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The 3 basic data types of contaminant hydrology are examined by stochastic 
modelling of a groundwater contamination case. The stochastic transport mod- 
el, which is of the Monte Carlo type, uses a numerical flow and transport 
model, and views transmissivity as a random autocorrelated field. A large set of 
transmissivity realisations is generated using the turning bands technique. Con- 
ditioning is done with regard to transmissivity, head and concentration obser- 
vations. The unconditional approach assumes, explicitly, a stationary stochastic 
process of logtransmissivity. This is implicitly turned into a non-stationary 
process by the conditioning procedures. These use simple and universal krig- 
ing, and utilize the kriging uncertainties to determine subsets of realisations 
that are in agreement with the observations at a predefined confidence level. 
The approach followed allows quantification of the uncertainties of predicted 
head and concentration through space and time. Conditioning on head obser- 
vations leaves large transport uncertainties. Conditioning on the transmissivity 
data has a more prominent effect. The single, most effective data type is the 
concentration data. Smallest transport uncertainties occur when all the data are 
simultaneously taken into account. The conditioning effect depends on the 
number and spatial configuration of the data. A trade-off between the stochas- 
tic and deterministic transport approach is suggested. In modelling terms this 
corresponds to a trade-off between advection and dispersion. 

Introduction 

During recent years the interest in subsurface hydrology has shifted from topics 
related t o  water resource investigations t o  problems of water quality. I n  particular, 
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quality aspects that are related to human activities interfering with the natural state 
of the groundwater attract the attention. Man-made groundwater contamination 
can generally be classified as stemming from plane- or point-sources. The former 
are usually characterized by low concentrations of the contaminants but they ex- 
tend over horizontal areas comparable with the size of the affected aquifer; the 
latter sources are of limited areal extent as compared to the groundwater system on 
which they operate, but they usually contain high levels of the contaminants. 

This study is confined to point-sources of contamination, examples of which are: 
spills of chemical substances at manufacturing plants, leakage from storage tanks 
or pipe-lines and, last but not least, leakage from waste disposal sites located at the 
land surface or in the subsurface. Waste disposal sites are one of the major known 
threats to groundwater systems: firstly, because the sources already exist all over 
the world and, secondly, because they were laid out during a time when the 
potential danger was not recognized. Therefore, in general no safe-guarding 
measures have been taken and removal of the sources is only possible at great 
expense since many sites actually occupy relatively large areas and/or volumes. 
Even in the cases where the damage done so far is limited, the seed of future 
problems has been sown, and this calls for an increased attention that will last for 
many years to come. 

Subsurface hydrological problems are invariably of a complex nature. The main 
issue, however, is the inaccessibility caused by the complexity of the subsurface 
features. Any data set, no matter how large, will inevitably only represent a sample 
of the real-life system, and an evaluation of the total system behaviour is to be 
based on the available data. An important question then arises: How much useful 
information does an actual data set contain with regard to a particular system? And 
an important extension of this question is: How is this amount of information 
related to the type, the number and the spatial and temporal configuration of the 
data? 

In terms of practical applications, these and similar questions become: Given a 
data set, what uncertainties can we expect in predicting the entire groundwater 
flow and contaminant transport through time and space? Or, given a field budget, 
what data should be collected to obtain the optimal description of the contami- 
nated groundwater system? At what locations should observations preferably be 
made? 

Such questions can be investigated by stochastic and geostatistical methods. 
These view the system variables and parameters as being partly governed by ran- 
dom components, and they aim to quantify the prediction uncertainties arising 
from the random behaviour. In the present study, the spatial distributions of the 
hydraulic conductivity, the hydraulic head and the contaminant concentration are 
viewed as uncertain quantities. These are the three basic data types encountered in 
groundwater pollution problems. 

Another reason for casting a contaminant transport problem in stochastic terms 
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is the complex nature of the dispersive mechanism of solute transport. The hyd- 
rodynamic dispersion is mainly related to the heterogeneity of the flow velocity at 
all scales of the aquifer. An important factor in explaining this heterogeneity is the 
spatial distribution of the hydraulic conductivity. By viewing the conductivity as a 
stochastic parameter it is expressed in terms of probabilities, acknowledging the 
fact that its exact spatial distribution remains uncertain at the locations where it has 
not been measured. It should be noted that other factors contribute to the erratic 
spreading of a contaminant in an aquifer. One could mention the spatial distribu- 
tion of the effective porosity, of the surface recharge a.0. In the present study these 
aquifer properties are assumed to be known deterministically. 

Review 

Numerous studies dealing with stochastic aspects of groundwater flow and solute 
transport have been published since the key paper by Freeze (1975) revived a 
dormant interest in the approach. Freeze's work dealt with one-dimensional flow 
systems only, but it is of general importance, since the author thoroughly for- 
mulates the stochastic framework. A survey of field data included in this study 
strongly supports a lognormal probability distribution function of hydraulic con- 
ductivity. The lognormal distribution of hydraulic conductivity is widely accepted 
nowadays. Freeze employed a Monte Carlo technique to investigate the predictive 
ability of one-dimensional flow modelling. This approach was extended to com- 
bined flow and solute transport modelling by Smith and Schwartz (1980). These 
investigators couple the Monte Carlo scheme to a numerical simulation model. 
They study the validity of the Fickian formulation of dispersion by computational 
experiments, and conclude that the classic theory, which assumes constant disper- 
sivities multiplied by a known flow velocity, is not generally valid. In a subsequent 
paper Smith and Schwartz (1981a) continue along the same lines, but the focus is 
now on the uncertainty in transport predictions. The predictive capability is limited 
by partial sampling of a heterogeneous porous medium. They conclude that large 
uncertainties may occur when predicting the distribution of a tracer, and that those 
parameters capable of changing both the magnitude and the direction of flow are of 
primary importance. 

Whereas the previous studies were concerned with flow and transport uncertain- 
ty from a modelling point of view, another school emphasizes the analysis of the 
hydraulic data using geostatistical tools. Delhomme's (1978) paper was a break- 
through in subsurface hydrology of the geostatistical approach, originally designed 
to solve problems of mining. Especially the technique of structural analysis by 
semivariogram recognition and the optimal interpolation method of kriging have 
become important research tools, nowadays. Delhomme (1979) combined the 
Monte Carlo method with a geostatistical analysis to investigate the flow regime of 
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an aquifer. The author concludes that due to the spatial variability of transmissivity 
large uncertainty with respect to the flow regime exist. Furthermore, only a small 
reduction of the uncertainty was obtained by conditioning the simulations on the 
measured transmissivity values. The author recognizes the need for conditioning 
the flow calculations on measurements of hydraulic head. Clifton and Neuman 
(1982) apply both transmissivity and head conditioning, using an inverse technique, 
to analyse the flow regime of an aquifer in Arizona. They conclude that condition- 
ing on measured head values drastically reduces the head uncertainty and that well- 
calibrated deterministic simulations provide an adequate description of the flow 
regime of an aquifer. Transport was not treated in this study. 

