A national approach to risk assessment for drinking water catchments in Australia

R. Miller*, B. Whitehill** and D. Deere*
*Cooperative Research Centre for Water Quality and Treatment, Adelaide SA, Australia, Private Mail Bag 3, Salisbury SA 5108 (E-mail: Rachael.Miller@sca.nsw.gov.au; dandeere@bigpond.net.au)
**Sydney Catchment Authority, Penrith, NSW, Australia, PO Box 323, Penrith NSW 2751 (E-mail: Bruce.Whitehill@sca.nsw.gov.au)

Abstract

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows:

Element 2 Assessment of the Drinking Water Supply System
- Water Supply System analysis
- Review of Water Quality Data
- Hazard Identification and Risk Assessment

Element 3 Preventive Measures for Drinking Water Quality Management
- Preventive Measures and Multiple Barriers
- Critical Control Points

This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event.

It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQMF Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias...
plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.

Keywords Catchment; risk assessment; source protection

Introduction

Water management organisations recognise the importance of a multi-barrier approach to protecting drinking water quality from contaminants. Barriers include source water protection/catchment management, storage management and water treatment. To make the multi-barrier approach effective, a management framework is required for each barrier in place. The first barriers, covered under the overall heading of catchment management, offers an effective approach to protecting catchment areas from threats to raw water quality. As part of this, effective catchment risk assessment provides a structured way to prioritise activities that proactively minimising risks to raw water before they reach the treatment plant.

At its simplest, catchment risk assessment needs to filter the minor acceptable risks from the major unacceptable risks. This involves consideration of the sources of risks, their consequences and the likelihood that the consequences may occur (Standards Australia 1999). Risk assessment in drinking water catchments is intended to provide complete information to risk managers, including water quality managers, catchment managers and regulators so that effective actions are undertaken.

Risk assessment in drinking water catchments and groundwater areas is important because many water quality hazards are generated from land uses or activities within the source. Furthermore, because the risks are controlled by many parties, the method used must be robust and credible to ensure buy-in from multiple external stakeholders and the community.

Many different types of catchment risk assessment methods exist today. This is often due to varying factors such as system operation and the local or state regulatory arrangements. Furthermore, risk assessment is applied in diverse fields, such as health and safety management, engineering structure risk management, environmental management and vulnerability assessment – all tend to use slightly different approaches.

At present, there are two distinct risk assessment approaches being used by water utilities and research organizations. To put it simply, the first approach is related to quantitative risk assessment (QRA) (whether human health or ecological) and is born out of the use of exposure and reference dose data. This includes the selection of assessment and measurement endpoints and the comparison of endpoint water quality measurements or distributions to a guideline value. The second is a qualitative approach involving the use of expert “peer jury” groups assessing water quality issues, either as contaminants, pollution sources or hazard events, and prioritizing these issues from this assessment. Methodologies used include the generic AS/NZS 4360:1999 Risk Management (Standards Australia 1999) and the HACCP system.

A limitation in most QRA application in that the approach is generally not considering multiple contaminants and, therefore, broader priorities for the development of management (treatment) options. The qualitative approach is generally used to cover a broader set of issues but suffers from potentially not being informed by objective evidence, such as actual water quality data leading to unrecognised uncertainties and the potential for biased results from the “expert team”.

R Miller et al. 124

Downloaded from https://iwaponline.com/ws/article-pdf/5/2/123/417612/123.pdf by guest on 30 November 2018
The strong push for a robust and consistent risk assessment method for catchments to be developed in Australia is due to a number of factors, some of which are outlined below:

- the call for better decision making and management relating to water resources;
- the need for industry-endorsed tools to be available for managing the quality of drinking water resources;
- requirements of the NHMRC Framework for the Management of Drinking Water Quality included in the draft 2002 Australian Drinking Water Guidelines;
- requirements of Water Safety Plans promoted by the World Health Organisation Water, Sanitation and Health Programme;
- legislative requirements and meeting due diligence;
- increasing water quality risks and land use pressures;
- water quality incidents (failure of existing barriers);
- economic and social cost of additional barriers and water quality incidents;
- increasing public awareness of catchment management and water quality issues; and
- increasing public expectations on water utilities and regulators to have knowledge of catchment issues and to manage catchments effectively to protect human health.

