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Spatial pattern analysis for water quality in free-surface

constructed wetland

Reza Mohammadpour, Syafiq Shaharuddin, Chun Kiat Chang,

Nor Azazi Zakaria and Aminuddin Ab Ghani
ABSTRACT
Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a

wide range of pollutants in wastewater and stormwater before discharge into natural water. In this

study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were

employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the

wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling

stations twice a month for 13 months. All sampling stations were classified by HACA into three

clusters, with high, moderate, and low pollution areas. To improve the water quality, the

performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of

this study include potential savings of time and cost for long-term data monitoring purposes in the

free-constructed wetland.
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INTRODUCTION
Due to urban areas and effect of industrial activities, pol-

lution remains as an important issue of human life and
ecology. Lack of plants in municipal regions often results
in industrial runoff, with the highly polluted water being dis-

charged into natural water. Through surface runoff,
domestic and agricultural waste discharges continue to
directly pollute rivers without treatment. There is a wide

range of treatment techniques that can be employed to
remove pollution and improve the quality of water to meet
effluent standards.

Constructed wetlands are designed to highly decrease a

wide range of pollutants and wastewater before discharge
into rivers and other water resources. The structure of con-
structed wetlands is similar to natural wetland with low

hydraulic retention time and high organic sediments. The
performance of free-surface wetlands (FSWs) to enhance
water quality (WQ) and reduce runoff pollution was

reported in several studies (Brix ; Shaharuddin et al.
). Storm water runoff is recognized as a source of pol-
lution for the FSW, and the characterization of runoff
pollution is necessary to WQ management and habitat

degradation (Zakaria et al. ; Greenway ).
The FSW as a low-energy green technique can provide

ecosystem facilities such as food, control of floods, reduction

of water pollution, and recreational and educational benefits
(Vymazal ). Generally, in these kinds of wetlands, three
parts can be recognized: the inlet, macrophyte and open

water area (Zakaria et al. ). The macrophyte area (wet-
land plants) has a high effect on the wetland ecosystem and
WQ, which was previously investigated in different areas
(Brix ; Kadlec & Wallace ).

Surface WQ analysis has become a main concern in
water resource and environmental systems (Zhang et al.
). In environmental and ecological problems, since the

number of water quality variables (WQVs) is extensive a
robust spatial analysis, such as principal factor analysis
(PFA) and hierarchical cluster analysis (HACA), is essential

to interpret the relation between physical–chemical par-
ameters (Singh et al. ; Gazzaz et al. ). The ability
of different parts of a FSW to remove pollution is very
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important to understand the performance of wetlands and

improve the WQ, which is less documented in previous
research.

In this study, HACA was used to categorize the FSW

into different clusters with similar characteristics. The corre-
lation between WQVs in each cluster was determined using
PFA. The relation between WQVs was used to understand
the effect of each cluster on the improvement of WQ.

Finally, the results indicate the ability of each cluster to
remove pollution and improve WQ.
Table 1 | Plant species and the water depth in the USM wetland

Site Dominant plant species
Water depth
(m)

W1 Hanguana malayana, Lepironia
articulata

0.25–0.3

W2 Hanguana malayana, Typha
angustifolia

0.27–0.32

W3 Lepironia articulata, Eleocharis
variegata

0.51–0.62

W4 Hanguana malayana, Lepironia
articulata, Eleocharis variegata

0.47–0.54

W5 Lepironia articulata 0.51–0.64

W6 Lepironia articulata 0.31–0.54

Micropool (MA,
MB & MC)

Without plant 2.48–2.54

Figure 1 | Sampling point in the USM wetland.

om https://iwaponline.com/wst/article-pdf/70/7/1161/470705/1161.pdf

er 2018
MATERIALS AND METHODS

The FSW in the Universiti Sains Malaysia (USM) was

selected as a case study in this research. In total, 11
WQVs were collected at 17 sampling stations twice a
month for 13 months (from December 2010 to December
2011). Therefore, a total of 442 datasets were collected in

this time period. The WQVs were temperature, pH, dis-
solved oxygen (DO), conductivity, total suspended solids
(TSS), nitrite, nitrate, ammoniacal nitrogen (AN), bio-

chemical oxygen demand (BOD), chemical oxygen
demand (COD), and phosphate. The sampling stations
were selected to consider a range of plants and water

depths (Table 1) and included the inlet, six stations in the
macrophyte area (W1 to W6), nine points in the micropool
(MA1 to MC3), and the outlet (Figure 1).