Of special interest to the present work are studies that investigate the solute 
transport forecasting capability as a function of a limited data set. The technique of 
incorporating field observations into the simulations is known as conditional mod- 
elling. By contrast, unconditional simulations only take the statistical properties of 
the data into account. Then, a location-invariant distribution of the stochastic 
variable exists everywhere throughout the domain, including those points where 
measurements were actually made. Conditional simulations aim to preserve both 
the stochastic properties, and the data at their measurement locations. Smith and 
Schwartz (1981b) combine the Monte Carlo technique with numerical solutions of 
the flow and transport equations. They describe the spatial structure of hydraulic 
conductivity by a nearest-neighbour relationship. The authors present a theoretical 
study and evaluate the effect of conditioning the transport simulations on conduc- 
tivity values. The focus of this work is on tracer arrival times, and it is concluded 
that the conditioning effect is small, and thus large transport uncertainties remain. 
The modelling technique used by Smith and Schwartz (1981b) is very general in the 
sense that few restricting assumptions have to be made. As a working hypothesis a 
stationary stochastic process and a lognormal distribution of the hydraulic conduc- 
tivity was assumed. Apart from that, the approach is applicable to nonuniform flow 
fields with irregular boundaries and with a arbitrary degree of variability of the 
conductivity distribution. Another approach was taken by Dagan (1982, 1984). 
This 'author adopts analytical solution methods that involve numerous simplifying 
assumptions with regard to the flow and transport configuration. The approach is 
based on first order perturbations and conditional probability functions, and the 
solution applies to infinite domains, uniform flow fields and small variances of 
logtransmissivities. Although of limited applicability in practical transport model- 
ling, this study is instructive with regard to the basic behaviour of the transport 
processes. Dagan evaluates the variance reducing effect of conditioning the trans- 
port on point values of transmissivity and head. The main conclusions drawn from 
this work are that large concentration uncertainties exist when unconditional prob- 
ability distributions of transmissivity are used. Incorporating head data has little 
impact on the concentration variances, while preserving transmissivity values may 
reduce the transport uncertainty considerably. 
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The Stochastic Simulation Approach 

In the present study a numerical flow and transport simulation model is combined 
with geostatistical techniques. The link is obtained by a Monte Carlo approach. In 
this sense, the methodology adopoted here is a combination of the stochastic 
approach taken by Smith and Schwartz (1981b) and of the geostatistical techniques 
employed by Delhomme (1979). 

The major goal of this work is to investigate the transport prediction uncertainty 
as a function of the available field observations of transmissivity, hydraulic head 
and contaminant concentration. In this respect, the approach followed here is an 
extension of the previous work. Another goal is to include hydrodynamic disper- 
sion as a function of the variability of the transmissivity field, rather than using it as 
a lump parameter. All other aquifer characteristics such as porosity, boundaries, 
contaminant source strength and release etc. are assumed to be known in a deter- 
ministic sense. 

Groundwater Flow and Solute Transport 
The hydrodynamic laws governing groundwater flow in fully saturated porous 
aquifers are well-described in the literature, consult e.g. Freeze and Cherry (1979). 
The governing partial differential equation can be written as 

d i v ( X  g r a d  h )  - W* S ah 
s a t  

where 
- - 
K - hydraulic conductivity tensor [mls], 
h - hydraulic head [m], 
S, - specific storage [m-'1, 
W* - sourcelsink term [s-'1, 
t - time [s]. 

When dissolved chemical species are present in flowing groundwater, these will 
be transported through the porous matrix. The mechanisms responsible for the 
spreading of the solutes are of physical and chemical nature. The physical processes 
that control transport are advection and hydrodynamic dispersion. When only non- 
reactive species such as chloride, C1-, are considered, the physical mechanisms 
fully account for the migration of the contaminant. The transport of reactive sol- 
utes is beyond the scope of this study. 

The governing partial differential equation of conservative contaminant trans- 
port in groundwater, known as the advection-dispersion equation, can be written 
as 

cVw*-  ac 
d i v  ( 5  g r a d  C )  - ti ( g r a d  C )  - - ( 2 )  

where 
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C - solute concentration in groundwater [mgll], 
5 - hydrodynamic dispersion tensor [m2/s], 
C' - solute concentration of source [mgll], - 
v - seepage velocity [mls], 
n - effective porosity [-I. 

and - 

The hydrodynamic dispersion coefficient, formulated in the classical sense, is a 
function of the groundwater flow velocity and of the aquifer material. In two areal 
dimensions and assuming isotropy it can be characterized by a longitudinal and a 
transverse component 

where 

DL, DT longitudinal and transverse dispersion coefficients [m2/s], 
a ~ ,  a~ - longitudinal and transverse dispersivity [m]. 

Konikow and Bredehoeft (1978) have developed presumably the most wide- 
spread numerical model. This model, which has been used in the present work, is 
based on a finite difference approximation to solve the 2-D flow equation and it 
solves the 2-D transport equation by a method-of-characteristics formulation. 

The Stochastic Solute Transport Model 
From a stochastical viewpoint the real transmissivity field, as it is in nature, is just 
one realisation out of an infinite number of possible realisations, denoted the 
ensemble. The transmissivity is the independent parameter. Based on its stochastic 
properties a large number of synthetic fields is generated. The set of these synthetic 
realisations or members represents a finite sample of the ensemble that obeys the 
prescribed stochastic properties. Hydraulic head, flow velocities and contaminant 
concentrations are the dependent variables in the sense that they are derived by 
applying the basic hydrodynamic laws. Thus, corresponding to each transmissivity 
realisation, realisations of head and concentration are obtained. 

With regard to the stochastic process that governs the transmissivity, it is 
assumed that the lognormal probability density function is valid. Strong evidence in 
support of this assumption is available in the literature (see previously). Further, 
the validity of the ergodicitity principle is assumed, i.e. the statistical properties 
derived from the one member available are an acceptable approximation of the 
theoretical ensemble properties. It is worth recognising that the single realisation 
available, the aquifer, is only sampled at a limited number of locations. Thus 
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u n c o n d l t l o n a l  e n s e m b l e  
f o f  t r a n e m l s s l v l t y  o r  

h - c o n d l t l o n e d  
s u b e n s e m b l e  

r u b e n r e m b l e  

Fig. 1. Visualisation of unconditional ensembles and conditioned subensembles of trans- 
missivity, head and concentration. 

ergodicity is really assumed with respect to the available data set rather than to the 
entire realisation. In practice, one has no choice but to adopt the ergodicity princi- 
ple as a working hypothesis for the stochastic approach. The Monte Carlo techni- 
que combined with a numerical transport model has been chosen, since this ap- 
proach is not restricted by limiting assumptions that prohibit application to field 
situations, and it allows one to quantify the uncertainties of head and concentration 
through time and space. This is of primary importance in the present work. 

