Effect of Myopia on Frequency-Doubling Perimetry

Akira Ito, Hidebito Kawabata, Naoya Fujimoto, and Emiko Adachi-Usami

PURPOSE. To examine the effect of myopia, occasionally associated with glaucomatous eyes, on the results obtained by frequency-doubling perimetry (FDP).

METHODS. Sixty emmetropic or myopic normal volunteers (mean age, 26.2 ± 0.35 years, mean ± SEM; range, 19–34) with good visual acuity and without glaucoma were divided into three groups. The groups were emmetropia to low-myopia (mean refractive error, −1.16 ± 0.23 D), intermediate-myopia (−4.95 ± 0.17 D), and high-myopia (−8.12 ± 0.36 D; n = 20 each). All subjects were tested on the FDP full-threshold C-20 program and the Humphrey Field Analyzer (HFA; Humphrey, Dublin, CA) full-threshold program on one randomly selected eye. FDP and the HFA test were conducted with the subjects wearing their full distance correction and with their distance correction with appropriate additional correction for near, respectively. The calculated mean sensitivity (MS), mean deviation (MD), pattern standard deviation (PSD), and test durations for FDP and the HFA test for the three groups were compared using one-way analysis of variance. The relationship between the refractive error and MS, MD, or PSD was also analyzed by simple regression analysis.

RESULTS. The MS and MD for the fields determined by the HFA decreased significantly as the refractive errors increased, but there were no significant differences in the MS, MD, and PSD for FDP between the three groups. There were no significant differences in the test durations between the three groups for both FDP and HFA testing. The refractive error was correlated with both MS and MD only for the fields determined by the HFA.

CONCLUSIONS. The results showed that lens-corrected myopia does not alter the visual fields obtained by FDP, and FDP can therefore be used regardless of the presence of myopia. (Invest Ophthalmol Vis Sci. 2001;42:1107–1110)

The recent interest in frequency-doubling technology (Welch Allyn, Skaneateles Falls, NY) was applied to develop a commercial frequency-doubling perimeter (Humphrey Systems, Dublin, CA). This perimetric technique has been reported to detect early glaucomatous visual field loss.1–3 Systems, Dublin, CA). This perimetric technique has been reported to detect early glaucomatous visual field loss.1–3

From the Department of Ophthalmology, Chiba University School of Medicine, Japan.

Submitted for publication August 10, 2000; revised November 27, 2000; accepted December 8, 2000.

Commercial relationships policy: N.

Corresponding author: Akira Ito, Department of Ophthalmology, Chiba University School of Medicine, Inohana 1-8-1 Chuo-ku, Chiba 260-8670, Japan. itoua@ophthalm.m.chiba-u.ac.jp

Copyright © Association for Research in Vision and Ophthalmology

1107
The mean deviation (MD, a measure of the average departure of sensitivity at each test location from the age-corrected normal value), the pattern SD (PSD), a measure of the degree to which the shape of the measured field departed from the age-corrected normal reference field, and the test durations were obtained automatically from a printout from FDP and the HFA.

The significance of the differences in the MS, MD, PSD, and the test durations was analyzed for the three groups using a one-way analysis of variance (ANOVA). ANOVA with post hoc comparison using Fisher’s protected least-significant difference (PLSD) correction of probability was performed for multiple comparison (statistically significant level, \(P < 0.05 \)). In addition, the relationship between the refraction and the MS, MD, or PSD was analyzed with a simple regression analysis (statistically significant level, \(P < 0.05 \)).

RESULTS

Examples of typical visual fields obtained by FDP and the HFA test and displayed on a gray scale are shown in Figure 1 for each group. The fields for a subject in the emmetropia group (a 25-year-old woman with \(-0.25 \text{ D}\)) are shown in Figure 1A, and those for a subject in the intermediate-myopia group (a 28-year-old woman, \(-4.00 \text{ D}\)) in Figure 1B. The fields for a subject in the high-myopia group (25-year-old woman, \(-7.50 \text{ D}\)) are shown in Figure 1C. A comparison of the fields for the patients from the three groups showed that the fields were very similar when tested by FDP, but with HFA testing, the sensitivity decreased as the refractive errors increased.

Mean Sensitivity

The MS of the fields obtained by the HFA in the moderately myopic and highly myopic eyes were significantly lower than that of the emmetropic eyes (\(P < 0.005 \) and \(P < 0.001 \), respectively), but the MS for all groups determined by FDP did not differ significantly (Fig. 2A). In addition, the MS for HFA testing was weakly but still significantly correlated with the refractive error (\(R^2 = 0.20, P < 0.001; \) Fig. 2C). The MS for the fields obtained by FDP, on the contrary, were not correlated with the refractive error (Fig. 2B).

For the different eccentricities, the MS for the fields obtained by FDP did not differ significantly for all groups (Fig. 3A). However, the MS for the fields determined HFA results for the intermediate-myopia and high-myopia groups were significantly lower than for the emmetropic eyes for all eccentricities (\(P < 0.005; \) Fig. 3B). The MS for the fields obtained by FDP were not significantly different in the different quadrants for all groups (Fig. 3C). However, the MS for the fields determined HFA testing in the moderately myopic and highly myopic eyes were significantly lower than that of emmetropic eyes in all quadrants (\(P < 0.005 \) and \(P < 0.001 \), respectively; Fig. 3D).

