium azide. Bound and free fractions were separated by centrifugation through a 3:2 mixture of dibutyl:diocyl phthalates. Data were corrected for non-specific binding by subtraction of counts bound per minute in the presence of a large excess of IgG (1 × 10⁻⁵ M) and were normalized to 1.0 for the counts bound in the presence of tracer alone (absence of any displacing cold human IgG1). The IC₅₀ was calculated, being the concentration of human IgG1 that displaces the radiolabelled tracer by 50%, for all the data points (four separate experiments performed in duplicate) for each assay condition. The mean value and standard deviation are shown in the tables.

Results
Design, construction and cell surface expression of domain swap chimeras
The three domain swap chimeras in which EC1 and EC2 of FcγRI were replaced with EC1 and/or EC2 of FcγRII (Figure 1) were designed using the exon boundaries (van de Winkel et al., 1991) as a guide to define the domain boundaries. Only one chimera, FcγRI-I EC1 .I EC2 .II EC3 , required an amino acid substitution to facilitate cloning; leucine 91 in EC1 of FcγRII was changed to another large hydrophobic amino acid, methionine. Surface
Functional dissection of high affinity binding of FcγRI

expression of the clones was assessed by their ability to bind human polyclonal IgG by FACS analysis (Figure 2). All three chimeras could bind IgG and were expressed at similar levels to wild type FcγRI and FcγRII, with approximately 20–30% of cells expressing FcγRs.

EC2 is required of FcγRI is required for high affinity binding of human IgG1

As shown above, all three domain swap chimeras can bind IgG, at least when present at high concentrations. We have determined the affinity of the various chimeric FcγRs for human monomeric IgG in a quantitative fashion using a displacement assay. The outer two IgSF domains of human and mouse FcγRI show considerable amino acid identity with the respective domains of the two low affinity IgG receptors, FcγRII and FcγRIII. Together with the fact that both these receptors only have two IgSF domains and bind IgG at low affinity, it has been suggested that the third domain of FcγRI confers to the receptor its feature of high affinity (Allen and Seed, 1989; Sears et al., 1990). To test whether the third domain was solely responsible for the high affinity characteristics, the affinity of the chimera II-E2-II-E3 [which comprises the two extracellular domains of hFcγRII fused to the innermost domain (EC3) of hFcγRI] was measured to assess whether it was possible to convert an FcγR with low affinity for monomeric IgG to an FcγR with high affinity by providing the third domain. Although this clone can bind polyclonal human IgG at high concentration when measured by FACS analysis (Figure 2), the affinity of this clone for monomeric IgG was too low to measure in the displacement assay. This suggests that features within the outer two domains of FcγRI, that are not shared with the FcγRII, contribute to the high affinity characteristics of the receptor.

To investigate the role of the outer two domains of FcγRI in the high affinity binding of IgG, we have constructed two additional chimeras. The first chimera, I-E2-I-E3, has EC2 of FcγRI replaced with EC2 of FcγRII. This clone will also bind human polyclonal IgG at high concentrations when measured by FACS (Figure 2). Again, the affinity was too low to measure in the displacement assay (data not shown), indicating that I-E2-I-E3 is also a low affinity receptor. The other chimera constructed was I-E2-I-E3, in which EC1 of FcγRI is replaced by EC1 of FcγRII. This chimera binds IgG by FACS analysis (Figure 2). More importantly, it has a very similar displacement profile to that for FcγRI expressed in COS cells (Figure 3). The calculated IC50 for I-E2-I-E3 was 2.8×10⁻⁸ M, compared with an IC50 of 1.8×10⁻⁸ M for FcγRI (Table I). Thus, the second domain of FcγRII (EC2) appears essential in mediating the high affinity characteristics.

Fig. 2. FACS analysis of COS cells expressing FcγRs and chimeras incubated with polyclonal IgG and FITC-labelled GrdH. (A) FcγRI; (B) FcγRII; (C) I-E1-I-E2-I-E3; (D) I-E1-I-E2-I-E3; (E) I-E3-I-E2-I-E3; (F) mock transfected.