In the unconditional simulation the stochastic process of logtransmissivity is 
explicitly defined as a stationary process with regard to the first two moments, i.e. 
the medium is statistically homogeneous. The conditioning proceeds conceptually 
by determining subsets of the transmissivity, head and concentration ensembles, 
see Fig. 1. The conditioning is applied to the ensemble that corresponds to the data 
type under consideration. Thus transmissivity conditioning is applied to the trans- 
missivity ensemble, conditioning on head data is applied to the head ensemble and 
concentration conditioning to the concentration ensemble. In the conditional si- 
mulations it is implied that the governing stochastic process of logtransmissivity 
is non-stationary. 

Unconditional Model 
In the unconditional stochastic simulations only the statistical information of log- 
transmissivity is taken into account. This includes the mean and the autocovariance 
structure. The turning bands method is used to synthesize a large number of 
transmissivity fields, see appendix , and the same uncertainty exists everywhere 
throughout the domain. Each individual transmissivity member is then successively 
used as deterministic input to a solute transport model. By using elementary statis- 

Downloaded from https://iwaponline.com/hr/article-pdf/18/3/121/2230/121.pdf
by guest
on 18 November 2018



Dirk Van Rooy 

tics the distributions, expected values and variances of head and concentrations are 
calculated in every grid point, and in time to construct probabilistic breakthrough 
curves. 

Transmissivity-conditional Model 
In the T-conditional simulations both the structural information and the actual 
transmissivity values at their measurement locations are taken into account. Thus 
the T-conditional ensemble and realisations preserve the observed transmissivity 
values at their measurement locations in addition to obeying the prescribed 
stochastic properties. While disregarding the measurement uncertainties, no uncer- 
tainty exists at these locations. Also the transmissivity variablility is suppressed in 
the area surrounding the data location due to the imposed correlation structure. 
The influence of an observation gradually decreases with increasing distance, and 
its functional behaviour depends on the shape of the autocovariance function. 

As transmissivity is the independent Monte Calo parameter, conditioning can be 
done using a direct technique. This technique was devised by Matheron (1973) and 
makes use of simple kriging, see appendix. Consider the stationary process Z(x) 
and let the real value at a location x, be z(x,), then 

where z* is the kriging estimate based on a data set consisting of m measured 
values z,(s,). The term in square brackets, i.e. the difference between the true 
value and the kriging estimate, is the kriging error and is not accessible. However, 
it can be simulated by picking a substitute for z,  called s, from an unconditional 
realisation with the same stochastic properties as those used in the kriging proce- 
dure. Then 

where s* is the kriging estimate based on the unconditional values at the m mea- 
surement locations, but using the kriging weights that were used for calculating z*. 
It can be proven that Eq. (6) is a conditionally simulated field in the sense that its 
spatial characteristics are identical with the prescribed statistical properties of the 
unconditional field. Furthermore, since kriging is an exact interpolator, then when 
x, = x, the bracketed term in Eq. (6) vanishes and z* = z,. Thus the measured 
values will effectively be retained at their measurement locations. 

Head-conditional Model 
Conditioning on the hydraulic head observations is done by determining the subset 
of head members that is in agreement with the head data. When a sufficient number 
df head data is available, the universal kriging technique (see appendix) offers the 
means to do so. Fortunately, in practice it is often possible to collect a substantial 
amount of hydraulic head data of good quality and at a reasonable cost. Since the 
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head field as a rule is governed by a non-stationary stochastic process, a geostatisti- 
cal analysis involves the determination of a generalized covariance function. Krig- 
ing then provides a head map and a corresponding map of estimation variances. 
Delhomme (1978) suggested using the kriging standard deviations as a tool for 
hightlighting the parts of a groundwater flow domain on which to concentrate in 
the course of a traditional calibration procedure. Here, this idea is used to screen, 
successively, the individual members of the head ensemble. 

Generally speaking, it makes sense to require that at a grid point the calculated 
head falls in a confidence interval defined by the kriging expectation value and the 
standard deviation at that location. Thus an acceptance criterion is defined as 
follows 

where i refers to grid points and NG is the number of grid points considered. hi and 
h*i are the calculated and kriged head values, respectively, and o * ~  is the kriging 
standard deviation. Assuming a normal distribution, then, when p = 1 the 68% 
confidence level is applied and when p = 2 and p = 3 the 95 % and 99 % levels are 
used, respectively. The criterion can be applied selectively to individual grid 
points, to subregions of the domain, or to all grid points at once. E.g. only the 
model cells containing a head observation could be considered, or several clusters 
of grid cells could be included. Furthermore, different criteria can be applied to 
different regions of the domain demanding simultaneous fulfillment of all the 
criteria. When dealing with transient flow problems, the head values at different 
instants can be included straightforwardly. In a synthetical study of groundwater 
flow by Hefez et al. (1975), several criteria involving observed and calculated head 
values were examined and it was concluded, on empirical grounds, that best results 
were obtained with a criterion based on absolute deviations. Criterion Eq. (7) is 
based on the absolute deviation between the kriged and calculated head values. The 
criterion ensures a plausible solution, i.e. one that is in agreement with the data 
material at a predefined confidence level, but not an optimal solution. Thus each 
individual member of the head ensemble is screened, one at a time, using Eq. (7), 
effectively filtering out the subset of head members that obeys the observations. 
Once the acceptable head members have been identified, the corresponding con- 
centration and transmissivity members are also known. 

Concentration-conditional Model 
In principle, the same conditioning procedure as applied to the hydraulic head 
could be used for concentration conditioning. This would involve determining the 
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subset of concentration members that fulfill the concentration acceptance criterion, 
formulated analogously to Eq. (7). In practical problems of groundwater contami- 
nation, however, often only a small number of concentration data is available. 
Some of them will represent background levels, while others sample the contami- 
nated area. The data set of background levels is generally governed by a stationary 
stochastic process, whereas the plume definitely obeys a non-stationary process. 
Thus separate geostatistical analyses of the two data sets would be required. In 
most cases an insufficient number of high quality concentration data will be avail- 
able to rigorously perform the exercise of structural analysis and to apply kriging. 
Still it is often possible to put forward a concentration range for a particular 
observation well. Let us assume that several C1- observations at different instants 
were made in a well. These values will usually show significant variation, which 
allows upper and lower limits of a concentration interval for that well to be defined. 
Further, the background concentration field is usually characterized by a range of 
values, adding uncertainty to the observed plume concentrations. Thus, by specify- 
ing upper and lower limits of concentration for the observation wells, the set of 
concentration members can be screened for consistency with respect to prescribed 
concentration intervals. The subset of accepted concentration members is labelled, 
and consequently the corresponding head and transmissivity members are hereby 
also known. 