Methods – reviewing key components of catchment risk assessment frameworks

Risk assessment methods vary over many different components such as driving compliance frameworks, input information, base categorisation (hazard or hazardous-event based) and if they are qualitative or quantitative in assessment. Generically however, there are five main types of risk assessment methods as identified by Deere and Davison (2003).

- Conceptual descriptions of the cause and effect relationships that lead to risks arising from a particular activity or scenario (e.g. Vigneswaran and Deere 2003). These are not quantitative but provide a demonstration of the potential for cause and effect, to rule risks in or out, and are particularly valuable as educative and illustrative tools.
- Qualitative, subjective risk ranking models (e.g. Deere and Davison, 1998; Davison and Deere, 1999; Deere, et al., in preparation). These models are used to rank scenarios, events or options in terms of risk or impact rather than to provide estimates of actuals.
- Semi-quantitative objective risk ranking models (e.g. Deere, et al., in preparation). As for the above bullet point, such models are applied to ranking events, options or scenarios but these use objective data such as occurrence frequencies or receptor population sizes.
- Point-estimate quantitative risk assessment models (e.g. Deere et al., 1998). These models do not represent uncertainty and variability well, although they are very useful in screening level assessments for single hazards and endpoints.
- Probabilistic quantitative models employing randomised frequency distributions to represent one or more elements (Teunis, Davison and Deere, in preparation). These models provide a useful representation of the uncertainty and variability in estimates (Deere, 1998; Nadebaum, et al., 2000a, b).

In addition, one of the key issues associated with assessing and reviewing different catchment risk assessment methods is interpretational issues associated with differing terminology used across different organisations and risk methodologies.

Hazard analysis and critical control point (HACCP)

HACCP arose from engineering risk management thinking approaches and first became established to assess risks to food safety, and was then adapted for drinking water systems. HACCP procedures include the systematic identification of hazards and subsequent implementation of controls to eliminate or reduce any associated risks to consumers. The principal reasoning behind the development of HACCP is that it focuses on prevention rather than on the control of consequences.
water quality management. HACCP employs the approach of qualitative subjective risk ranking. The HACCP approach to risk assessment has now been widely accepted by the Australian Water Industry, mainly because it contains certification processes which fit well into organisational quality management systems and ensures effective reporting.

Under the HACCP process the team must assess all potential risks to water quality, and cover the full water supply system, from catchment to tap. The key steps to HACCP are as follows:

Prerequisites: Establish good operational management practices within an organisation

Step 1 assemble team
Step 2 describe product
Step 3 identify intended use
Step 4 construct flow diagram
Step 5 confirm flow diagram

Principles of HACCP

Principle 1 List all potential hazards; Conduct a hazard analysis; Determine control measures

Principle 2 Determine Critical Control Points (CCPs)

Principle 3 Establish critical limits for each CCP

Principle 4 Establish a monitoring system for each CCP

Principle 5 Establish corrective actions for derivations that may occur

Principle 6 Establish verification procedures

Principle 7 Establish record-keeping and documentation

The revision of the WHO Guideline for Drinking Water Quality (GDWQ) is proposing a more effective approach to safeguarding drinking water in order to help focus available financial and institutional resources on the risks most relevant to public health in the specific setting. Although multiple barriers, including protection of sources, have been recommended by WHO for some time, the current revision is aiming to introduce a management framework for safe water, namely WSPs. WSPs are a systematic approach to understanding the specific hazards relevant in a given water supply and to effective management of the processes most suitable for their control in the given system. Attention is shifted from compliance monitoring to a quality management approach.

WSPs have the following key elements:

- health based targets – developed based on WHO quantitative risk assessment guidelines;
- system assessment- determines the system capability to meet health based targets;
- effective management – control measures – understanding the capabilities and limits of barriers;
- management plans – document system assessment and monitoring, describe actions to be taken during normal operation and incident conditions, including upgrade and improvement and documentation and communication (WHO GDWQ); and
- public health surveillance – verifies that the elements of the WSP are operating properly, including auditing.