Fig. 3. Typical binding curves from displacement assay of FcγRs binding IgG. IC50 values were calculated from binding curves. The chimera II-E2-I-E3 binds IgG with high affinity (IC50 2.8×10⁻⁸ M) compared with FcγRI (IC50 = 1.8×10⁻⁸ M). Results shown are mean of four experiments performed in duplicate.
Assay. The IC₅₀ for FcγRI co-transfected γ–chain in COS cells expressing FcγRI binding of IgG to FcγRI

To explore the possible role of the γ–chain in modulating the binding of IgG to FcγRI, the affinity of IgG binding was measured in COS cells expressing FcγRI, in the presence and absence of co-transfected γ–chain, using the displacement assay. The IC₅₀ for FcγRI expressed alone in COS cells was 1.8×10⁻⁸ M, whereas FcγRI co-expressed with γ–chain shows an increased affinity for IgG (IC₅₀ = 0.7×10⁻⁸ M; Figure 5A).

We also measured the affinity of murine FcγRII expressed in COS cells for human IgG (IC₅₀ = 5.4×10⁻⁸ M; Figure 5B); this was slightly lower than that of hFcγRII. However, the affinity was similarly increased in cells where murine FcγRII was co-expressed with γ–chain (IC₅₀ = 1.9×10⁻⁸ M; Figure 5B). In both cases, for human (Table II) and murine FcγRII (Table III), the fold increase in affinity observed in cells co-expressing γ–chain was very similar.

The TM domain of FcγRII has a negative effect on the affinity of ligand binding

The mechanism by which γ–chain increases the affinity of FcγRII is unclear, but it does not bind ligand directly (data not shown). However, since FcγRI and γ–chain associate via their respective TM domains (Davis et al., 1995; Harrison et al., 1995), a conformational change may be induced upon this interaction to facilitate the extracellular domain recognition of ligand. To explore this possibility further, we measured the affinity of a chimeric receptor (FcγRII-γ) in which the TM and cytoplasmic domains of FcγRII were replaced by the equivalent domains of γ–chain (Hutchinson et al., 1995). This chimera showed an increased affinity for IgG (IC₅₀ = 0.8×10⁻⁸ M), relative to FcγRI (Figure 6A); this is a similar increase to that seen for FcγRI co-expressed with γ–chain. This suggests that replacement of the FcγRII TM domain with that of γ–chain may induce a similar conformational change as when FcγRII associates with γ–chain. To determine if this effect was γ–chain specific, a second FcγRII chimera (FcγRII-CD2) was constructed in which the TM and cytoplasmic domains of FcγRII were replaced by the equivalent domains of the adhesion molecule CD2. The increase in affinity displayed by the chimera FcγRII-CD2 (IC₅₀ = 0.7×10⁻⁸ M; Figure 6B) compared with FcγRII was similar to that observed for FcγRI co-expressed with γ–chain and the chimera FcγRII-γ (Table II).

The affinity of a GPI-anchored version of FcγRI (FcγRII-GPI; Harrison et al., 1994b) was also measured using the

Table I. IC₅₀ values of human FcγRI, FcγRI-based chimeras and FcγRI co-expressed with γ–chain as measured by displacement assay. Data was calculated from four to eight experiments and is expressed as the average IC₅₀ ± standard deviation. Data from previous reports is shown for comparison purposes only.

<table>
<thead>
<tr>
<th>Clone expressed in COS cells</th>
<th>Ligand</th>
<th>IC₅₀ (×10⁻⁸ M)</th>
<th>Fold increase relative to FcγRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcγRI</td>
<td>hIgG1</td>
<td>1.8 ± 0.25</td>
<td>–</td>
</tr>
<tr>
<td>FcγRII</td>
<td>hIgG1</td>
<td>1.8 ± 0.25</td>
<td>–</td>
</tr>
<tr>
<td>IIEC1-IIEC2-IIEC3</td>
<td>hIgG1</td>
<td>2.8 ± 0.4</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Data from Allen and Seed (1989).

Mapping the IgSF domain recognized by the 10.1 monoclonal antibody: an important role for EC3 in the high affinity binding of monomeric IgG

Previous studies have shown that mAb 10.1 is able to block binding of human IgG3 and murine IgG2a to FcγRI, suggesting that it binds to an epitope of FcγRI at or near to the binding site for the Fc region of IgG (Dougherty et al., 1987). By FACS analysis, mAb 10.1 was shown to bind FcγRII and all three chimeras but, as expected, not FcγRII (Figure 4). Since the only IgSF domain shared between these chimeras is EC3, this data indicates that 10.1 binds to an epitope in this domain. Thus, it follows that EC3 of FcγRII constitutes part of, or is near to, the binding site for IgG.