Case Study 

The stochastic solute transport model was applied to a case of groundwater con- 
tamination. The site, known as the Logtved landfill, is located on the island of 
Zealand, Denmark, about 100 km west of Copenhagen. 

Aquifer Configuration and Waste Disposal Site 
Figs. 2 and 3 display an areal and a cross-sectional view of the study area, respec- 
tively. The Quaternary sediments are about 60 m in thickness and are underlain by 
pre-Quaternary clay. Two aquifers, an upper unconfined and a lower confined, 
have been identified. They are separated by an aquitard consisting of glacial till. 
The aquifers are formed by glaciofluvial outwash material and consist of highly- 
permeable sand and gravel. The thickness of the upper formation is up to 20 m of 
which 7-15 m is fully saturated. The unsaturated zone ranges from 1.5 to 6 m. The 
thickness of the aquitard ranges from 10 to 20 m, but locally thicknesses up to 50'm 
have been observed. Since the clayey aquitard is of substantial thickness and no 
contamination has been observed in the confined aquifer, the present study is 
limited to the upper aquifer. Two streams that are directly embedded in the upper 
formation delineate the study area, see Fig. 2. This constitutes an area of roughly 
2.75 x 4 km?. Also shown are the wells that cover the area. For ease of further 
reference some of the wells have been named. 
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Fig. 2. 
Areal view of the study area. 
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Fig. 3.  
Schematic cross-sectional 
view of study area. 

The landfill is situated in a partly abandoned gravel pit, excavated in the upper 
sandlgravel formation. The waste thickness ranges from 5 to 10 m and the areal 
extent is 30,000 - 50,000 m2 (uncertainty with regard to the area exists, as the fill is 
covered with soil and vegetation; here the value of 50,000 m2 has been retained). 
Operation of the site started in 1959, and the last recorded disposals are from 1982. 
The fill is unprotected i.e. there is no liner placed at the bottom of the waste, which 
is near the water table. Both municipal and toxic industrial waste products have 
been disposed. 

lkansmissivity Data 
Transmissivity values were estimated from slug tests and specific capacity data. For 
more information about the interpretation of slug tests and about the data see Van 
Rooy (1986b, 1987). The geometric mean of the transmissivity is about 5.4 X low3 
m2/s. The geometric mean is valid when a lognormal probability distribution of the 
permeability and 2-D uniform flow can be assumed (Marsily 1986). 

A semivariogram analysis of the transmissivity data was done. The transmissivity 
values were logarithmically transformed prior to the analysis. Since too few data 
were available, it was not possible to test the validity of the lognormal distribution. 
Fig. 4 shows the sample semivariogram of logtransmissivity together with the expo- 
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Experimental and theoretical 
:>emivariogram of logtrans- 
missivity. 

nential model fitted to it. An exponential rather than a simple linear model has 
been chosen, as the experimental variogram values are based on 11 observations 
only and are subject to large uncertainty. The exponential type is the one most 
frequently reported in the literature dealing with subsurface hydrology. Hoeksema 
and Kitanidis (1985) compiled and analysed data from N-American aquifers and 
found that the covariance of logtransmissivity can be represented by an exponential 
type function. In the present study other models such as the spherical type or even 
composite models would have been acceptable too, however, the limited data set 
does not justify the use of elaborated variogram functions. The coefficients of the 
exponential function were optimised using cross-validation. It was not possible to 
analyse rigorously for statistical anisotropy. The correlation length of the theoreti- 
cal variogram is 300 m, which corresponds to a range of influence of about 900 m. 
The sill, i.e. variance, of the variogram of logtransmissivity is 0.29, which compares 
well with the field variance of 0.275. Delhomme (1979) reports large-scale horizon- 
tal ranges of influence from less than 1 km for alluvial aquifers and up to 20 km for 
limestone and chalk reservoirs. This author also reports logtransmissivity variances 
going from 0.7 for sandylalluvial aquifers and up to 5.0 for limestone aquifers. 
Clifton and Neuman (1982), in studying an irregularly shaped area of about 45 X 15 
km2, operate with a range of 9 km. They report sill values of 0.37 and 0.74. Thus 
the range and sill values found here belong to the lower end of the scale of reported 
values. It should be kept in in mind that the data only cover the lower half of the 
study area and thus sample a fairly small area of about 1.5 x 1.5 km2.. Fortunately, 
the landfill and the plume are situated in this region. It is noted that the trans- 
missivity values correspond to relatively small aquifer volumes. It is assumed, 
however, that they adequately represent larger aquifer volumes, but this is not 
easily verifiable. At present the proposed variogram model is assumed to be a true 
representation of the actual structure of the transmissivity field at the macroscopic 
scale. 

Hydraulic Head Data 
The hydraulic head of the upper aquifer was sampled during a two-day field cam- 
paign, April 18-19, 1985 (Terraqua 1985). These measurements represent a snap- 
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Fig. 5. Grouped and ungrouped 
variograms of head. 

shot sample of the potential head surface. After scrutinizing the available data 28 
head values covering the whole study area were selected for this study. 

The geostatistical analyses of the head data clearly show the presence of a drift or 
trend (see Fig. 5). The underlying drift is indicated by the increasingly growing 
variogram in the direction of the drift, and this kind of behaviour is inevitably 
present in head data by the nature of groundwater flow. Two distinct clusters of 
points can clearly be distinguished in the ungrouped variogram values. They are an 
indication of statistical anisotropy, which happens to be another typical characteris- 
tic of head variograms. Consequently, a directional analysis where the data were 
grouped in two angle classes was applied. These two directions were chosen ap- 
proximately orthogonal and parallel to the head isolines. The grouped global and 
directional variograms clearly reveal the statistical anisotropy and the drift. The 
non-stationarity of head implies that simple kriging can only be applied after the 
trend has been removed, as done by Virdee and Kottega (1984). Alternatively, one 
can use the techniques of universal kriging (see appendix) which is done here. The 
head trend was found to be of the order 1, and the following polynomial 
generalized covariance function was determined 

using a nearest neighbourhood of 12 data points. Cross-validation was used to 
compare the performance of the different models and different sizes of neighbour- 
hood were evaluated during the analyses. Kriging of the hydraulic head was done 
in a 23 x 33 discrete grid with a distance of 125 m between the neighbouring nodes. 
Fig. 6 displays the kriged.head and standard deviations. The latter increase with the 
distance from the data locations, reflecting an increasing interpolation uncertainty. 
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Fig. 6. Universal kriging of head. 

