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The economic and social costs of pipe failures in water and wastewater systems are increasing,

putting pressure on utility managers to develop annual replacement plans for critical pipes that

balance investment with expected benefits in a risk-based management context. In addition to

the need for a strategy for solving such a multi-objective problem, analysts and water system

managers need reliable and robust failure models for assessing network performance.

In particular, they are interested in assessing a conduit’s propensity to fail and how to assign

criticality to an individual pipe segment. In this paper, pipe deterioration is modelled using

Evolutionary Polynomial Regression. This data-driven technique yields symbolic formulae that are

intuitive and easily understandable by practitioners. The case study involves a water quality zone

within a distribution system and entails the collection of historical data to develop network

performance indicators. Finally, an approach for incorporating such indicators into a decision

support system for pipe rehabilitation/replacement planning is introduced and articulated.

Key words | data-driven modelling, evolutionary polynomial regression, failure analysis,

performance indicators, water systems

ABBREVIATION AND NOTATION

Ap Pipe age

A, Aclass Equivalent age of the pipe class

A0,class Equivalent age of the pipe class at the end of

the monitoring period.

aj jth constant value in polynomial expressions

Brt Bursts recorded (total) for the pipe class

Brpi Bursts recorded for the i-th pipe

BR, BRclass Bursts predicted for the pipe class

BRi Burst predicted for the ith pipe

CoD Coefficient of determination

di Damage subsequent to failure of pipe i

Dp Pipe’s nominal diameter

D, Dclass Equivalent diameter of the pipe class

DSS Decision support system

EPR Evolutionary polynomial regression

ES Matrix of exponents of EPR input variables

f, g Functions selected by user in the EPR model

structure

h Planning horizon for burst predictions

L, Lclass Total length of the pipe class

Lp Pipe length

LS Least squares

m Number of polynomial terms of the

expressions returned by EPR

MOGA Multi-objective genetic algorithm

n Number of samples of observed data

N, Nclass Number of pipes in the pipe class

Pp Number of properties supplied

by a pipe

P, Pclass Number of properties (total) supplied by the

pipe class

t time variable

T monitoring time period

WQZ Water quality zone

SSE Sum of squared errors

Vpi,s Value of the sth aggregate variable selected in

the EPR model for pipe i
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Vclass,s Value of the sth aggregate variable selected in

the EPR model for class

Xk kth candidate input variable

Xi Number of input variables selected in the

ERP model

Y Vector of target values

ŷ Value returned by the model

yexp Observed value

a Exponent of variable A in the EPR model

g Exponent of variable L in the EPR model

d Exponent of variable D in the EPR model

r Exponent of variable P in the EPR model

m Exponent of variable N in the EPR model

lEPR
i Failure rate of pipe i according to EPR model

lR
i Failure rate of pipe i according to recorded

bursts

INTRODUCTION

Pipe bursts are a regular occurrence in water distribution

systems. Bursts commonly occur when the residual strength

of a deteriorated main becomes inadequate to resist the

force imparted on it (Skipworth et al. 2002). From a

terminology point of view pipe bursts are commonly referred

to also as breaks or failures and are linked to leaks when

losses in water distribution networks are analysed (Farley &

Trow 2003). The deterioration of pipes may be classified into

two categories (Kleiner & Rajani 2001): (1) structural

deterioration, which diminishes the pipe’s structural resi-

lience and its ability to withstand the various types of stresses

imposed upon it; (2) functional deterioration of inner

surface of the pipe resulting in diminished hydraulic

capacity and degradation of water quality.

The consequence of pipe failures is not only an

economic burden (repair and other costs), but it can also

have significant social (e.g. service interruptions, traffic

delays, etc.) and environmental (e.g. lost water and

energy) impacts. A number of research projects have

been recently undertaken with the goal of developing a

Decision Support System for optimal asset management

of water and wastewater systems (LeGauffre et al. 2002;

Skipworth et al. 2002; Savic et al. 2005). An integral

part of these projects is the selection of Performance

Indicators (PIs) and their integration into the decision-

making process (McDonald & Zhao 2001; Shepherd et al.

2004, Giustolisi et al. 2006a). IWA best practice manuals

(Alegre et al. 2000; Matos et al. 2003) are often taken as a

reference point for defining and selecting relevant PIs

which are typically derived by modelling hydraulic

behaviour and asset performance. Both types of models

are based on the analysis of existing water company data

related to physical infrastructure and on the historical

records of associated failure events.

It is worth saying that more often than not the research

efforts in introducing new and more sophisticated data

analysis techniques become futile as data are either not

available or scarce in terms of quality (e.g. because of poor

collection methodologies) and quantity (e.g. short recording

period). This evidence highlights a serious responsibility of

water companies and municipalities in maintaining ade-

quate data collection levels.

Among the different studies carried out on deriving

structural deterioration models, a preliminary distinction

has to be made between physically based approaches

and statistical methods (Kleiner & Rajani 2001).

The former aim at describing the physical mechanisms

underlying pipe failure and require data that is costly or

impossible to obtain. The latter can be applied with

variable input data quality and may be useful even when

only limited data is available. For water distribution

pipes, statistical models provide a cost-effective means of

analysis.