All collected data were employed in the multivariable
spatial analysis. The variables employed in PFA and
HACA were standardized to the z-scale using the following
equation (Kowalkowski et al. ):

Zij ¼
Oij � μ

σ
(1)

where Zij is standardized value; Oij is observed data; σ is

the standard deviation; and μ is the mean value of observed
data.



Table 3 | Rotated component matrixa

Item

Component (factor)

1 2 3

TSS 0.85 0.13 0.22

Nitrate 0.85 0.09 0.14

Phosphate 0.84 0.09 0.19

Nitrite 0.83 0.24 � 0.02

AN 0.81 0.09 0.24

BOD 0.80 0.03 � 0.07

COD 0.74 � 0.19 0.26
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Principal factor analysis

Factor analysis (FA) is a robust technique which can be used
to find underlying constructs or factors which describe the

correlations among a set of variables. Principal component
analysis (PCA) was employed to factor extraction and
matrix rotation (Boyacioglu & Boyacioglu ). Hereafter
the FA is referred to as PFA.

Two criteria, the Kaiser-Meyer-Olkin (KMO) and Bar-
lett’s tests of sphericity, were chosen to find the PFA in
this study. The KMO is a measure of sampling adequacy,

which produces value between 0 and 1 (Table 2). Bartlett’s
test of sphericity examines whether the correlation matrix
is an identity matrix (the null hypothesis). To confirm that

the PFA variables are correlated, the null hypothesis
should be rejected.

In the next step, to reduce the number of extracted fac-
tors, the factor loadings should be evaluated via eigenvalues.

The factor loadings were developed to determine the
relationships between the extracted factors and the WQVs.
As a rule of thumb, a factor loading �0.6 is recognized as

strong while a factor loading less than 0.4 is categorized as
weak (Lambrakis et al. ; Gazzaz et al. ).

Hierarchical cluster analysis

Cluster analysis (CA) or clustering is an unsupervised data
analysis in order to ultimately categorize the dataset into
different classes (clusters) with similar characteristics

(Templ et al. ). The agglomerative clustering analysis
can be proposed as the most common linear clustering
approach among all hierarchical clustering analysis

(HACA) strategies (Shrestha & Kazama ). The tree dia-
gram (dendrogram) is chosen to show the similarities
between clusters as a visual summary (Templ et al. ).
In this study, the standardized data, Ward’s method and

squared Euclidean distance were employed in the agglo-
merative clustering analysis (Singh et al. ).
Table 2 | Interpretation of KMO value (Kaiser 1974)

KMO value Interpretation

0.90–1.00 Marvelous

0.80–0.89 Meritorious

0.70–0.79 Middling

0.60–0.69 Mediocre

0.50–0.59 Miserable

0.00–0.49 Unacceptable
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RESULT AND DISCUSSION

Principal factor analysis

The KMO provides a coefficient of 0.87, which illustrates
the number of data is meritorious (Table 2). Also, Bartlett’s
test of sphericity with a chi-square of 2,836 (ρ¼ 0.000< 0.05

and df¼ 55) reveals that the WQ data met the sphericity
assumption and rejected the null hypothesis. These findings
reflect that the PFA can be used to explain the WQVs and

the collected data are valuable (Mcneil et al. ).
The PFA extracted three significant factors with eigen-

values roughly bigger than one for each factor, which

described about 73.34% of the variance of the data
(Table 3). The correlation between extracted factors and the
WQVs can be estimated using the factor loadings. Strong

factor loadings (bigger than 0.60) are in bold in Table 3.
The variation of the first factor is around 47.94% for the

WQ dataset. The WQVs and their factor loadings on this
factor are TSS (0.85), nitrate (0.85), phosphate (0.84), nitrite

(0.83), AN (0.81), BOD (0.80), and COD (0.74). The high
factor loading in the first factor can be interpreted as a high
correlation between WQVs. The good relation between TSS

and nitrogen components, especially nitrate (0.85) and phos-
phate (0.84), can be due to a combination of sedimentation
pH 0.00 0.87 0.19