Pollution Indicators 
Water samples taken from a number of wells spread over the study area were 
analysed for various pollution indicators. These analyses show low values of or- 
ganic compounds and irregular patterns of enhanced levels of inorganic con- 
stituents. Interpretation of the concentration data was very much obscured by the 
presence of other contaminant sources than the landfill. In large parts of the study 
area pharmaceutical sludge has been applied as a substitute for fertilizer. Many of 
the existing wells are located at farming settlements and anomalous concentrations 
could be due to local sources. Furthermore, a highway on which de-icing salts are 
applied during the winter crosses the study area. This constitutes a periodically 
activated line source of salts. Many of the observation wells were drilled for the 
purpose of small-scale water supply and are not adequate for contaminant sampl- 
ing. E.g. well .32 (see Fig. 2) is apparently located in the contaminated area as the 
elevated concentrations of well .I74 (91-204 mgll) and .393 (184-212 mgll) indi- 
cate. However, analyses of water samples from that well do not show any contami- 
nation, and this is presumably due to the shallowness of the well, namely 1.2 m of 
saturated penetration compared with 11.3 m and 11.4 m for the other two wells, 
respectively. Further well .I74 and .393 are only screened over 2 and 3.5 m, and 
consequently the sampling is subject to partial penetration of the aquifer. In 
summary, no consistent picture of the extent and spatial pattern of the plume could 
be obtained. The background chloride concentration is estimated on basis of samp- 
les from 8 apparently unaffected wells, and these values span from 16 to 65 mg/l. 
Chloride values in well U4 range from 800 to 1,400 mg/l, with a centered value 
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around 1,000 mgA. It is believed that this value reflects the leachate concentration. 
C1- concentrations in wells U6, U7 and U8 range from 98 to 247 mgll. These wells 
fully penetrate the upper aquifer. The saturated thickness is from 9 to 11 m, and 
the well screens are implemented over the entire thickness. Temperature and 
electrical conductivity profiles were measured a few months after completion of the 
wells, allowing the water to achieve equilibrium with its environment (see Van 
Rooy 1986b). The water temperature is significantly enhanced to 12-14OC. The 
background temperature is 8-9" C. The electrical conductivity at reference level 25' 
C ranges from about 100 to 140 mS/m, with a background level from 60 to 100 mS/ 
m. A few meters below the water table an increase of the order of 10 % was noted 
in all three wells, but the conductivity and temperature are fairly constant over the 
rest of the profiles. Thus the plume seems to occupy the lower three quarters of the 
aquifer at these locations. 

Stochastic Model Study 

In this section the results of the unconditional and conditional stochastic simula- 
tions of the Logtved case of groundwater contamination are presented. The prefix- 
es T-, h-, C- and combinations of them refer to conditioning on transmissivity, 
hydraulic head and concentration data, respectively. 

Unconditional and T-conditional Transmissivity Ensembles 
Two sets of 300 transmissivity realisations were generated. The unconditional set 
was generated using the turning bands method, and the T-conditional set was 
derived from it using simple kriging. An isotropic and exponentially decaying 
autocovariance function, C(h) = exp (-h/0.3), corresponding to the semivariog- 
ram of Fig. 4, is imposed. The logtransmissivity fields are required to obey the 
N(m,a) distribution, with m = -5.2 and o = 0.54, and were subsequently exponen- 
tially transformed to obtain the desired transmissivity distributions. The trans- 
missivity values were generated in an equidistant net of 23 x 33 points. Delhomme 
(1979) states that the smoothing effect due to gridding can be neglected, provided 
that the size of the model cells is small in comparison to the range of the variogram. 
In the present case the ratio of the range to the cell distance of 125 m is 7-8. The 
quantity and quality of the present data set does not justify a denser net of points. 
The generated transmissivities can be viewed as block values, based on the assump- 
tion of large-scale representativeness of the T-observations previously proposed, or 
as punctual values that are based on the semivariogram of point observations. The 
latter view, adopted by Delhomme (1979), gives valid model outcome when the 
discretization is considerably smaller than the range. In the present study no furth- 
er investigation of the effect of scale is done. A thorough discussion of different 
scales can be found in Dagan (1986). 
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Fig. 7. Standardized ensemble histogram of ~ormalized ensemble autocovariance of 
logtransmissivity. logtransmissivity in x - ,  y- and xy-directions. 

In Fig. 7 the standardized histogram of the TBM generated normal fields is 
shown. The mean is to 0.005 and the variance is 0.97, which is close to the pre- 
scribed values of 0.0 and 1.0, respectively. In Fig. 8 the prescibed and generated 
autocovariance structures are shown. The discrete values follow the exponentially 
decaying model closely. The unconditional transmissivity fields were conditioned 
with respect to 11 transmissivity values estimated from specific capacity and slug 
data. A more detailed analysis of the synthetic fields is provided in Van Rooy 
(1986b). 

Stochastic Flow and Transport Simulations 
All transmissivity realisations, the unconditional as well as the conditional, were 
successively used as single deterministic input to the numerical flow and transport 
model. All other model parameters, see Table 1, were kept unchanged during the 
simulations. These model parameters are partly based on data and partly on an 
extensive model study, see Van Rooy (1986b). Contaminant migration at the scale 
of the individual grid cells and larger is fully advection-based for each member, and 
dispersion is viewed as an ensemble phenomenon. Small-scale dispersion, that is, 

Table 1 - Summary of main model parameters 

0 waste deposit area .................................................................. 47000 m2 
0 source concentration of C1- ...................................................... 1100 mgll 
0 source release fuction. ............................................................. step 
0 uniform background concentration.. ........................................... 50 mgll 
0 uniform effective porosity ..................... .. ..... .. ........................ 0.20 

...................................... o uniform and stationary surface recharge 4 . 4 4 ~  10-~rn/s 
o uniform saturated aquifer thickness ............................................ 10 m 
0 longitudinal dispersivity ........................................................... 10 m 

0 transport time ....................................................................... 22 yrs 
0 constant head boundaries 
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at scales smaller than the grid cells, is applied as a Fickian process. The applied 
value of 10 m for the small-scale longitudinal dispersivity corresponding to a trans- 
port distance of one cell, i.e. 125 m, was estimated from a compilation of field data 
by Lallemand-Barres and Peaudecerf (1978). A prestudy using slightly different 
parameters and using only 100 unconditional transmissivity realisations was pre- 
sented by Van Rooy (1986a). In that study a grid-scale longitudinal dispersivity of 2 
m was employed. A sensitivity analysis made clear that the transport results are 
rather insensitive to the dispersivity as long as it is smaller than 10 m, or so. 