Water mains deterioration has traditionally been stu-

died as a steady monotonic process affected by time-varying

“noise” (Kleiner & Rajani 2002). Time-dependent factors

can be random, cyclical (i.e. environmental conditions) or

variable (i.e. operational factors), often resulting in a

masking effect of the underlying ageing patterns, especially

in small datasets. The effectiveness of analysing these factors

depends primarily on the accuracy of forecasting the time-

related phenomena (e.g. weather conditions) and on the

planning horizon adopted (i.e. short-term vs. long-term

rehabilitation).

Hitherto, the majority of statistical models developed

consider pipe age as the most important variable describing

the time dependence of pipe breakage. Exponential (Shamir

& Howard 1979; Walski & Pelliccia 1982) and time-powered

114 L. Berardi et al. | Development of pipe deterioration models Journal of Hydroinformatics | 10.2 | 2008

Downloaded from http://iwaponline.com/jh/article-pdf/10/2/113/386268/113.pdf
by guest
on 11 August 2022



models (Mavin 1996; Kleiner & Rajani 2001) have been used

to determine the optimal timing of pipe replacement, with

both approaches exhibiting comparable accuracy and

performance (Mavin 1996).

Two important observations made by a number of

researchers are: (1) age is not the only governing parameter

of pipe breaks (Walski & Pelliccia 1982; Clark et al. 1982;

Kettler & Goulter 1985) and (2) pipes often need to be

aggregated into homogeneous groups in order to conduct

more effective analysis (Shamir & Howard 1979; Lei &

Saegrov 1998; Kleiner & Rajani 1999).

In addition to age, pipe diameter was identified early on

as a key factor affecting pipe failure rates (Walski &

Pelliccia 1982; Clark et al. 1982). In particular, a strong

inverse correlation was found between pipe diameter and

failure rate (Kettler & Goulter 1985), with small diameter

pipes evincing higher breakage rates than their larger

counterparts.

The spatial and temporal clustering of pipe failures was

first done by Goulter & Kazemi (1988) and further

investigated by Jacobs & Karney (1994). The main outcomes

of the latter study were the definition of independent breaks

(i.e. failures that occur at least 90 d after, and more than

20m away from, the previous failure) and the observation

that these breaks are uniformly distributed along the length

of the water mains.

Studies examining metallic pipe behaviour (i.e. cast

iron, ductile iron, etc.) have been carried out to establish the

influence of pipe material on breakage rates (Kettler &

Goulter 1985; Kleiner & Rajani 2002). That performed on a

real network by Pelletier et al. (2003) revealed that a close

dependence exists among pipe material, diameter and the

year the pipe was laid.

The need for aggregating pipes into homogenous

classes results from the small number of failures usually

available for a given network, making development of a

statistical model for individual pipes difficult to accom-

plish. Shamir & Howard (1979) were the first to suggest

that data groups ought to be considered as homogeneous

with respect to the causes of failure. Pipe material,

diameter and age, with or without additional factors

such as soil types and/or land use above the pipes, have

been widely adopted as grouping criteria to emphasise

their influence on failure (Herz 1996; Lei & Saegrov 1998;

Le Gat & Eisenbeis 2000). Some pipe break models

include such indicator variables of aggregated pipes in

their formulations. This is the case for the proportional

hazard (Andreou et al. 1987a, b), the time-dependent

Poisson (Constantine et al. 1996) and the accelerated

Weibull hazard (Le Gat & Eisenbeis 2000) models.

Despite different underlying philosophies and variables

considered, all of these approaches aim at describing pipe

break rates with a unique expression in which all pipes

share the same explanatory variables.

It is worth noting that some authors (e.g. Le Gat &

Eisenbeis 2000) have included pipe length as an

additional explanatory variable and have made a distinc-

tion between pipes with no failures and those with a

failure history (Andreou et al. 1987a, b). Such a distinc-

tion is consistent with both statistical findings (Goulter &

Kazemi 1988) and the description of the life cycle of a

buried pipe, usually represented as a “bathtub”

curve (Andreou et al. 1987a, b; Kleiner & Rajani 2001;

Watson 2005).

Recently, Watson (2005) employed a hierarchical

Bayesian model that uses both information and engineer-

ing knowledge obtained from aggregated pipes when

deriving failure rate estimates for an individual pipe.

This is achieved by assuming that the underlying failure

rates for pipes with similar characteristics are drawn from

the same prior distribution. The influence of other factors,

such as pipe length, pressure, diameter, material, installa-

tion date, and soil type, is also incorporated into a

proportional intensity model. Such a probabilistic

approach allows for formal measurement of the uncer-

tainty of an individual pipe’s failure rate, even though it

requires the elicitation of expert knowledge.

In parallel with the statistical approaches mentioned

above, the complexity of water networks have led to the

recent employment of data mining techniques (Fayyad

et al. 1996) to discover patterns in pipe failures data sets

(Bessler et al. 2002; Babovic et al. 2002). In particular, a

novel hybrid data-driven technique, Evolutionary Poly-

nomial Regression (EPR) (Giustolisi & Savic 2006), has

been used for modelling failures in urban water

systems (Berardi et al. 2005; Savic et al. 2006). The

main advantages of models returned by EPR are their

parsimony, the possibility of testing their physical
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consistency and an intuitive way for including engineering

judgement into the process of model construction and

selection. Moreover, EPR aggregate models are usually

accurate in describing failure occurrence in homogeneous

pipe groups. All these features and the encouraging results

obtained previously make EPR preferable over other

modelling techniques purely based on either regressive

algorithms or probabilistic approaches.