Mean Derivation

The MD of the fields obtained by FDP were not significantly different for all groups, but the MD for HFA testing in the moderately myopic and highly myopic groups were significantly lower than the MD of the emmetropic group (\(P < 0.001 \) and \(P < 0.0001 \), respectively; Fig. 4A). The coefficient of correlation between the refraction and the MD was significant only in the HFA results (\(R^2 = 0.25; P < 0.001; \) Fig. 4C).

TABLE 1. Subjects

<table>
<thead>
<tr>
<th>Refraction(\text{a})</th>
<th>Number of Eyes(\text{b})</th>
<th>Age (y)</th>
<th>Test Duration(\text{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmetropia ((-3 \text{ D}))</td>
<td>(-1.16 \pm 0.23)</td>
<td>20 (12:8)</td>
<td>27.1 \pm 0.6</td>
</tr>
<tr>
<td>Intermediate myopia ((-3 \text{ D} \sim -6 \text{ D}))</td>
<td>(-4.59 \pm 0.17)</td>
<td>20 (8:12)</td>
<td>26.2 \pm 0.6</td>
</tr>
<tr>
<td>High myopia ((-6 \text{ D} \sim -12 \text{ D}))</td>
<td>(-8.12 \pm 0.36)</td>
<td>20 (10:10)</td>
<td>25.4 \pm 0.6</td>
</tr>
<tr>
<td>Total</td>
<td>(-4.62 \pm 0.40)</td>
<td>60 (30:30)</td>
<td>26.2 \pm 0.4</td>
</tr>
</tbody>
</table>

\(\text{a} \) Refraction is expressed as equivalent spherical power in mean diopters \(\pm \text{ SEM} \).

\(\text{b} \) One eye, chosen randomly, was used from each subject. Male:female ratio is in parentheses.

\(\text{c} \) The mean test durations required for completing the FDP and HFA tests did not differ significantly for all groups (\(P = 0.18-0.79, \) FDP; \(P = 0.28-0.85, \) HFA). Data are expressed as mean seconds \(\pm \text{ SEM} \).
Pattern Standard Deviation

The mean PSD for the fields determined by FDP and the HFA did not differ significantly for all groups (Fig. 4D). The coefficient of correlation between the refractive error and the PSD was not significant in either the FDP or the HFA results (Figs. 4E, 4F).

Test Durations

The mean test durations required for completing the FDP and HFA tests did not differ significantly for all groups ($P = 0.18$ to 0.79 for FDP; $P = 0.28$ to 0.85 for the HFA; Table 1).

DISCUSSION

Although blue-on-yellow perimetry with the HFA has been shown to detect early glaucomatous damage,\(^1\)\(^2\) it is also affected by myopia.\(^5\) Relevant to this study, even the HFA full-threshold program white-on-white perimetry has been shown to be affected by myopia\(^5\) as was found in this study. Thus, the effect of myopia must be taken into account when interpreting the fields obtained by the HFA.

FDP has been developed only recently, and, unfortunately, studies have not been reported on the effect of myopia on FDP. In this study, the MS, MD, and PSD of FDP were analyzed and were found not to differ significantly for the fields of the three different refractive error groups. Thus, FDP can be used regardless of the presence of myopia.

The user’s guide states that FDP may be performed with or without the patient’s correction for refractive errors of less than 7.00 D. Although a sinusoidal pattern stimulus is less affected by refractive defocus than a square-wave pattern stimulus, we corrected the refractive error for both FDP and the HFA to eliminate the effect of retinal blur on the sensitivity.\(^1\)\(^3\) In FDP, the size of the stimulus is a 10° square, whereas that for the HFA is a point of less than 1° of visual angle. Thus, the large size of the stimulus for FDP may be more easily seen than that in the HFA.

A fatigue effect in myopic eyes may be responsible for the poorer results of myopic eyes with conventional perimetry, but the two perimetric tests were performed on different days but within 1 month. We also analyzed the test duration on these two testing methods and determined that there was no significant difference in the test durations for both perimetric tests among the three different groups. Thus, we conclude that there was no fatigue effect on the myopic eyes.

The MS on differential light sensitivity (DLS) testing, such as that with the HFA, decreased with increasing myopia, indicating that the total deviations increase with higher levels of myopia. Because PSD remained unchanged, this indicates that the PSDs were not altered by myopia. It is interesting that there was a generalized, not localized, diffuse depression effect with increasing myopia on DLS testing. It should be noted, however, that we did not find a generalized diffuse depression effect on FDP results in this study.

In summary, there was no decrease in contrast MS, MD, and PSD in FDP in corrected myopic eyes. These results indicate that the effects of myopia up to -12.0 D can be ignored when using FDP.

Acknowledgment

The authors thank Duco Hamasaki for helpful comments and support in manuscript preparation.

References