Conductivity 0.22 0.84 � 0.07

Temperature 0.32 0.01 0.83

DO 0.02 0.54 0.62

Eigen value 5.273 1.844 0.95

Initial variance (%) 47.936 16.768 8.640

Cumulative variance (%) 47.936 64.704 73.344

Total variance (%) 73.344

Extraction method: PCA. Rotation method: varimax with Kaiser normalization.
aRotation converged in five iterations.
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and nitrification. Generally, the suspended solid consists of

the inorganic fraction (silts, clays, etc.) and an organic fraction
(algae, zooplankton, bacteria and detritus) which enter the
wetland through runoff and settles there. The macrophytes

uptakes nutrient through their root system (Lin et al. ).
The concentration of nutrient decreases through the process
of nitrification and denitrification as well as through the nutri-
ent uptake through the plants (Brix ). The relation

between TSS and phosphate in the first factor reflects that
the phosphate and organic nitrogen are settled by suspended
sediment on the wetland bottom. Loading BOD and COD

with nitrogen components in the first factor can be related
to the concentration of nitrite and nitrate in the wetland. In
the process of nitrification, the ammoniumundergoes biologi-

cal oxidation and converts to nitrite and nitrate. Then, the
nitrogenous BOD, which is a portion of BOD, increases
with increasing nitrogen compounds. Furthermore, loading
BOD in first factor can also be due to the effect of TSS. An

excess of TSS could mean a production of higher levels of
BOD, which would deplete the DO (T. Lundquist, Lawrence
Berkeley National Laboratory, personal communication).

The second factor explains about 16.77% of the variance
in the dataset (Table 3). The result indicates a positive factor
loading for two variables, pH (0.87) and conductivity (0.84).

Loading pH and conductivity in same factor can be
expressed as the effect of algae in the wetland. The algae
growth is closely related to light intensity, total nitrogen,

total phosphorus and water temperature (Scholz ). The
presence of algae and submerged macrophytes has a signifi-
cant effect on the pH (Reddy & Delaune ). The
photosynthesis of algae has a direct effect on pH. On the

other hand, the conductivity in terms of high ion
Figure 2 | Clustering of wetland. (a) Dendrogram; (b) location of three clusters.
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concentrations has a strong effect on distributions of individ-

ual algae (Sigee ; Hamed ). Therefore, the
macrophyte area with shallow water and high concentration
of nutrient (Table 1) provides a good environment to grow

different kinds of algae, which influences both pH and con-
ductivity. However, other parameters such as time of day
and minerals affect wetland pH.

The third factor receives a high loading from tempera-

ture (0.83) and DO (0.62) and describes 8.64% of the
variance in the WQ dataset. Loading these variables on
the same factor may be due to the photosynthesis process.

During the days, the sunshine increases the wetland temp-
erature, and this condition contributes to increased
submerged plant photosynthesis. Then, a large amount of

DO releases in the macrophyte area, which leads to increas-
ing DO (Luyiga & Kiwanuka ).

This finding reflects that just one variable represented by
the first, second and third factor can be used as an indicator

to estimate WQ in the wetland. Obviously, easily measured
parameters such as TSS, conductivity and DO could be used
as candidates.

Hierarchical cluster analysis

All 11 WQVs were used in HACA to classify the wetland
into different zones with similar WQ characteristics.
Figure 2(a) illustrates that the HACA classified all 17

sampling stations into three statistically significant clusters.
The first cluster (Cluster-I), in the upper part of the wet-

land, is formed by two parts of the wetland, inlet and W1.

The Cluster-II is located in the middle part of the wetland
and included five parts of the wetland: W2, W3, W4, W5
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and W6. The remaining part of the wetland, micropool and

outlet, is classified as Cluster-III. The water depth and domi-
nant plants are shown in Table 1. The location of three
clusters in the wetland is shown in Figure 2(b). Table 4

shows the average value and reduction of WQVs in the clus-
ters. The output from each cluster was chosen as input for
the next cluster, and the inlet and outlet to the wetland
were selected as input and output for Cluster-I and Cluster-