This paper describes the analysis of an asset database

containing an inventory of all pipes and related bursts for

a UK water distribution system. In the case study

presented, information on pipe diameter, material, length,

year laid, number of properties supplied and the total

number of burst events recorded are available at the

individual pipe level. A data organization scheme that puts

data into homogeneous classes useful for the subsequent

modelling phase is presented first. The application of EPR

is demonstrated next and an aggregate mathematical

model for pipe burst prediction is developed. A method-

ology to derive individual pipe structural deterioration

models from aggregate EPR models is also introduced.

Finally, the use of such a model in a decision-making

context is outlined.

EVOLUTIONARY POLYNOMIAL REGRESSION (EPR)

In this section, a brief description of EPR methodology

and features is presented (further mathematical details

about EPR can be found in Giustolisi & Savic (2006)

and the EPR website (see reference list)). EPR belongs to

the family of Genetic Programming strategies (Koza 1992)

and, according to the categorization of modelling

techniques based on transparency level (Ljung 1999;

Giustolisi 2004; Giustolisi & Savic 2006), it may be

classified as a grey box technique. Accordingly,

the approach is based on observed field data while also

permitting the introduction of prior insight into the

system or problem at hand. Moreover, the math-

ematical structures it returns are symbolic and usually

parsimonious.

The EPR methodology offers two main stages: (1)

search for the best model structure using an integer-coded

MOGA (Multi-Objective Genetic Algorithm) (Giustolisi

et al. 2006b) and (2) parameter estimation for an assumed

model structure using the least squares (LS) method

(Draper & Smith 1998). When performing the search for a

best model structure, a generalized true and/or pseudo-

polynomial model structure is assumed. The following

general model structures are considered (Giustolisi &

Savic 2006):

case 0 : Y ¼a0 þ
Xm
j¼1

aj·ðX1Þ
ESð j;1Þ·…·ðXkÞ

ESð j;kÞ

·f ðX1Þ
ESð j;kþ1Þ

� �
·…· f ðXkÞ

ESð j;2kÞ
� �

case 1 : Y ¼ a0 þ
Xm
j¼1

aj · f ðX1Þ
ESð j;1Þ ·…· ðXkÞ

ESð j;kÞ
� �

ð1Þ

case 2 : Y ¼a0 þ
Xm
j¼1

aj · ðX1Þ
ESð j;1Þ·…· ðXkÞ

ESð j;kÞ

· f ðX1Þ
ESð j;kþ1Þ·…· ðXkÞ

ESð j;2kÞ
� �

case 3 : Y ¼ g a0 þ
Xm
j¼1

aj · ðX1Þ
ESð j;1Þ ·…· ðXkÞ

ESð j;kÞ

0
@

1
A

where Xk is the kth explanatory variable, ES is the matrix of

unknown exponents (coded as integers in the MOGA,

representing ordinal numbers of optional exponent values,

as defined by the user), f and g are functions selected by the

user, aj are unknown polynomial coefficients (i.e. model

parameters) and m is the number of polynomial terms (in

addition to the bias term a0).

Note that the last model structure shown in Equation

(1) (i.e. case 3) requires the assumption of an invertible g

function because of the subsequent parameter estimation.

The set of exponents defined by the user is discrete and

should contain zero value. This way, when the exponent

ES( j,k) becomes equal to zero, the value of the kth input

variable Xk in the jth polynomial term is set equal to 1 and

that variable is deselected from the model structure. From a

statistical point of view this means that variable Xk is not

significant enough to be considered in describing the

phenomenon analysed.

The LS method used here (Giustolisi & Savic 2006)

provides a two-way correspondence between the model

structure and its parameter values. In addition to the

unconstrained LS search, the user can force the LS to
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search for model structures that contain only positive

parameter values (aj . 0) (Lawson & Hanson 1974). This

was done since in the modelling of large systems there is a

high probability that negative constant value(s) (aj , 0)

is/are selected to balance the particular realization of errors

related to the finite training data set (Giustolisi et al. 2007).

Finally, note that EPR employs a multi-objective search

strategy to determine all models that correspond to the

optimal trade-off between model parsimony and fitness

(Giustolisi et al. 2006b). Therefore, a single EPR run returns

a number of mathematical models (i.e. formulae), each

representing a point on the Pareto optimal (accuracy vs.

parsimony trade-off) curve of possible models (Pareto 1896).

A model fit to the observed data is evaluated using the

Coefficient of Determination (CoD) as follows:

CoD ¼ 12
n

P
ð ŷ 2 yexpÞ

2

n

P
ð yexp 2 avgð yexpÞÞ

2

¼ 12
n

n

P
ð yexp 2 avgð yexpÞÞ

2
· SSE ð2Þ

where n is the number of samples, ŷ is the value predicted

by the model and avg( yexp) is the average value of the

corresponding observations (evaluated on the n samples).

Note from Equation (2) that the values of CoD and SSE

(sum of squared errors) are strictly correlated, belonging to

the same membership of cost functions (Ljung 1999).