Role of the γ–chain in FcγRI ligand binding affinity

To explore the possible role of the γ–chain in modulating the binding of IgG to FcγRI, the affinity of IgG binding was measured in COS cells expressing FcγRI, in the presence and absence of co-transfected γ–chain, using the displacement assay. The IC₅₀ for FcγRI expressed alone in COS cells was 1.8×10⁻⁸ M, whereas FcγRI co-expressed with γ–chain shows an increased affinity for IgG (IC₅₀ = 0.7×10⁻⁸ M; Figure 5A). We also measured the affinity of murine FcγRI expressed in COS cells for human IgG (IC₅₀ = 5.4×10⁻⁸ M; Figure 5B); this was slightly lower than that of hFcγRII. However, the affinity was similarly increased in cells where murine FcγRII was co-expressed with γ–chain (IC₅₀ = 1.9×10⁻⁸ M; Figure 5B). In both cases, for human (Table II) and murine FcγRII (Table III), the fold increase in affinity observed in cells co-expressing γ–chain was very similar.

The TM domain of FcγRII has a negative effect on the affinity of ligand binding

The mechanism by which γ–chain increases the affinity of FcγRII is unclear, but it does not bind ligand directly (data not shown). However, since FcγRI and γ–chain associate via their respective TM domains (Davis et al., 1995; Harrison et al., 1995), a conformational change may be induced upon this interaction to facilitate the extracellular domain recognition of ligand. To explore this possibility further, we measured the affinity of a chimeric receptor (FcγRII-γ) in which the TM and cytoplasmic domains of FcγRII were replaced by the equivalent domains of γ–chain (Hutchinson et al., 1995). This chimera showed an increased affinity for IgG (IC₅₀ = 0.8×10⁻⁸ M), relative to FcγRI (Figure 6A); this is a similar increase to that seen for FcγRI co-expressed with γ–chain. This suggests that replacement of the FcγRII TM domain with that of γ–chain may induce a similar conformational change as when FcγRII associates with γ–chain. To determine if this effect was γ–chain specific, a second FcγRII chimera (FcγRII-CD2) was constructed in which the TM and cytoplasmic domains of FcγRII were replaced by the equivalent domains of the adhesion molecule CD2. The increase in affinity displayed by the chimera FcγRII-CD2 (IC₅₀ = 0.7×10⁻⁸ M; Figure 6B) compared with FcγRII was similar to that observed for FcγRII co-expressed with γ–chain and the chimera FcγRII-γ (Table II).

The affinity of a GPI-anchored version of FcγRI (FcγRII-GPI; Harrison et al., 1994b) was also measured using the
Functional dissection of high affinity binding of FcγRI

Table III. IC₅₀ values of murine FcγRI in the presence and absence of γ chain as measured by displacement assay. Data was calculated from six independent experiments and is expressed as the average IC₅₀±standard deviation. Data from previous reports is shown for comparison purposes only:

<table>
<thead>
<tr>
<th>Clone expressed in COS cells</th>
<th>Ligand</th>
<th>IC₅₀ (×10⁻⁷) M</th>
<th>Fold increase relative to FcγRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>mFcγRI</td>
<td>hIgG1</td>
<td>5.4 ± 0.6</td>
<td>–</td>
</tr>
<tr>
<td>mFcγRI + γ-chain</td>
<td>hIgG1</td>
<td>1.9 ± 0.5</td>
<td>2.8</td>
</tr>
<tr>
<td>mFcγRI</td>
<td>mIgG2a</td>
<td>2.0³</td>
<td>–</td>
</tr>
<tr>
<td>mFcγRI (P388D1 cells)</td>
<td>mIgG2a</td>
<td>0.8²a,²b</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a Note: Kᵣ values from previous work has been expressed as K₄ to give a meaningful comparison to IC₅₀ values.

Table II. IC₅₀ values of human FcγRI-based chimeras as measured by displacement assay. Data was calculated from six to eight experiments and is expressed as the average IC₅₀±standard deviation.