The outcome from the simulations are the sets of head, of steady-state plume 
concentrations and of breakthrough concentrations at a few observation points. 
Conditioning with regard to the 28 head observations involved the model cells 
containing a head observation, and the neighbouring cells. 4 individual subregions 
were chosen and the 68% confidence criterion was applied to each of them, de- 
manding simultaneous fulfillment of all the criteria. These subregions comprise 
nodes with standard deviations smaller than 0.2 m, see Fig. 6. Nodes close to the 
boundaries were excluded. Concentration acceptance intervals of C1- were applied 
to 3 nodal locations, approximately coinciding with wells U6-U7-U8, .I74 and .393. 
As the concentration observations are of low quality and are perhaps not represen- 
tative for the plume, somewhat arbitrary criteria demanding C1- concentrations 
going from 125 to 225,205 and 175 mgll, corresponding to increasing distance from 
the fill, were applied. These criteria should be revised when more and better 
controlled data material becomes available. The set statistics, i.e. mean and stan- 
dard deviation, were calculated at each nodal point. The standard deviation and its 
use in constructing confidence intervals is only meaningful when it can be assumed 
that the data are normal or near-normal distributed. Delhomme (1979) analysed 
head histograms which were found to be slightly skewed, but Marsily (1986) 
pointed out that the standard deviations still can be used as guiding measures for 
constructing confidence intervals. Here the primary interest is in transport rather 
than in flow, and the concentration distributions, in the ensemble sense, of the 
various simulations were examined by the x2-test. The normal distribution was 
found acceptable at a 5% significance level in most cases. See Fig. 9 for some 
typical concentration histograms. Further, a sensitivity test was done in order to 
determine the minimum number of members needed to represent the ensemble 
statistics. This was done by calculating the statistical moments of successively small- 
er subsets, and comparing them with each other. It was found that when the 
number of members dropped below 40 no reliable unconditional concentration 
estimates could be obtained. With regard to the conditional simulations, when 30 
members or more were taken into account, the calculated statistical moments 
changed little, fluctuating slightly up and down when more members were added. 
The smaller number of members needed in the conditioned cases expresses the 
smaller degree of variability caused by the conditioning process. Table 2 lists the 
various simulations with the number of members belonging to the corresponding 
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Fig. 9. vpical  C1- concentration histograms. 
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Table 2 - Number of members 

simulation members 
unconditional.. .................. 300 

........................... T-condit 300 

........................... h-condit 80 
.......................... C-condit 85 
......................... hT-condit 156 

m-condit ........................ 190 
ChT-condit 1 ..................... 103 

subensembles. All subensembles contain at least twice the minimum number of 
members required for an adequate representation of the statistical properties. 

Conditioning Effect on Head Uncertainty 
The conditioning effect consists of reducing the head variance throughout the flow 
domain. The conditioning effect is shown in Table 3 in terms of reduction of the 
head variance at a few observation points in the lower'half of the study area. It is 
seen that the head data are the single, most effective data type with regard to 
reducing the head variance. Also the transmissivity data are of importance, and 
ultimately it is the combination of all the available data that gives the maximum 
variance reducing effect. The largest reductions, obtained with the ChT-condition- 
a1 simulation, range from 3.7 to 4.9. The use of constant head boundaries makes 
the flow regime somewhat insensitive to the transmissivity distribution, and larger 
reductions are obtainable with more loosely defined flow boundaries. The present 
case study confirms that the head data are the single, most important data type with 
regard to macroscopic flow conditioning. 

Conditioning Effect on Transport Uncertainty 
The transport conditioning consists of reducing the concentration variance 
throughout the space and time domain. In order to get a full appreciation of the 

Table 3 - Reduction of the head variance relative to unconditional simulation 

simulation variance reduction at node 

Uncondit 
T-condit 
h-condit 
C-condit 
hT-condit 
CT-condit 
ChT-conditl 
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a) unconditional 

b) h-condit 
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d) C-condit 

- chlorlde mgll - standard dov~atlm - coeff of bonal~m 

landf~ll c r e e k s  

Fig. 10. Stochastic transport results: expected C1- plume, standard deviation, coefficient of 
variation. a) unconditional b) h-condit c) T-condit d) C-condit e) ChT-condit. 

stochastic simulations and of the conditioning effect in particular, the results are 
expressed by three measures, namely expected concentrations, standard deviations 
and coefficients of variation. These are presented as maps of isolines in Fig. 10. 

The unconditional plume of C1-, Fig. 10a, exhibits substantial transverse spread- 
ing. The standard deviations are largest along the center of the plume and decrease 
towards its outer boundaries. The coefficient of variation behaves in a reversed 
manner. Looking at the h-conditional model, Fig. lob, it is noticed that the plume 
has a distilictly different shape. The plume is narrowed down and stretches over a 
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larger distance in the longitudinal transport direction. The map of the concentra- 
tion standard deviations shows somewhat reduced levels. When T-conditioning, 
Fig. 10c, is applied, the plume appearance is similar to the previous one with regard 
to its transverse spreading. Contaminant migration along the longitudinal plume 
direction is reduced, and the spatial distribution of the standard deviations is 
considerably affected. The conditioning effect, however, is most clear from the 
concentration coefficient of variation, where three subareas of levels below 0.20 
appear on the map. Continuing to the C-conditional simulation, Fig. 10d, the 
expected plume resembles the unconditional one in its general shape, though the 
concentration gradients are considerably larger. The standard deviations and espe- 
cially the coefficients of variation are substantially reduced, particularly along the 
longitudinal plume axis. The smallest uncertainties are obtained when all the data 
are taken into account, i.e. the ChT-conditional model, Fig. 10e. 

Some of the phenomena pointed out above are clarified in Table 4 that shows the 
coefficient of variation averaged over different plume sections defined by plume 
concentration intervals. The reduction factor, i.e. the average coefficient of varia- 
tion relative to the unconditional simulation, is shown in bold-face. It is the tenden- 
cies, rather than the absolute figures, that are of importance. The average coeffi- 
cient of variation for the unconditional simulation ranges from 0.78 for the plume 
as a whole to 0.33 for the concentration levels larger than 120 mg/l. The reduction 
obtained by the head data only is small at all concentration levels. The effect of 
conditioning on transmissivity data is much more prominent and differentiates with 
respect to the various sections of the plume. Its effect is largest at the central part, 
more particularly at the levels larger than 120 mgll. The same notion applies to the 
C-conditional model for which the levels of 100 mg/l and more are most affected by 
the conditioning effect. It is seen that the concentration data are the single, most 

Table 4 - Concentration coefficient of variation and its reduction for various simultions and 
plume sections; areal extent of the plume. 