Model parsimony is estimated by looking at both the

number of polynomial terms and/or the number of input

(i.e. explanatory) variables present in the selected model

(Giustolisi & Savic 2006). The latest version of the EPR

software and methodology allows for the selection of

one or both parsimony criteria by performing a two- or

three-objective optimization while searching for models

(Giustolisi et al. 2006b).

CASE STUDY

The data in this case study were available at the pipe level for

the period 1986–1999 and contain both asset information

and recorded bursts. The database used here refers to one of

the 48 water quality zones (WQZ) within a UK water

distribution system. For each individual pipe, the database

contains information on pipe diameter, material, year laid,

length, number of properties supplied and the total number

of bursts recorded during the 14-year monitoring period.

Basic statistics of this data are shown in Table 1.

Unfortunately, neither of the criteria adopted for designing

this water quality zone nor the network map were available

for this study. Furthermore, only the total number of bursts

is known (i.e. the timing of each burst is unknown). Lack of

the above information prevents verification of the potential

existence of spatial and temporal clusters in the burst data.

Table 1 shows that, as in the majority of water

distribution systems, the number of bursts recorded during

the monitoring period corresponds to less than 10% of the

total number of pipes. Furthermore, several pipes failed

more than once over the same time period.

It could be argued that, when only failed pipes are

considered for developing a statistical model, pertinent

results should be referred to as “burst models” since they

aim at discovering the causes of failure based on collected

information. On the other hand, a “performance indicator”

(PI), as it is meant herein, should represent the propensity

to fail for all pipes in the network. Such a PI could

eventually be used for developing a structural deterioration

model to assess individual pipe criticality to be considered

for decision-making. Therefore, both pipes with and with-

out recorded bursts (Giustolisi & Savic 2004) have been

considered here.

As mentioned in the introduction, previous pipe failure

models in the literature associated the same pipe burst rate

with pipes with similar attributes (e.g. material, size, age,

etc.). Following that, and based on the preliminary analyses,

the pipes considered here have been classified using pipe

diameter and age.

Table 1 | WQZ available pipe features

Features Values

Year the pipe was laid From 1910 to 1999

Diameter From 32mm to 250mm

Length Total 172 984m

Supplied properties Total 19 494

Number of pipes 3669

Number of bursts 354
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Because the statistical approach is economically viable

for modelling failure in small pipes, only pipes with a

nominal diameter of up to 250mm have been selected for

the analysis. Chosen pipes have been grouped into 10

diameter classes, with similar classification used to fill-in

some existing data gaps. In fact, the completeness of

individual records was variable, with numerous missing

entries for the year the pipes were laid. In order to fill

in these gaps, the correlation often assumed between

pipe material and burial year (Pelletier et al. 2003) was

employed. Thus, within each diameter class, the mean

burial year of pipes made of the same material has been

used to complete missing data. Once the data reconstruc-

tion was completed, pipes were further grouped into

one-year-wide age classes.

Only four fields describing pipe features have been

considered for modelling. These are age (Ap), diameter

(Dp), length (Lp) and number of properties (Pp) supplied, all

available at the pipe level. For each diameter–age class, the

total number of recorded burst events (Brt), the sum of pipe

lengths (L), the sum of properties supplied (P) and the total

number of pipes in the class (N) have been computed.

Furthermore, to define a significant value of age and

diameter for each class, the length weighted mean of

relevant variables was computed as shown in Equation

(3). The values computed are the equivalent age (A) and the

equivalent diameter (D):

Aclass ¼
class

P
ðLp · ApÞ

Lclass
; Dclass ¼

class

P
ðLp · DpÞ

Lclass
ð3Þ

Note that subscript class emphasizes that summation

refers to all pipes belonging to the same class. The

aforementioned grouping results in a schematization of

the network into fictitious pipes whose features are

summarized in Figure 1.

The example reported in Table 2 shows in more details

the entire grouping procedure starting from a sample

dataset. All the information shown in Table 2 is at the

pipe level. The six fields report the attributes collected

for each pipe: (1) Pipe ID–pipe identifier; (2) Brp–number

of pipe bursts recorded during the monitoring period; (3)

Ap–pipe age (yr); (4) Pp–number of properties supplied;

(5) Lp–pipe length (m) and (6) Dp–pipe nominal diameter

(mm). Table 3 reports the same data after the classification

using the age and diameter as grouping criteria; diameter

classes refer to 63, 75–90 and 100 mm.

In summary, the model under consideration is geared

to identifying the functional relationships between five

possible model inputs (A, D, L, N and P) and one model

output (BR).

DISCUSSION OF DATA AGGREGATION

Since data aggregation plays a significant role in the

development of pipe failure models, the following discus-

sion examines some of the important issues, such as the

choice of pipe age as grouping criterion and the choice of

the equivalent attributes for a pipe class.

A classification based on age allows for indirect con-

sideration of time-varying solicitations on pipes. Although it

is impossible to explicitly state the relationship between all

solicitation factors and pipe age, engineering knowledge of

breakage mechanisms suggests that stress effects (like those

that are chemical ormechanical due to soil conditions, traffic

loads, variations in service pressure over time, etc.) increase

as the duration of solicitation increases. In the case study

reportedherein, the choice of one year for age classification is

due to the following reasons: (i) it averages the influence of

time-dependent factors over a year and (ii) it allows for

Figure 1 | Features of fictitious pipes representing diameter-age class.
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detailed analysis of the problem based on data updated

annually by water utilities.