Australian/New Zealand Standard for Risk Management AS/NZS 4360

AS/NZS 4360:1999 – *Risk Management* provides a generic framework to establish a risk management process in any organisation. It is targeted as a strategic and operational business tool, designed to help minimise the losses and maximise the opportunities generated by different types of risk. The Standard outlines procedures which one can...
implement to help establish context, identify, assess, analyse, treat, monitor and communicate with regard to risk. It involves the key steps outlined below:

1. Establish the context
2. Identify risks
3. Analyse risks
4. Evaluate risks
5. Accept risks
6. Treat risks

Key values of this approach include:
- ensures consistent terms and definitions are used in different industries;
- explains the role of stakeholders;
- emphasizes the need to communicate at all points of the risk management process;
- stresses the need for prioritising risk treatment; and
- clearly conveys the requirements in a risk management system and process.

Australian drinking water guidelines – framework for the management of drinking water quality

The Framework incorporates a preventative risk management approach by including elements of HACCP, ISO 9001 and AS/NZS 4360:1999 but applies them in a drinking water supply context to support consistent and comprehensive implementation by the water industry.

Out of the four major components to the Framework, the second element relates to the risk assessment process – Assessment of the drinking water supply system. It contains the following elements:
- water supply system analysis;
- review of water quality data; and
- hazard identification and risk assessment.

It should be noted that although listed as discrete components, all 12 elements of the Framework are interrelated and each supports the effectiveness of others.

Like the contemporary application of HACCP-based food safety programs in the food sector, the Framework approach aims to be a fully comprehensive management system in the same way as HACCP is applied within the context of existing good management practices (good manufacturing practices and quality management systems, often termed “HACCP Supporting Programs”). Furthermore, the Framework integrates additional (and yet important) factors of commitment, emergency response and employee training. In that sense both the Framework (and incidentally the WSP) is the equivalent of the Food Safety Plans (FSP) required for food suppliers which must consist of both HACCP and the Supporting Programs. However, the Framework also includes elements such as community consultation, research and development and stakeholder engagement, to reflect the many stakeholders involved in water quality management.

Results and discussion – review of catchment risk assessment approaches in selected Australian and overseas organisations

Drinking water quality management is undertaken in the context of the Australian Drinking Water Guidelines Framework. As such, it was deemed appropriate to review the differing risk assessment methods in the context of their ability to meet the relevant elements of the Framework.