C1- plume or part of it (mg/l) cells occupied 

Simulation global 2100 2120 100-120 global 2100 

Unconditional 
h-condit 
T-condit 
C-condit 
hT-condit 
CT-condit 
ChT-conditl 
Cht-condit2 
Cht-condit3 

bold-faced figures are reduction factors; see also text 
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effective conditioning variable. It is the ChT-conditional simulations (three ChT- 
conditional models are listed, see later) that give the best results. It must be 
remembered that the reduction is expressed relative to the unconditional case. This 
explains partly the small reduction obtained by the head data, as they are an 
important ingredient of the deterministic model set-up. Concludingly it is re- 
marked that for the ChT-conditional cases the average reduction of the coefficient 
of variation at the central part of the plume is of the order 2. In terms of concentra- 
tion variances, the numerical output revealed variance reductions of the order 4- 
10. 

The number of grid cells affected by leachate from the contaminant source drops 
from 95 for the unconditional simulation to about 80 for the conditional ones. This 
decrease of the spatial extent of the plume corresponds to the previously observed 
reduced spatial spreading of the migrating solute. With the size of one cell being 
.I25 X ,125 km2, the aquifer area affected by leachate is about 1.25 km?. The 
central area of the plume, characterized by nodal concentrations of > 100 mg/l, 
occupies about 22 grid cels and differs little from one simulation to the other. 

The areal extent over which a concentration observation exerts influence when 
applied to a conditional transport simulation was examined for threk ChT-data 
configurations. These cases have been denoted ChT-conditl, ChT-condit2 and 
ChT-condit3 in Table 4. The first and the third simulation are based on 3 concent- 
ration data, while the second includes only 2 data points. The difference is the 
spatial arrangement of the data: in the ChT-conditl model the distance from the 
landfill to the most remote point is about 0.6 km, while this is more than 1 km for 
the other two cases. The expected plumes were very similar in all 3 cases, but the 
uncertainties are significantly smaller for the ChT-condit2 and -condit3 cases. 

Probabilistic Breakthrough Curve 
In Fig. 11 the expected breakthrough curves in well .I47 for three different simula- 
tions are shown. Also shown are the 95 % confidence envelopes. The background 
concentration is equal to 50 mg/l. As can be seen, both the expected values and the 
uncertainties are affected by the conditioning process. In the unconditional case 
the 95 % confidence interval leaves room for unacceptable large uncertainties. The 
smallest uncertainties are found for the ChT-conditional simulation, in the trans- 
ient as well as in the steady-state part of the curve. 

Discussion and Conclusion 

The effect of conditioning solute transport simulations on transmissivity, head and 
concentration data has been examined for a practical case of groundwater contami- 
nation. The unconditional simulation, which is used as a reference, is based on a 
randomly behaving but autocorrelated transmissivity field whose logarithmic trans- 
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150 Fig. 11. Expected breakthrough curves of 
C1- and 95 % confidence envelopes. 
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form is governed by a stationary normal stochastic process. This results in the 
largest transport uncertainties among all the simulations done. When the simula- 
tions are conditioned on the data, the transport uncertainties are reduced by diffe- 
rent amounts, depending on the number, type and spatial arrangement of the data. 

It was found that when the simulations are conditioned on the head data only the 
head uncertainty is reduced substantially, but the transport uncertainty is little 
affected. The relative concentration uncertainty of the main body of the C1- plume 
was of the order 35 %. This implies that very different spatial transport patterns 
may4exist. Generalizing this notion means that practical model studies of solute 
transport that only employ calibration against head data should be viewed with a 
sound scepticism. It is noted that the variance reducing effect is a relative measure 
and depends on the model set-up, in particular on the boundary conditions. How- 
ever, the important notion is that even when the measured head is fairly well 
reproduced by a simulation model, the transport uncertainty due to the remaining 
head uncertainty and to the unknown spatial distribution of the hydraulic conduc- 
tivity may still be very substantial. But there is absolutely no doubt that an adequ- 
ate knowledge of the head distribution is of fundamental importance to any 
groundwater study. In summary, this means that the head observations are 
necessary but insufficient for predicting the migration of a contaminant in a 
groundwater system. Conditioning the simulations on the transmissivity data re- 
sulted in a much more prominent reduction of the transport uncertainty. But the 
single, most effective data type with regard to transport conditioning is the con- 
centration data. These findings confirm the intimate relationship that exists bet- 
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ween the migration pattern of a solute and the spatial distribution of the hydraulic 
conductivity. Not surprisingly the smallest uncertainties are obtained when alle the 
data are simultaneously taken into account. The reduction of the concentration 
variance of the main body of the plume (> 100 mgll) was locally up to a factor 10. 
The reduction of the average relative uncertainty was of the size 2-3, and it varies 
throughout the domain. 

It was shown, quantitatively, that the spatial arrangement of the data relative to 
the location of the contaminant source and to the plume is of utmost importance. 
Concentration observations that are made in the immediate vicinity of the source 
have only limited value in terms of reducing the transport uncertainty further 
downgradient. Observations that are made at some larger distance from the source 
have a larger global conditioning effect and affect particularly the stretch upgra- 
dient from the data point. 

With respect to the stochastic process that governs the logtransmissivity distribu- 
tion, the conditioning procedure turns it from a stationary into a non-stationary 
process. This is immediately clear in the case of conditioning on the transmissivity 
data. When applying concentration conditioning, only those spatial transmissivity 
constellations that promote contaminant spreading in agreement with the concent- 
ration observations are recognized as being proper realisations of the governing 
process. This process is in general non-stationary, but in the approach that has 
been followed here a specification of its nature is not required. 

The conditional simulations show that the solute migration is described in an 
increasingly unambiguous sense when more and different types of data are taken 
into account. Thus, when the degree of conditioning is increased, the transport 
gradually becomes more deterministic in its nature. In terms of the two physical 
transport mechanisms, advection and dispersion (minus diffusion), it is the advec- 
tive component that is related to the deterministic aspect, and it is the dispersion 
that provokes the stochastic approach. In its essence, the mechanical mixing of the 
solute is related to the velocity heterogeneity, and it is the inability to collect 
sufficient deterministic information about this heterogeneity that creates the need 
for resorting to a dispersive transport term in a modelling situation. In this respect 
it should be noted that a large spreading of the solute is not equivalent to a large 
dispersion. It is the extent to which this spreading is known in a deterministic sense 
or not, i.e. by advection or not, that determines the nature of the transport descrip- 
tion. Thus, in a practical modelling situation one should strive for a maximum 
advective description of the transport, utilizing all the available data and conse- 
quently the need for resorting to dispersion as a transport mechanism will be 
reduced. In this view, one could speak of the data-dependency of the dispersive 
mechanism of solute spreading. Putting this perception of dispersion into a histori- 
cal perspective, the following scenario can be recognized: 