<table>
<thead>
<tr>
<th>Clone expressed in COS cells</th>
<th>Ligand</th>
<th>IC₅₀ (×10⁻⁷) M</th>
<th>Fold increase relative to FcγRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcγRI</td>
<td>hIgG1</td>
<td>1.8 ± 0.25</td>
<td>–</td>
</tr>
<tr>
<td>FcγRI-GPI</td>
<td>hIgG1</td>
<td>0.7 ± 0.05</td>
<td>2.6</td>
</tr>
<tr>
<td>FcγRI-γ</td>
<td>hIgG1</td>
<td>0.8 ± 0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>FcγRI-CΔ2</td>
<td>hIgG1</td>
<td>0.7 ± 0.14</td>
<td>2.6</td>
</tr>
<tr>
<td>FcγRI + γ-chain</td>
<td>hIgG1</td>
<td>0.7 ± 0.05</td>
<td>2.6</td>
</tr>
<tr>
<td>FcγRI (U937 cells)</td>
<td>hIgG1</td>
<td>0.4 ± 0.5³</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Note: Kᵣ values from previous work was 1.9 ± 0.5 (Anderson and Abraham, 1980; Fries et al., 1982; Kurlander and Batker, 1982).

Data from previous reports is shown for comparison purposes only.

mFcγRI is attributable to the presence of EC3 (Allen and Seed, 1989; Sears et al., 1990). Indeed, removal of EC3 from murine FcγRI reduces its affinity (Hulett et al., 1991) and a naturally occurring splice variant of human FcγRI that lacks EC3 has been found to bind IgG with low affinity (Ernst et al., 1992; Porges et al., 1992). However, further studies have shown that the situation is more complex. Hulett et al. (1991) have shown that EC3 alone cannot confer upon a low affinity mouse Fc receptor the ability to bind IgG with high affinity. We have found that this is also the case for human Fc receptors. In fact, it turns out that both EC2 and EC3 of human FcγRI are required for high affinity IgG binding. Studies of FcγRII (Hulett et al., 1994), FcγRIII (Tamm et al., 1996) and FceRI (Hulett et al., 1994) have all implicated EC2 as the major contact domain of each receptor with its cognate immunoglobulin (for review see Raghavan and Bjorkman, 1997). Since EC2 of FcγRI has significant sequence similarity with EC2 from these other Fc receptors (see Table IV), it seems likely that EC2 of FcγRI also plays a direct role in ligand binding. In support of this we have identified two single amino acid substitutions which significantly reduce IgG binding in this domain (unpublished data), one of which lies in a highly conserved region of the Fcs (Arg175 to Gly180 in FcγRI). This region has previously been speculated to play a role in IgG binding by FcγRI (Sears et al., 1990; Symons and Clarkson, 1992) and overlaps with the major IgG binding site of FcγRII.

Fig. 5. Typical binding curves from displacement assay of FcγRs binding IgG. IC₅₀ values were calculated from binding curves. (A) Co-expression of human FcγRI with human γ-chain increases the affinity of the receptor 2.6-fold (FcγRI + γ-chain = 0.7×10⁻⁸ M). (B) Co-expression of murine FcγRI with human γ-chain increases the affinity of the receptor 2.8-fold (mFcγRI, IC₅₀ = 5.4×10⁻⁸ M; mFcγRI + γ-chain, IC₅₀ = 1.9×10⁻⁸ M). Results shown are mean of four experiments performed in duplicate.

Discussion

Analysis of the molecular basis of the interaction between Fc receptor and immunoglobulins has already revealed much about the biological and physiological functions of this family of cell surface receptors. However, the interactions between FcγRI and its ligand are still largely unexplored, and could lead to a better understanding of how the binding of monomeric IgG1 to the receptor leads to its dissociation from actin binding protein (Ohta et al., 1991), triggers receptor mediated endocytosis (Harrison et al., 1994a) and primes cells for superoxide release (Pfefferkorn et al., 1995).