Once aggregation criteria have been selected (e.g. pipe

diameter and age), relevant aggregate variables (i.e. equival-

ent attributes) can be computed as a sum, mean or length-

weighted mean (e.g. as for A and D) over each class. Class

variables computed as a sum (e.g. L, P and N) are all implicit

functions of the classification scheme adopted and their

values change if a different aggregation criterion is selected.

In particular, the overall class length L has a statistical

meaning since it encompasses all other time-related factors

that are either unrecorded or unavailable for the same class.

For example, the longer the pipe class, the more variable the

traffic loads, operational stresses (i.e. pressure/discharge

variations) and bedding conditions. Although it is impossible

to formulate amathematical expressionof sucha relationship

without additional information, it is known from the

literature that pipe length directly affects the probability of

breaks (Jacobs & Karney 1994).

The choice among rationales for computing equivalent

attributes reported above (i.e. sum, mean, length-weighted

mean) should be consistent with the main schematization

of classes as “fictitious” pipes (Figure 1) and with the

remaining class variables. For instance, if the length of each

class has been computed as a sum over all pipes, the traffic

load of the same class, if available, should be computed by

summing traffic loads for all pipes as well. Analogously, if

information about the pressure regime is available at pipe

level, the class pressure should be represented by the length-

weighted mean rather than by the arithmetic average of pipe

pressures, since the pressure regime affects the entire extent

of a pipe. A consistent definition of aggregate variables is

advisable in order to have EPR models with a physical

meaning.

EPR SETTINGS

To discover a symbolic relationship between the pipe bursts

and grouped pipe attributes, the Case 2 model structure

shown in Equation (1) has been used here with function

f selected as natural logarithm (Giustolisi & Savic 2006):

Y ¼
Xm
j¼1

aj · ðX1Þ
ESð j;1Þ·…·ðXkÞ

ESð j;kÞ

· ln ðX1Þ
ESð j;kþ1Þ·…·ðXkÞ

ESð j;2kÞ
� � ð4Þ

where the input variables are: D, A, P, L and N. The

following candidate exponents were considered: [22, 21.5,

21, 20.5, 0, 0.5, 1, 1.5, 2]. The model size m (i.e. the

number of polynomial terms) was limited to three terms and

the bias term was assumed equal to zero. Finally, the LS

parameter estimation was constrained to search for positive

polynomial coefficient values only (aj . 0).

The absolute values of candidate exponents were

chosen to potentially describe linear, square or even half-

power functions, while their positive and negative signs

allow for the representation of direct and inverse relation-

ships between inputs and the output.

The natural logarithm was selected for a possible

functional transformation f to test if the relationships

between input variables and the output could benefit from

using two different scales in a single equation (Savic et al.

2006). The results have subsequently shown that, in the

most meaningful models (from the engineering point of

view), the natural logarithm in Equation (4) had not been

selected as all the exponents were found to be zero.

Table 2 | Example data

Pipe ID Brp Ap(yr) Pp Lp (m) Dp (mm)

ID 1 1 30 0 10 63

ID 2 3 30 2 55 63

ID 3 0 30 3 35 63

ID 4 0 40 4 10 75

ID 5 5 40 1 55 75

ID 6 2 40 1 5 90

ID 7 2 25 0 10 100

ID 8 3 25 1 35 100

ID 9 4 25 1 15 100

Table 3 | Data grouped by age (A) and diameter (D)

Class Brt A (yr) P L (m) D (mm) N

1 4 30 5 100 63 3

2 7 40 6 70 76 3

3 9 25 2 60 100 3
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MODEL SELECTION

Once applied, the (single) EPR run returned a set of burst

prediction models as a Pareto set, trading off model

parsimony with a fit to the observed data. Table 4 lists the

one- and two-term models obtained, while Figures 2 and 3

show these models as points in the objective space. More

precisely, Figures 2 and 3 represent the projections of the

overall Pareto front on the corresponding objective planes.

The plane in Figure 2 is defined by the objectives

representing the number of polynomial terms (i.e. number

of aj) and model fit. The plane in Figure 3 is defined by the

objectives representing the number of model input variables

Xi and model fit to the observed data. Note that in both

figures model fit is calculated as 1-CoD to draw a Pareto

front corresponding to a minimization problem.

All models shown in Table 4 clearly demonstrate that

burst occurrence depends only on the following three (out

of five) candidate input variables: the equivalent pipe class

age A, the equivalent pipe class diameter D and the total

pipe class length L. The inverse dependence between

diameter and burst occurrence is confirmed by all models

as well as is the direct dependence on the class length and

equivalent age. Note that only the first two models do not

have all three significant input variables. In particular,

the first model shows that the number of connections

P describes about 55% of burst variation among classes,

while the second one reports a significant improvement in

terms of CoD when L and D are considered only. It is

evident that the selection of variable A further improves

model performance. Introducing other variables or even a

second polynomial term does not improve significantly the

model fit. Bearing in mind the above discussion and

incorporating engineering insight into the problem, the

following model is selected:

BR ¼ 0:084904 ·
A · L

D1:5
ð5Þ

Units are yr, m and mm for variables A, L and D,

respectively. The above model fits the observed data with

CoD ¼ 0.822 and is represented in Figure 4. Note that the

selected model is located near the inflection point on Pareto

fronts shown in Figures 2 and 3 (indicated by an arrow),

implying that this model ensures substantial improvement in

the model fit with only little increase in model complexity.