Dispersitivity was originally thought of as a porous medium property that could 
be characterized by a scalar value. Later on its tensorial nature was recognized, and 
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for 2-dimensional isotropic problems it is characterized by a longitudinal and trans- 
verse component (Scheidegger, 1961). Discrepancies between laboratory and field 
measurements of dispersivity, and the observation that the dispersion coefficient 
increases with the mean travel distance of the solute led to the notion of scale- 
dependency. Nowadays the scale effect has been cast in terms of the travel time- or 
distance-dependency, and has been related to the variance and the correlation 
length of the medium (a.0. Dagan (1982), Gelhar and Axness (1983)). The present 
study suggests that in a modelling situation one should bear in mind that the 
dispersive mechanism of transport is a data-dependent phenomenon. Thus a trade- 
off between dispersion and advection exists, and the governing factor is the 
amount, type and spatial configuration of data available to constrain the simula- 
tions. Dispersivities derived from theoretical principles assume uniform flow fields, 
that is, when no flow-constraining information is available whatsoever. They repre- 
sent maximum values, i.e. the amount of dispersion needed when no other data 
than just the stochastic parameters are known. In a practical situation this is of 
course quite unrealistic. The stochastic parameters themselves are derived from the 
field conductivity data, and the latter should, together with all the other data 
material, be incorporated in the simulation model in a deterministic sense. Al- 
though the dispersivities based on the stochastic properties of the logconductivity 
represent maximum values, it is still possible that the needed model dispersion is 
larger. This is due to the fact that it lumps alle the model deficiencies. And these 
uncertainties tend to be larger, the larger the scales of the flow and transport 
domain are. On the one hand, the data-dependency of dispersion makes the 
mechanism even more difficult to handle, as it seems not possible to establish 
straightforward relationships of general validity. On the other hand, however, 
there is the prospect of reducing its magnitude when the advective transport is 
properly calibrated against different data sets of sufficient quantity and quality. 
And this may be a difficult task indeed. 

The flow and transport uncertainties predicted by stochastic simulations in gen- 
eral, and in this study in particular should not be interpreted as absolute quantities: 
Firstly, the uncertainties are related to one model parameter only, the transmissivi- 
ty, assuming the other to be known exactly. 
Secondly, the determination of the stochastic properties of logtransmissivity is 
based on a very sparse data set that was assumed to be without error and to reflect 
information at the scale of the model cells. 

Deterministic model studies that are properly calibrated against extensive data 
material, including observations of head, transmissivity and concentration, may 
form an adequate basis for many practical purposes. Stochastic models offer the 
advantage of being able to quantify the migration uncertainties, but they should 
include conditioning on the mentioned data, otherwise the predicted uncertainties 
may be grossly overestimated. And consequently the expected migration pattern 
may differ considerably from reality. 
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The Monte Carlo method is still the most versatile stochastic transport simula- 
tion method available at present. It allows for quantifying the uncertainties of head 
and concentration through space and time, while very few restricting assumptions 
have to be adopoted. The main disadvantages are the large computation times and 
the fact that the results are not optimised. The conditioning criteria of head and 
concentration used in this work are based on absolute deviations and ensure a 
plausible solution, i.e. a solution in agreement with the data material at a pre- 
defined confidence level, but not an optimal solution. 

The results obtained in this work are related to the specific case study. Although 
it seems reasonable to generalize the findings to some extent, more studies are 
required to further examine the effect of conditioning transport simulations on 
different types of data. This is undoubtedly a subject of great practical importance, 
and therefore it deserves increased attention. 
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Appendix 

Main concepts of geostatistics and turning bands technique. For detailed information see 
Journal and Huijbregts (1978) or Marsily (1986). 

Sernivariograrn - The spatial distribution of an earth parameter, property or variable can be 
characterized by a spatial structure and a randomly fluctuating component. In groundwater 
hydrology such a variable may be hydraulic head or conductivity, concentration, porosity 
etc. When stationary conditions can be assumed, the semivariogram y is directly related to 
the autocovariance C, thus 

1 
y ( h )  = 7 v a r  [ Z  ( x ) - Z  ( x + h ) ]  

and y ( h )  C ( 0 ) - C ( h )  

where C(0): finite field variance, C(h): autocovariance, h: lag vector. 
The stationary condition is often relaxed to weak stationarity, meaning that only the first 
two statistical moments are required to be invariant. Then the expectation is constant, and 
the covariance depends only on the lag 

and ~ I ~ ( x ) Z ( x + h ) l -  m 2 = C ( h )  

In case of statistical isotropy, the lag vector reduces to a lag distance. For practical purposes 
a sample or experimental semivariogram is estimated from the data by 

where N(h): number of data pairs separated by lag h. Grouping of the data pairs in discrete 
lag and angle intervals is usually done. A theoretical model is fitted to the experimental 
semivariogram. 

Simple kriging - kriging is an interpolation technique based on the spatial structure of a 
random variable. The interpolation is optimal in the sense that it provides the best linear 
unbiased estimate. The kriged value z* at an location x, is 

The number of data on which the interpolation is based, n,  is called the nearest neighbour- 
hood. The essence of kriging is to determine the weight coefficients hi, while ensuring a 
minimum estimation variance and unbiasedness of the estimation, thus 

0' ~ E [ ( z * - z ) ~ ]  m i n i m u m  

and E [ Z * - Z ]  = O  

f i e  so-called kriging system is in matrix form 
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and contains terms derived from the semivariogram. 
Kriging is an exact interpolator, i.e. at the data locations it will reproduce the data values. 

Kriging can be used to evaluate the semivariogram by the so-called cross-validation proce- 
dure. This consists of deleting one data point at a time and estimating it on basis of the 
remaining data. 

Universal kriging - Let the non-stationary phenomenon Z(x) be composed of a random 
component R(x) and a deterministic trend or drift m(x), then 

and Z (XI - m  (x) = R ( x )  

where the drift is location-dependent. Assume the residual function R(x) to be stationary, 
then its expected value is location-invariant and equal to zero 

Thus, if the drift can be estimated, then the kriging weights can be based on the auto- 
covariance of the residuals, and kriging would proceed just as previously described. How- 
ever, in practice it is not possible rigorously to estimate simultaneously the drift and the 
covariance structure. This problem is circumvented by working with differences of 
differences of the field variable, which filters out the drift without actually determining it. 
The practical identification of the so-called generalised covariance is done by polynomial 
fitting and cross-validation is used to compare different models and neighbourhoods, see 
references. 

Turning Ban& Method - As kriging is based on the spatial structure underlying a random 
field, it effectively smooths out the random fluctuations. The field variability is reflected in 
the kriging variances. Using a random number generator it is possible to simulate the field 
variability by constructing synthetic versions of it. The turning bands method is one way to 
do so. The TBM replaces the original multi-dimensional problem by a large number of lines 
L radiating from a common origin. A second-order stationary process is assumed and 

where ZN is the field value, XN and ui are location vectors in space and along a line, 
respectively. Zi is a 1-D value generated using a spectral method, see Mantoglou and Wilson 
(1982). 
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