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Boundary conditions in finite volume schemes for the

solution of shallow-water equations: the non-submerged

broad-crested weir

Luca Cozzolino, Luigi Cimorelli, Carmine Covelli, Renata Della Morte

and Domenico Pianese
ABSTRACT
The broad-crested weir can be regarded as a zone of rapid variation of the bottom elevation that is

short with respect to the characteristic length of the considered domain, and for this reason it can be

conceptually modelled as a bed step. In this paper, the solution of the Riemann problem for the

shallow-water equations over a bed step is exploited in order to simulate the behaviour of the broad-

crested weirs, when these are present at the boundaries of the numerical domain. The issue of the

multiplicity of solutions for this special Riemann problem is discussed, and rules are given in order to

pick up the congruent solution among the alternatives. Finally, the proposed approach is

implemented into a finite volume model for the approximate solution of one-dimensional shallow-

water equations. Several numerical tests are carried out in order to demonstrate its possibilities and

promising capabilities.
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INTRODUCTION
The quality of the results supplied by numerical models used

for the simulation of flow propagation in rivers, or for the

inundation assessment in floodplains, is influenced by

many aspects. Among others, it is possible to call to mind a

few themes on which researchers and technicians have con-

centrated their efforts, namely the influence of parameters

calibration such as the roughness (Vidal et al. ), the fric-

tionmodel used (Burguete et al. ), the characterization of

simplified flowpropagationmodels (Cimorelli et al. ) and

their numerical implementation (Cimorelli et al. ), the

modelling of geometric source terms (Castro et al. ),

and the influence of coarseness and structure of the compu-

tational meshes (Schubert et al. ).

In the literature, particular attention has been paid to the

implementation of the boundary conditions, because in prac-

tical computations the numerical domain is truncated at

limits that are fixed by the modeller prior to the compu-

tations. The information that the flow could freely exchange
with the external physical domain must be supplied through

these boundaries, and the effects of incorrect implemen-

tations, uncertainties, or lack in the quality of physical

representation, can propagate inside the numerical domain.

Many efforts have been made in order to model special con-

ditions, such as non-reflective boundary conditions at river

estuaries (Hu et al. ), to take into account the uncertain-

ties introduced by the use of the rating curves as boundary

conditions (Pappenberger et al. ; Domenighetti et al.

), and to enhance the physical representativeness of

boundary conditions in one-dimensional flow propagation

models with velocities significantly variable through the

cross-section (Costabile & Macchione ). Real world

applications, such as irrigation canals and sewer systems,

are often equipped with measure and control structures, or

other types of structures that can interfere with the flow,

and recent results have been presented in order to enhance

the modelling of internal and external boundary conditions
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Figure 1 | Broad-crested weir scheme.
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such as sluice gates (Morales-Hernàndez et al. ), weirs

(Guerra et al. ) and bridges (Catella & Bechi ).

In the present paper, attention is focused on structures

such as Venturi flumes, broad-crested weirs, sills and side-

weirs, and all those structures that can act during their life

as broad-crested weirs. Check-dams and other structures

used for the control of the erosion in mountain streams, or

used for the protection of areas prone to debris flows (Coz-

zolino et al. a), also belong to this category because they

behave as flow control devices before being filled by the

blocked sediment. In a similar fashion, in small run-of-

river water power plants the fixed diversion barrages can

act as weirs during high flow periods. In the literature, the

weir boundary condition has been often implemented con-

sidering the classical weir discharge formula (Zhao et al.

), but this approach is rigorous only when the flow

upstream is steady and subcritical, while its applicability is

lost when the flow is supercritical or it is rapidly varied in

space and time in proximity of the weir (Sobey ). If

the numerical model is required to work in the variable con-

ditions that can be found during transients, including

supercritical flow, blocking, impact of bores and flow rever-

sal, a general treatment of the boundary condition is

required. The application of such an approach to the finite

volume schemes is the main subject of the present work.

Different mathematical models have been proposed for

the simulation of the flow in open channel networks.

Among others, the one- and two-dimensional shallow-

water equations, and the De Saint Venant equations, have

been widely used for their ability to take into account not

only smoothly varying flow conditions, but also flow discon-

tinuities such as hydraulic jumps, moving bores and the flow

propagation over dry beds. In order to restrict attention on

the mathematical features that characterize the problem of

the weir boundary conditions, we simplify the setting of

our discussion, and for this reason the propagation model

considered here is the system of the one-dimensional

shallow-water equations, written in conservative form

@u
@t

þ @f uð Þ
@x

¼ sb uð Þ þ sf uð Þ (1)

In Equation (1), the symbols have the followingmeaning:

u¼ (h hu)T and f(u)¼ (hu 0.5gh2þ hu2)T are the vectors of
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the conserved variables and of the corresponding fluxes,

respectively, h¼water depth, u¼ vertically averaged water

velocity, g¼ gravity acceleration constant, T¼matrix trans-

pose, sb(u)¼ (0� ghdz/dx)T and s f(u)¼ (0� ghSf)
T are the

vectors of the geometric and friction source terms, respect-

ively, z¼ bed elevation, Sf¼ friction slope, x¼ longitudinal

coordinate, t¼ time. The one-dimensional shallow-water

equations are established under the hypothesis of rectangular

cross-sections with unitary width, and friction confined to the

channel bed: despite these restrictive assumptions, the

shallow-water equations retain the mathematical structure

of the De Saint Venant equations (existence of two families

of characteristics, structure of the signal speeds), and for

this reason they are well suited for the study of the weir

boundary condition without loss of generality. Moreover, a

procedure for the treatment of the boundary conditions

developed in the setting of the one-dimensional shallow-

water equations can be extended easily to the case of the

two-dimensional shallow-water equations, exploiting the

property of ‘rotational invariance’ of the two-dimensional

shallow-water equations (Toro ; Kutija & Murray ).