III respectively. The removal percentage in each cluster is
shown in Table 5 and Figure 3. The negative and positive
value reflects increase and reduction for the variable

respectively.
Table 4 | Average value and reduction of WQVs in each cluster

Average value of WQVs

WQVs Inlet Cluster-I Cluster-II

Temperature (WC) 31.87± 1.47 32.01± 1.45 31.55± 1.32

pH (μS/cm) 7.63± 0.73 7.67± 0.72 7.71± 0.71

DO (mg/l) 8.25± 0.94 8.36± 0.97 8.5± 0.83

Conductivity 137± 27.89 139.04± 27.56 140.29± 25.53

Nitrite (mg/l) 0.035± 0.01 0.033± 0.01 0.016± 0.00

Nitrate (mg/l) 2.94± 0.65 3.18± 0.58 2.48± 0.66

Phosphate (mg/l) 0.41± 0.07 0.4± 0.06 0.28± 0.04

AN (mg/l) 0.3± 0.06 0.31± 0.06 0.26± 0.05

BOD (mg/l) 2.73± 0.49 3.01± 0.32 2.73± 0.28

COD (mg/l) 28.23± 4.3 29.08± 4.12 24.19± 2.61

TSS (mg/l) 27.65± 5.15 28.13± 4.47 21.94± 3.04

Table 5 | Removal percentage in each cluster

Cluster-I (%) Cluster-II (%)

WQVs Average SD* Average

Temperature � 0.5 1.2 1.4

pH � 0.6 1.5 � 0.7

DO � 1.3 2.0 � 2.3

Conductivity � 1.6 1.0 � 1.6

Nitrite 3.2 7.1 48.1

Nitrate � 10.3 16.3 25.1

Phosphate � 0.4 7.5 31.8

AN � 4.3 9.5 17.5

BOD � 11.7 10.9 8.8

COD � 3.4 7.3 16.7

TSS � 2.4 6.7 21.7

*SD¼ standard deviation.

s://iwaponline.com/wst/article-pdf/70/7/1161/470705/1161.pdf
Increase of temperature in Cluster-I of 0.14 WC and

reduction in Cluster-II (0.46 WC) and III (1.63 WC) is due to
lowwater depth in Cluster-I in comparison with other clusters
(Table 1). The pH is increased in both Cluster-I (0.6%) and

Cluster-II (0.7%) and decreased in Cluster-III (0.8%). Overall,
the wetland has no considerable effect on the pH (Figure 3).

The DO is increased in Cluster-I (1.3%) and Cluster-II
(2.3%) while it is decreased dramatically in Cluster-III

(7.9%). It can be due to photosynthesis by the high concen-
tration of plants and algae in Clusters I and II. The DO
decreases with decreasing percentage of plants in Cluster-III.

Another reason for reduction ofDO is the nitrification process
Reduction of WQVs

Cluster-III Cluster-I Cluster-II Cluster-III

29.92± 1.23 � 0.14± 0.40 0.46± 0.62 1.63± 1.34

7.63± 0.67 � 0.04± 0.10 � 0.04± 0.27 0.08± 0.53

7.79± 0.39 � 0.11± 0.17 � 0.14± 0.72 0.71± 0.94

132.58± 23.7 � 2.04± 1.12 � 1.25± 12.75 7.71± 8.32

0.007± 0.00 0.001± 0.00 0.02± 0.01 0.01± 0.00

1.13± 0.48 � 0.24± 0.28 0.7± 0.42 1.35± 0.40

0.16± 0.03 0.00± 0.04 0.13± 0.05 0.11± 0.03

0.15± 0.02 � 0.01± 0.02 0.05± 0.03 0.12± 0.04

2.00± 0.30 � 0.28± 0.24 0.28± 0.40 0.73± 0.32

15.42± 3.36 � 0.85± 2.00 4.88± 3.22 8.77± 2.84

8.77± 3.93 � 0.48± 1.82 6.19± 3.53 13.17± 2.77

Cluster-III (%) Total removal (%)

SD Average SD Average SD

1.9 5.1 4.0 6.0 4.1

3.8 0.8 7.3 � 0.5 8.7

8.7 7.9 11.9 4.3 12.1

10.7 5.4 4.6 2.2 12.3

15.0 29.3 15.3 80.6 8.6

18.0 47.8 16.4 62.6 11.3

10.1 28.4 7.9 59.8 8.0

14.4 37.3 10.9 50.5 8.4

12.8 28.0 13.7 25.1 14.1

9.5 31.8 10.8 45.1 10.2

10.6 49.1 13.7 68.4 12.7



Figure 3 | Removal percentage of WQVs in the wetland.
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in Cluster-III. It is a very high oxygen demanding process. The
variation of conductivity in three clusters was observed to be
similar to DO and pH, which can be due to algae effect.