It was originally predicted that the high affinity binding of FcγRI was attributable to the presence of EC3 (Allen and Seed, 1989; Sears et al., 1990). Indeed, removal of EC3 from murine FcγRI reduces its affinity (Hulett et al., 1991) and a naturally occurring splice variant of human FcγRI that lacks EC3 has been found to bind IgG with low affinity (Ernst et al., 1992; Porges et al., 1992). However, further studies have shown that the situation is more complex. Hulett et al. (1991) have shown that EC3 alone cannot confer upon a low affinity mouse Fc receptor the ability to bind IgG with high affinity. We have found that this is also the case for human Fc receptors. In fact, it turns out that both EC2 and EC3 of human FcγRI are required for high affinity IgG binding. Studies of FcγRII (Hulett et al., 1994), FcγRIII (Tamm et al., 1996) and FceRI (Hulett et al., 1994) have all implicated EC2 as the major contact domain of each receptor with its cognate immunoglobulin (for review see Raghavan and Bjorkman, 1997). Since EC2 of FcγRI has significant sequence similarity with EC2 from these other Fc receptors (see Table IV), it seems likely that EC2 of FcγRI also plays a direct role in ligand binding. In support of this we have identified two single amino acid substitutions which significantly reduce IgG binding in this domain (unpublished data), one of which lies in a highly conserved region of the FcRs (Arg175 to Gly180 in FcγRI). This region has previously been speculated to play a role in IgG binding by FcγRI (Sears et al., 1990; Symons and Clarkson, 1992) and overlaps with the major IgG binding site of FcγRII.
and a second IgE binding site of FcεRI (Hulett et al., 1994). Since EC2 of FcγRI almost certainly binds ligand directly, what then is the role for EC3? We have shown that 10.1, a monoclonal antibody previously shown to bind at or near the binding site for IgG (Dougherty et al., 1987), recognizes this third domain. However, this does not tell us whether EC3 binds ligand directly and/or plays a modulatory role in IgG binding (see below).

We have also shown that co-expression of either human or mouse FcεRI with their accessory molecule, γ-chain, increases the affinity of both receptors for human IgG1 by approximately threefold. Interestingly, the higher affinity of FcγRI when co-expressed with γ-chain in COS cells (relative to FcγRII expressed alone in COS cells) is remarkably similar to the affinity of FcεRI when endogenously expressed in macrophages and monocytes where the γ-chain is constitutively expressed and physically associates with FcεRI (Ernst et al., 1993). A similar enhancement in binding affinity for murine IgG2a has been shown to be conferred on both human and mouse FcγRII by co-expression of the γ-chain in COS cells (Miller et al., 1996). Recruitment of the γ-chain by FcγRI is necessary for the activation of tyrosine kinases such as syk following receptor aggregation to initiate intracellular signalling cascades (for review see Dae`ron, 1997). A corollary of the observation that an association with γ-chain is necessary for maximal FcγRII affinity for ligand means that receptor molecules that are ‘pre-coupled’ to the accessory, effector molecule will bind IgG more readily than the free receptor, thus facilitating the induction of signal transduction pathways involved in macromolecule activation. The finding that γ-chain can modulate the affinity of FcγRII for ligand contrasts with the situation observed for FcεRI, which also uses γ-chain as a signalling molecule (for review see Sutton and Gould, 1993), where it has been shown that only the α-chain is necessary for high affinity binding (Hakim et al., 1990). However, since FcεRI requires co-expression of γ-chain for surface expression (whereas FcγRII does not), these experiments were performed using a chimeric version of FcεRI in which its TM and cytoplasmic domains were replaced by the corresponding domains of the IL-2R (an unrelated type I membrane protein). Since this chimeric receptor had the same affinity as FcεRI co-expressed with γ-chain, it was proposed that γ-chain did not have an effect on binding (Hakim et al., 1990). However, in the light of our observation that FcγRII chimeras in which the TM domain is replaced have higher affinity than the wild type receptor, this interpretation needs to be treated with caution.

FcγRII interacts with γ-chain via its TM domain (Indik et al., 1994; Davis et al., 1995; Harrison et al., 1995; Harrison, 1996). In an attempt to understand the mechanism by which the association between γ-chain and FcγRI leads to an increased affinity for IgG, we measured the affinity of several additional FcγRII-chimeras. Surprisingly, when the TM domain (and

Table IV. Table of amino acid identity (shown in bold) and similarity between EC2 domains of FcγRII, FcγRII, FcγRIII and FcεRI. Values are calculated from the sequence alignment of Raghavan and Bjorkman (1997).