The chosen model highlights that, for the analysed

water distribution system, pipe age and diameter are

important, but so too is pipe length. This confirms previous

findings in most of the literature on the subject, as discussed

in the introduction section. In particular, the linear

relationship between the number of pipe bursts and pipe

age should be ascribed to the fact that the system is

Table 4 | Formulae retuned by EPR

EPR formula CoD No. of aj No. of Xh

BR ¼ 2:7832 £ 1025:P2 0.550 1 1

BR ¼ 0:045514ðL1:5=D1:5Þ 0.704 1 2

BR ¼ 0:084904ðAL=D1:5Þ 0.822 1 3

BR ¼ 1:1895 £ 1025 ·P2 þ 0:012065ðA2L=D2Þ 0.842 2 4

BR ¼ 0:019882ðAL=D1:5ÞlnðL0:5Þ 0.822 1 4

BR ¼ 0:00013397ðP2=D0:5Þ þ 0:011772ðA2L=D2Þ 0.842 2 5

BR ¼ 0:013684ðAL=D1:5ÞlnðA0:5L0:5Þ 0.838 1 5

BR ¼ 1:0049 £ 1025P2 þ 0:0083887ðA1:5L=D2ÞlnðL2=PÞ 0.857 2 6

BR ¼ 0:02184ðAL=D1:5ÞlnðA0:5L0:5=D0:5Þ 0.827 1 6

BR ¼ 5:3118 £ 1026P2lnðA0:5Þ þ 0:0083637�ðA1:5L=D2ÞlnðL2=PÞ 0.854 2 7

BR ¼ 0:0037636ðP1:5=D0:5Þ þ 0:0010914ðA2L=D2ÞlnðL1:5N=PÞ 0.854 2 8

BR ¼ 0:002062ðP1:5=D0:5ÞlnðA0:5Þ þ 0:0010745ðA2L=D2ÞlnðL1:5N=PÞ 0.862 2 9

BR ¼ 0:00060897ðA0:5P1:5=D0:5Þ þ 0:0013296ðA2L=D2ÞlnðL1:5N=PD0:5Þ 0.861 2 10

BR ¼ 0:00063284ðA0:5P1:5=D0:5Þ þ 0:0013552ðA2L=D2ÞlnðA0:5L1:5N=PDÞ 0.859 2 11
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(on average) experiencing a wear-out phase on the so-called

bathtub curve (Andreou et al. 1987a, b; Kleiner & Rajani

2001; Watson 2005). As reported previously (Kettler &

Goulter 1985; Zhao 1998), pipe diameter plays an important

role too, indicating that smaller diameter pipes are more

prone to failing under excessive external stresses than larger

ones. This behaviour could be due to numerous reasons

including pipe manufacturing issues and/or typically low

quality of workmanship involved when installing small

diameter pipes. Equation (5) confirms that the longer is the

class (i.e. individual pipe) the higher is the number of bursts

(Jacobs & Karney 1994). It is noteworthy that the linear

relation between pipe length and number of bursts is a

result of EPR analysis rather than a hypothesis.

DERIVING PERFORMANCE INDICATORS USING EPR

The IWAManual of Best Practice on Performance Indicators

for Water Supply Services (Alegre et al. 2000) describes a

performance indicator as a quantitative measure of a

particularaspectof the undertaking’s performance or standard

of service assisting in the monitoring and evaluation of the

efficiency and effectiveness of the undertakings thus simplify-

ing an otherwise complex evaluation. Among the rationales

suggested for establishing whether a certain quantity can be

considered as a Performance Indicator are the following

criteria: (1) to be easy to understand even by non-specialists;

(2) to be applicable to undertakings with different character-

istics and stages of development and (3) to be as few as

possible, avoiding the inclusion of non-essential aspects.

The number of pipe failures as a performance indicator

has been included in the above manual as the number of

failures per 100 km of pipeline per year. The case study

reported here shows how the EPR modelling technique

provides a tool that can formulate such an indicator as a

function of the simplest asset features of the system

(i.e. length, diameter and age). The entire methodology

from the raw data analysis to the model shown in Equation

(5) satisfies each of the above criteria, thus indicating that

EPR can be used for analysing performance indicators for

water systems. The main reasons for this are as follows:

1. The data manipulation is simple and the search for the

pipe burst model is basically described as the best

combination of input variables’ exponents.

2. The whole methodology could be applied to under-

takings with different characteristics (e.g. age, pipe

material composition, pressure regime, etc.). In fact, the

user could select the same temporal bounds and the

same classification criteria for data belonging to different

systems. The resulting models, expressed in a compact

form like that in Equation (5), could be used for both

assessing the number of pipe failures and for finding the

most influential variables among those selected as inputs.

Furthermore, the model obtained for a given system

could be valid for similar systems, apart from the

scaling factor (i.e. first constant of the formula). This is

due to the fact that EPR formulae are symbolic and that

the search method explicitly avoids over-fitting the

data, thus allowing the description of the physical

phenomenon (Berardi & Kapelan 2006). Moreover, the

EPR methodology can be used on datasets correspond-

ing to either the entire system or some subsystems

(Berardi et al. 2005).