The wetland reduces a high percentage of nitrite (80.6%)

with 3.2, 48.1 and 29.3% for Cluster-I, Cluster-II and Cluster-
III respectively. The Cluster-II with high macrophyte area
removes more percentage of nitrite in the wetland.

Cluster-III has the highest effect on reduction of nitrate
and AN in the wetland. A removal of 47.8 and 37.3% for
nitrate and AN respectively can be due to a combination of

nitrification and denitrification processes. In Cluster-II with
high concentration of plants, removal of nitrate and AN
with a percentage of 25.1 and 17.5 respectively is due to
plant uptake. In total, nitrogen removal due to denitrification

is higher than that by plant and algae assimilation (Metcalf
et al. ). Due to decomposition processes, in Cluster-I the
nitrate and AN are increased by a percentage of 10.3 and

4.3 respectively. Overall, the wetland removed around 63%
of nitrate, which is a considerable value in comparison with
phosphate (59.8%), AN (50.5%), BOD (25.1%), COD

(45.1%) and TSS (68.4%).
Decomposition of organic matter can be the reason for

increase of phosphate by 0.4% in Cluster-I. Although the

plant uptakes phosphorus, ammonia and nitrate for grow-
ing, the decomposition of organic matter releases
phosphorus and nutrient back to the water (Kadlec & Wal-
lace ). The percentage of phosphate removal in Cluster-I

and Cluster-II was 31.8 and 28.4 respectively.
The variation of BOD is similar to COD in all clus-

ters, with a total percentage removal of 25.1 and 45.1

for BOD and COD respectively. Cluster-III shows a
high percentage reduction of these parameters. In
om https://iwaponline.com/wst/article-pdf/70/7/1161/470705/1161.pdf
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Cluster-I, increase of BOD and COD by 11.7 and 3.4%

may be interpreted as a concentration of organic matter
and macro-invertebrates (Shaharuddin et al. ).

TSS was observed to increase in Custer I and decrease

in both clusters II and III. Sedimentation is a main cause
of decreased suspended solid in the wetlands. Cluster-III
with high water depth (Table 1) and low velocity could
remove a high percentage of sediment (49.1%) compared

to Cluster-II (21.7%). Increase of TSS in Cluster-I is due to
decomposition processes and concentrations of zooplank-
ton, phytoplankton and macroinvertebrate which directly

increase the organic suspended material.
As shown in Figure 3, Cluster-I removed a low percentage

of nitrite (3.2%) and increasedDO (1.3%) but other pollutants

are increased in this cluster. Although Cluster-II has a signifi-
cant effect to improve the quality of water and remove high
percentages of nitrite, the performance of Cluster-III is
better than Cluster-II, with a high reduction in nitrate, AN,

BOD, COD and TSS. Therefore, theHACA classified thewet-
land into three categories with different physicochemical
characteristics and pollution levels. In total, the wetland

removed a high percentage of nitrite (80.6%), TSS (68.4%),
nitrate (62.6%) and phosphate (59.8%).

The results of HACA indicate that for quick estimation

of the WQ in the wetland, the WQVs can be collected regu-
larly from just one station in each cluster since the whole
cluster can be represented just by one station in the cluster.

Consequently, collecting data from only three parts of the
wetland rather than 17 will accurately reflect the spatial
dimension of the WQ in the entire wetland and reduce the
time, costs and effort to collect samples, without losing sig-

nificant information.
CONCLUSIONS

Two multivariable spatial analyses, PFA and HACA, were

employed to recognize the latent structure of WQ in the
FSW and to classify 17 sampling stations into groups with
similar characteristics. The PFA provided three latent factors,

including 11 WQVs to describe about 73.34% of total vari-
ation of the WQ dataset. All sampling stations were
classified by HACA into three clusters, Cluster-I, Cluster-II
and Cluster-III, with different physicochemical character-

istics and pollution levels. In total, the wetland was able to
remove a high percentage of nitrite (80.6%), TSS (68.4%),
nitrate (62.6%) and phosphate (59.8%). The results indicate

thatCluster-IIIwith high removal percentage ismore effective
to improve WQ in comparison with other clusters. Since the
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sampling stations have similar characteristics, WQVs can be

collected just from one station in each cluster, without
losing significant information, in the wetland. This finding
contributes to save time, costs and effort for collection of data.
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