<table>
<thead>
<tr>
<th></th>
<th>FcγRI</th>
<th>FcγRII</th>
<th>FcγRIII</th>
<th>FcεRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>100%</td>
<td>65.9%</td>
<td>63.4%</td>
<td>65.9%</td>
</tr>
<tr>
<td>RII</td>
<td>41.5% (34/82)</td>
<td>61.0% (50/82)</td>
<td>53.7% (44/82)</td>
<td></td>
</tr>
<tr>
<td>RIII</td>
<td>40.2% (33/82)</td>
<td>46.3% (38/82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>42.7% (35/82)</td>
<td>34.1% (28/82)</td>
<td>42.7% (82/82)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Typical binding curves from displacement assay of FcγRs binding IgG. IC₅₀ values were calculated from binding curves from six to eight experiments. (A) The chimera FcγRI-γ binds IgG with higher an affinity 2.3-fold higher (IC₅₀ 0.8×10⁻⁹ M) than FcγRI. (B) The chimera FcγRII-C2D2 binds IgG with higher an affinity 2.6-fold higher (IC₅₀ 0.7×10⁻⁹ M) than FcγRII. (C) The chimera FcγRII-GPI binds IgG with higher an affinity 2.6-fold higher (IC₅₀ 0.8×10⁻⁹ M) than FcγRI. Results shown are mean of four experiments performed in duplicate.
cytoplasmic tail) of FcγRI were replaced by the TM domain (and cytoplasmic tail) of γ-chain, a similar increase in affinity for IgG, relative to wild type FcγRI, was observed. This effect was not specific to γ-chain, as an almost identical increase in affinity was seen when the TM domain (and cytoplasmic tail) of FcγRI was replaced by the TM domain (and cytoplasmic tail) of CD2. Taken together, these observations strongly suggest that the TM domain of FcγRI has a negative effect on the affinity of the receptor. What is the basis of the negative effect of the TM domain? One clue comes from the observation that a GPI-anchored version of FcγRI also increases the affinity for IgG by a factor of three. This is of particular interest, since the GPI-anchored version of FcγRIIa has a lower affinity than its counterpart that is co-expressed with γ-chain (van de Winkel and Capel, 1993; Miller et al., 1996). Since a GPI-anchored version of FcγRI has the same affinity as FcγRI co-expressed with γ-chain, but the GPI-anchored version of FcγRIIa has a significantly lower affinity than FcγRII co-expressed with γ-chain, this implies that there is a novel feature of FcγRI that explains this difference.

We propose the following model to account for the latter observation concerning the TM domain of FcγRI. Since sequences within the TM domain have a negative effect on cells for superoxide formation (Pfefferkorn et al., 1995), our model proposes that a 3-fold increase in affinity occurs thus apparently ruling out receptor dimerization. However, interaction of a single Fc is sufficient for high affinity binding, of FcγRI. To account for the observation that the GPI-anchored version of FcγRIIa could cause a re-orientation facilitating dimer formation, such that dimerization is not favoured, the presence of the TM domain of FcγRI is unique to FcγRI. This rational change is by dimerization of the receptor. Thus, if the TM domain of FcγRI was not specific to FcγRI gamma chain, Professor Nancy Hogg for the generous gift of the mAb 10.1. Thanks also to Dr Michael Young (Dept of Pharmacology, University of Cambridge) for valuable discussion on the preparation and interpretation of receptor binding studies. We would also like to acknowledge the excellent technical assistance of Terri McShane and Veronica Yu. This work was supported by grants from the Cunningham Trust and the Wellcome Trust.

Acknowledgements

We thank Dr Brian Seed for the cDNAs for FcγRI (p135) and FcγRIIa (PC23). Dr D.W.Sears for the cDNA of murine FcγRI (D13-2). Dr Jean-Pierre Kinet for the cDNA of the FcγRIIa gamma chain, Professor Nancy Hogg for the generous gift of the mAb 10.1. Thanks also to Dr Michael Young (Dept of Pharmacology, University of Cambridge) for valuable discussion on the preparation and interpretation of receptor binding studies. We would also like to acknowledge the excellent technical assistance of Terri McShane and Veronica Yu. This work was supported by grants from the Cunningham Trust and the Wellcome Trust.

References

Received July 28, 1997; revised December 4, 1997; accepted December 21, 1997.