Figure 2 | Projection of Pareto front of models on the plane: Fitness–Number of

terms.

Figure 3 | Projection of Pareto front of models on the plane: Fitness–Number of

selected inputs.
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3. Both the pre-processing and the modelling phases are

aimed at avoiding inclusion of non-essential aspects of the

phenomenon modelled. In particular, during the pre-

processing phase (i.e. data classification and input selec-

tion) the user is allowed to choose between available input

variables. During the modelling phase, EPR employs a

multi-objective search that is able to deselect (i.e. by

assigning an exponent equal to zero) those input variables

which are not required to describe the phenomenon

analyzed. Moreover, each of the expressions returned by

the EPR is evaluated in terms of its CoD, thus making the

user aware of the reliability of information obtained.

PIPE DETERIORATION MODELS BASED DECISION

SUPPORT

A DSS for water distribution pipe rehabilitation/replace-

ment should include the assessment of pipe criticality in

terms of its failure risk, where the risk is defined as the

product of pipe failure likelihood/frequency (e.g. number of

predicted bursts per unit time) and the expected damage

due to failure (i.e. pipe burst). The damage term should take

into account both direct (i.e. repair) and indirect (environ-

mental, social and third party) costs. In particular, the

introduction of some “damage multiplier” (Walski &

Pelliccia 1982) or “cost factors” (Dandy & Engelhardt

2006) could explicitly account for additional information

such as network connectivity or land use.

The number of bursts should normally be assessed for

each single pipe over a given time horizon. As the EPR

models reported here are aggregated, they cannot be used

directly for assessing burst rate at the individual pipe level.

Previous research on EPR modelling (Berardi et al. 2005;

Giustolisi et al. 2006a) reports pipe length as the main

criterion for assessing individual pipe burst rate. In more

general terms, all aggregated variables found in an EPR

model should be considered. Given an observation period T,

the burst rate lEPR
i for pipe i belonging to a given class can be

calculated as follows:

lEPR
i ¼

BRclass

T
·

s

P Vpi;s

Vclass;s

class

P
s

P Vpi;s

Vclass;s

ð6Þ

where s is the index of the sth aggregate variable V selected in

the EPR model, subscripts i and class emphasize that such a

variable refers to either the ith pipe or the entire class the pipe

belongs to. In the case of model (5), the aggregate variables

considered are L, P and N, all computed by summation, but

only class length L has been selected in the EPR model. Thus

Equation (6) can be written as follows:

lEPR
i ¼

BRclass

T
·

Lpi

Lclass

class

P Lpi

Lclass

¼
BRclass

T
·

Lpi

class

P
Lpi

¼
BRclass

T
·

Lpi

Lclass
ð7Þ

where Lpi is the length of pipe i.

It is worth mentioning that lEPR
i represents the burst

rate (bursts per year) of pipe i due to its membership to the

class and does not take into account its individual burst

history. Nonetheless, information about individual pipe

Figure 4 | Fitting for burst distribution model.
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burst history is of great relevance for establishing an

individual pipe’s propensity to fail, especially for supporting

rehabilitation or replacement decisions.

Information on individual pipe history can be quanti-

fied as the ratio between the number of burst events

experienced by pipe i and the relevant observation period T:

lR
i ¼

Brpi

T
ð8Þ

Without any additional information, such a “recorded”

burst rate lR
i can be assumed constant over the observation

period T and equal to 0 for all those pipes which did not

experience any burst during the same interval.

In order to account for individual burst history a general

structural deterioration model based on the EPR aggregate

model is developed here.

It can be argued that burst rate lEPR
i ((6) and (7))

depends on time since BRclass itself is a function of age

variable A. Thus, after t years from the end of the

observation period, lEPR
i should be calculated as follows:

lEPR
i ðtÞ¼

BRclass¼a1 · Dd
class ·L

g

class ·P
r

class ·N
m

class · ðA0;classþtÞa
h in o

T
·

Lpi

Lclass

ð9Þ

where d, g, r, m and a represent the exponents selected in

the EPR model for variables D, L, P, N and A,

respectively. The exponent a in Equation (9) can assume

both positive and negative values depending on the model

structure returned by EPR. The value of a can be linked

to a particular deterioration phase of the system, as

shown in Figure 5. In the case of model (5), Equation (9)

becomes as follows:

lEPR
i ðtÞ¼

1

T
·a1

LclassðA0;classþtÞ

D1:5
class

·
Lpi

Lclass
¼

a1

T
·
LpiðA0;classþtÞ

D1:5
class

ð10Þ

where a1 denotes the corresponding EPR model coeffi-

cient (e.g. a1 ¼ 0.084904 in the case study reported here)

and A0,class is the equivalent age of the class when t ¼ 0

(i.e. at the end of the monitoring period).

It is worth noting that, in this case, the dependence on

time t can be expressed explicitly for variable A only (i.e.

A ¼ A0 þ t), while the other variables are assumed to be

constant over time. However, if other time-dependent

variables (e.g. traffic load, soil moisture and so on) were

available and selected by EPR, they could be included into

the analyses by incorporating relevant functional relations

into Equations (9) and (10). This way, such a formulation

allows for describing pipe ageing by including other

variables, even different from age A.