Table 1 outlines the examination of different catchment risk assessment methods that follow HACCP, AS4360, or the WHO Water Safety Plans; and their ability to meet critical components of the ADWG Framework.
Table 1 Review of approaches in Selected Australian and Overseas Organisations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment to Drinking Water Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partnership Agencies</td>
<td>Internal</td>
<td>Yes</td>
<td>Yes</td>
<td>unknown</td>
</tr>
<tr>
<td>External</td>
<td>Water industry only</td>
<td>Water industry only</td>
<td>Flow diagram of the supply from source to customer, identify relevant guidance documents to source operation</td>
<td>HACCP team (multi-disciplinary)</td>
</tr>
<tr>
<td>Assessment of the Drinking Water Supply System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Supply System Analysis</td>
<td>GIS map of catchment and pollutant sources</td>
<td>None</td>
<td>Flow diagram of the process operation developed and validated</td>
<td></td>
</tr>
<tr>
<td>Review of Water Quality Data</td>
<td>Raw water compliance and investigative sampling data used to identify key issues</td>
<td>Raw water compliance and investigating sampling data used to identify key issues</td>
<td>No − Checklist of barriers present, but later use data to determine what barrier was not in place</td>
<td></td>
</tr>
<tr>
<td>Hazard Identification and Risk Assessment</td>
<td>Hazard based</td>
<td>Land use activity, hazardous event and then hazard</td>
<td>Hazardous event as first screen of issue then hazard of most concern in that event</td>
<td></td>
</tr>
<tr>
<td>Hazard information – causes and scenarios</td>
<td>Water quality evaluation parameters used to determine primary consequence</td>
<td>Documented list for referral</td>
<td>Information set out in guidance documents</td>
<td></td>
</tr>
<tr>
<td>Risk assessment level – qualitative or quantitative</td>
<td>Qualitative with outcomes that are Semi-quantitative. Risk = Consequence Score × Probability of Occurrence</td>
<td>Qualitative with outcomes that are Semi-quantitative</td>
<td>Biological, chemical and physical hazards listed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qualitative with some scoring Risk = Frequency × Consequence (duration + magnitude + customers affected)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Residual risk (after controls are taken into account)</td>
<td>Existing controls at pollution sources considered</td>
<td>Yes</td>
<td>No</td>
<td>Both maximum and residual risk scored</td>
</tr>
<tr>
<td>Planning-Preventative Strategies for Drinking Water Quality Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Barriers</td>
<td>Control measures included for upstream and downstream</td>
<td>Upstream</td>
<td>Upstream</td>
<td>Upstream and downstream</td>
</tr>
<tr>
<td>Critical Control Points</td>
<td>Due to their nature catchment preventative measures cannot be critical control points</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Verification of Drinking Water Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking Water Quality Monitoring</td>
<td>Compliance and investigative</td>
<td>Compliance and investigative</td>
<td>Yes</td>
<td>Compliance and investigative</td>
</tr>
<tr>
<td>Short term evaluation of results</td>
<td>Verification by water quality data or auditing of actions</td>
<td>None</td>
<td>Yes (part of Source Protection Manual)</td>
<td>Performance Assessment for reviewing operation of plan</td>
</tr>
<tr>
<td>Scientific and technical validation</td>
<td>None</td>
<td>Yes (part of Source Protection Manual)</td>
<td>Operations</td>
<td>Monitoring of critical limits</td>
</tr>
<tr>
<td>Corrective Action</td>
<td>Risk treatment actions contained in risk action implementation program.</td>
<td>None</td>
<td>Corrective action/contingency plans</td>
<td>Corrective action plans</td>
</tr>
</tbody>
</table>
In addition, there are also various generic criteria for assessing risk assessment methods including:

- **the logical soundness of the method** – its justification based on theoretical arguments or scientific knowledge, and the validity of the model assumptions;
- **completeness** – whether it can assess all aspects of the problem and the degree to which it excludes issues because they are too hard to accommodate;
- **accuracy** – the precision reflected in the confidence level associated with the results;
- **acceptability** – compatibility with existing processes, rational and fair, it is clear and understandable;
- **practicality** – the level of expertise, time and input data required; and
- **effectiveness** – the usefulness of results.

Table 2 outlines the additional criteria including those listed above for the examples of HACCP, AS/NZS 4360, ADWG and the WHO Water Safety Plans catchment risk assessment approaches.

Conclusions and recommendations

Review of several different risk assessment methodologies used nationally and internationally has presented some key outcomes. In general there seems some general grouping of types of approaches:

- those which aim to cover the full drinking water system (HACCP, WHO Water Safety Plans);
- those which cover just the catchment area of the source and do not recognise downstream barriers or processes (WA Water Corporation, SCA);
- those which use water quality data or land use risks as key driving component (WA Water Corporation, NZ, SCA); and
- those which are based primarily on the hazard whilst others are based on a hazardous event (SEQ Water, HACCP).

These differing approaches tend to reflect the different state and international arrangements for responsibility of drinking water supply delivery. However, a risk assessment method can be developed to accommodate differing water supply arrangements.

In line with the ADWG Framework, it is the conclusion of this paper that it is important for the catchment risk assessment methodology to link with existing management systems in place for the full drinking water supply system, from catchment to tap. It is also advantageous to ensure the process is compatible with the Ecological Risk Assessment process, for overall environmental management objectives. Finally, there are benefits of having an approach that fits in well with the broader risk and quality management systems in use by water utilities.

However, it is also suggested that an initial screening process of water quality data is a very valuable step in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework and with the process of Ecological Risk Assessment.

To remedy inconsistency with terminology it was deemed appropriate to base it on that outlined in the ADWG.

As such, it is suggested that the recommended national approach for catchment risk assessment has two key introductory steps:

1. an initial screening risk assessment of key issues via water quality hazards; and
2. a HACCP style risk assessment of activities or “hazard events” that cause water quality hazards.