The model in Equation (9) and (10) could be potentially

used for all pipes in the network. Nevertheless, the

behaviour of a pipe which experienced one or more burst

events during the observation period T can be described

better by its own observed burst rate lR
i (8). The observed

failure rate lR
i for pipe i can be written as follows:

lR
i ðtÞ ¼

Brpi

T

¼
ai · Dd

class ·L
g

class ·P
r

class ·N
m

class · ðA0;class þ tÞa
h i

T
·

Lpi

Lclass

ð11Þ

where coefficient ai is computed at planning time t ¼ 0 as in

Equation (12):

ai ¼
Brpi

Dd
class ·L

g

class ·P
r

class ·N
m

class ·A
a
0;class

·
Lclass

Lpi
ð12Þ

Obviously, different coefficients are computed for all

failed pipes even if they belong to the same class. Both

coefficients a1 and ai are expressed using the same units,

which depend on the main EPR model structure. In the

case reported in Equation (5), they are expressed in terms of

mm21.5 m21 yr21.

In summary, given the pipe i belonging to a particular

class, its failure rate can be calculated as follows:

liðtÞ¼

a1 · Dd
class ·L

g

class
·Pr

class
·Nm

class
·ðA0;classþtÞa

� �
T · Lpi

Lclass
if Brpi¼0

ai · Dd
class ·L

g

class
·Pr

class
·Nm

class
·ðA0;classþtÞa

� �
T · Lpi

Lclass
if Brpi.0

8>><
>>:

ð13Þ

Figure 5 | Bathtub curve.
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This means that the predicted number of bursts for

individual pipes is obtained by combining model structure

and coefficient estimation. The information about the

individual pipe burst history is used to improve the accuracy

of the predicted burst rate while employing the same

deterioration model structure as that returned by EPR. In

the case of pipes without a documented burst history the

model coefficient is assumed to be the same as that returned

by EPR (i.e. a1), whereas, for pipes which experienced burst

events during the monitoring period, model coefficient ai is

computed from their own burst history.

In the case of the water distribution network reported

here, Equation (13) becomes

liðtÞ ¼

a1

T · LpiðA0;classþtÞ

D1:5
class

if Brpi ¼ 0

ai

T · LpiðA0;classþtÞ

D1:5
class

if Brpi . 0

8>><
>>:

ð14Þ

where coefficient ai for failed pipes is computed as follows:

ai ¼ Brpi·
Dclass

1:5

A0;class
·
1

Lpi
ð15Þ

Formulation (13) of the failure rate is used to predict the

individual number of bursts (BRi) in a given planning

horizon h as in Equation (16):

BRi ¼
ðh

0
liðtÞ ·dt ð16Þ

Once the number of bursts predicted, BRi, has been

computed for all pipes, it can be used with damage di

caused by a single burst event to calculate the risk of burst.

A decision support methodology can then be employed to

select those pipes with the highest risk value Ri:

Ri ¼ di ·BRi ð17Þ

The methodology presented above leads to the over-

estimation of the number of bursts for those pipes without a

failure history, as the best prediction for them is zero burst at

t ¼ 0. In order to overcome this drawback, additional

information on individual pipe burst history could be

introduced into the decision support system. This way, the

decision support problem is defined as a multi-objective

optimization problem (Giustolisi et al. 2006a) by using the

following three objectives:minimize the cost of interventions

(e.g. pipe replacement or refurbishment) whilst maximizing

(for selected pipes) the risk functions based on both future

burst prediction and individual failure history.

Finally, it is worth remarking that the calculation of a

burst rate as in Equations (9) and (13) deals mainly with

small pipes that the EPR model has been developed for. In

the case of large size pipes consequences of failure are large

enough to justify careful inspection and the development of

physically based models (Kleiner & Rajani 2001). Having

said this, as in the case of small size pipes, the risk of large

size pipes (e.g. trunk mains) failures can also be estimated

(by quantifying the corresponding failure probabilities and

the associated damages) and used in the DSS.

CONCLUSIONS

An application of a new data mining technique for failure

prediction in water distribution systems is described in this

paper. The technique, called Evolutionary Polynomial

Regression (EPR), produces symbolic expressions that are

essentially explicit mathematical models for pipe burst

predictions originating in data-driven analysis. Unlike

other data mining techniques, EPR produced simple and

understandable relationships/models that provide a high

level of statistical correlation among the variables. The

models obtained can also be validated by means of physical

knowledge.

The approach is tested and verified on a real-life UK

water distribution system. The case study demonstrates the

entire process, fromdata aggregation toEPRmodel selection.

The resulting EPR aggregate model is effective in terms of

regression performance (CoD) and is consistent with the

physical/engineering understanding of the problem. Pipe

age, diameter and length have been selected as the most

important variables in describing pipe burst occurrence and

direct/inverse relations confirm previous findings on the

subject. Because of these characteristics the relationships

obtained by using EPR have been regarded as performance

indicators of the network and the possible employment of the

EPR technique in developing other performance indicators

for water systems has been discussed.

Finally, an individual pipe structural deterioration

model has been derived from the EPR aggregate model
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and the methodology on how to use such a model to

support asset management decision-making is presented.
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