A flow diagram for the above risk assessment model is outlined in Figure 1.
<table>
<thead>
<tr>
<th>Factor</th>
<th>Sydney Catchment Authority (AS4360)</th>
<th>WA Water Corporation (ADWG Framework)</th>
<th>WHO Water Safety Plans</th>
<th>Melbourne Water Corporation (HACCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logically sound</td>
<td>Sound</td>
<td>Sound</td>
<td>Sound</td>
<td>Sound</td>
</tr>
<tr>
<td>Completeness</td>
<td>Incomplete</td>
<td>Incomplete</td>
<td>Incomplete</td>
<td>Incomplete</td>
</tr>
<tr>
<td>Accuracy</td>
<td>No confidence level, subjective</td>
<td>No confidence level, subjective</td>
<td>No confidence level, subjective</td>
<td>No confidence level, subjective</td>
</tr>
<tr>
<td>Acceptability</td>
<td>Integration into current EMS poor, although progressing, rational and understandable</td>
<td>Integration into current EMS poor, although progressing, rational and understandable</td>
<td>Identifies the need to link with other quality assurance systems, is rational and understandable</td>
<td>Integrates well into current systems and EMS, is rational and understandable</td>
</tr>
<tr>
<td>Practicality</td>
<td>Yes, although reasonably complex</td>
<td>Yes, although reasonably complex</td>
<td>Yes – simple, common sense approach</td>
<td>Yes, although reasonably complex</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Results useful in drinking water quality management process</td>
<td>Results useful in drinking water quality management processes</td>
<td>Very useful, easy to identify when action needs to be taken and how</td>
<td>Very useful, integrate into EMS</td>
</tr>
<tr>
<td>Specific factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis on catchment as a key component in water quality management</td>
<td>Yes</td>
<td>Yes</td>
<td>Partially but not completely</td>
<td>Partially but not completely</td>
</tr>
<tr>
<td>Establishment of water quality targets (through linkage to downstream treatment)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Spatial information</td>
<td>Yes – GIS input partially</td>
<td>Yes – in likelihood partially</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Full reliance on water quality data (regardless of limitations)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Facilitates an increased understanding of source water catchment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, requires flow diagram of system</td>
<td>Yes, requires flow diagram of system</td>
</tr>
<tr>
<td>Includes multi-stakeholder approach</td>
<td>yes, however, water industry only</td>
<td>Yes, however water industry only</td>
<td>Yes, however, water industry only</td>
<td>Yes, however, water industry only</td>
</tr>
<tr>
<td>Factor</td>
<td>Sydney Catchment Authority (AS4360)</td>
<td>WA Water Corporation (ADWG Framework)</td>
<td>WHO Water Safety Plans</td>
<td>Melbourne Water Corporation (HACCP)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Linkage to public health reporting</td>
<td>No</td>
<td>Yes as per MoU notifiable events.</td>
<td>Yes, plan is written by public health regulators</td>
<td>Yes</td>
</tr>
<tr>
<td>General internal reporting</td>
<td>Yes</td>
<td>Yes</td>
<td>Improvement schedule, contingency plans, performance assessment</td>
<td>Yes</td>
</tr>
<tr>
<td>Covers full water supply system</td>
<td>No, just catchment area of source water, it is linked to downstream processes</td>
<td>No, just catchment area of source water, it is linked to downstream processes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Approach aligned with other parts of water supply system</td>
<td>No</td>
<td>Not effectively</td>
<td>Yes</td>
<td>Yes – suitable for full supply system</td>
</tr>
<tr>
<td>Aligned with freshwater ecology values and ERA process</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Suitable for use for small supplies</td>
<td>Yes, but maybe too complex</td>
<td>Yes, but maybe too complex</td>
<td>Yes, a specific approach is outlined for small supplies</td>
<td>Yes, but maybe too complex Certification</td>
</tr>
<tr>
<td>Industry acceptance as robust and credible</td>
<td>Not yet determined</td>
<td>Not yet determined</td>
<td>Following WHO process provides robust and credible values</td>
<td>Certification</td>
</tr>
</tbody>
</table>
Figure 1 Flow diagram of risk assessment model

References