The theoretical equation of the broad-crested weir

(Figure 1) can be obtained from the one-dimensional shal-

low-water equations. First, we observe that if the flow is

steady, and the friction is negligible, a solution of Equation

(1) can be found after a space-integration between two

generic cross-sections 1 and 2 where the flow is gradually

varying, obtaining

q h1, u1ð Þ ¼ q h2, u2ð Þ, H h1, u1, z1ð Þ ¼ H h2, u2, z2ð Þ (2)

In Equation (2), q h, uð Þ ¼ hu is the specific discharge,

H h, u, zð Þ ¼ hþ u2= 2gð Þ þ z is the total head, and the
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subscripts 1 and 2 refer to the corresponding cross-sections.

In order to find the weir equation, cross-section 1 is taken

immediately upstream of the weir, while cross-section 2 cor-

responds to the crest of the weir. We make the additional

assumptions that the flow is subcritical at cross-section 1,

and that the tailwater submergence is below the modular

limit (Working Group on Small Hydraulic Structures

), implying that the critical flow conditions are attained

at the crest (Bélanger’s principle). In this case, if a¼ z2� z1
is the height of the weir, we can define the velocity function

(Appendix A.1 in Cozzolino et al. b).

f a, h1ð Þ ¼ Cd a, h1ð Þ
ffiffiffiffiffiffiffiffiffiffi
2gh1

p
(3)

where

Cd a, h1ð Þ ¼ 2 cos
4π þ ϑ

3

� �3
2

,

ϑ ¼ π þ arctan �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� a=h1ð Þ2 � 1

s ! (4)

The velocity function of Equation (3) must be inter-

preted as the flow velocity immediately upstream of the

broad-crested weir in steady subcritical conditions, and it

can be used to obtain the following form of the classic

weir equation

q ¼ h1 f a, h1ð Þ ¼ h1 Cd a, h1ð Þ
ffiffiffiffiffiffiffiffiffiffi
2gh1

p
(5)

In the technical literature, Equation (5) is usually formu-

lated relating the discharge to thewater depth calculatedwith

respect to theweir crest, while the formulation chosen relates

the discharge to the water depth h1 immediately upstream of

the structure. This will come to hand when the subsequent

mathematical developments are considered.

Many numerical schemes for the solution of the shal-

low-water equations, such as the finite volume method, the

spectral volume method, and the Runge–Kutta discontinu-

ous Galerkin, are based on the use of approximate or

exact Riemann solvers for the computation of numerical

fluxes at the interfaces between the computational cells. In

these models the boundary conditions are usually imposed
s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
by means of appropriate values of the numerical fluxes

through the domain boundary interfaces. This approach

has been widely used in the field of shallow-water equations

calculations for the imposition of boundary conditions such

as solid walls, inflows and outflows in sub- and supercritical

conditions (Zhao et al. ; Toro ), and also weirs

(Guerra et al. ).

The broad-crested weir, and other control structures,

can be regarded as bed transitions where the flow character-

istics and the bed elevation have a rapid variation over a

length of metres. Conversely, the characteristic length of

flow propagation problems is of the order of hundreds of

metres, or kilometres, and for this reason all these control

structures could be conceptually modelled in shallow-

water type models as a bed step. Recently, the solution of

the shallow-water equations with a bed step has gained

great attention (Cozzolino et al. ), and now general pro-

cedures for the analytical solution of the Riemann problem

at the frictionless bed step are available for generic flow con-

ditions (Alcrudo & Benkhaldoun ; LeFloch & Thanh

; Han & Warnecke ).

Despite the fact that sudden variations of the flow

characteristics are commonly associated with the conserva-

tion of momentum (Toro ), the energy conservation at

bed steps seems appropriate in many cases (Mynett ),

as proven by the classical treatment of the weir theory.

In Cozzolino et al. (b), the Riemann problem for the

shallow-water equations with a frictionless bed step is con-

sidered, assuming a dry bed state on the bed step. For this

special problem, it is shown that multiple solutions are

possible for given initial conditions, and that the multi-

plicity of the solutions does not depend exclusively on

the multiplicity of the possible choices of the path, defining

the weak solution in the context of the theory by Dal Maso

et al. (). In the same paper, the idea of using the sol-

ution of this Riemann problem as a building block for

the construction of appropriate weir boundary conditions

is suggested, but the problem of the solutions’ multiplicity

is not solved. In Guerra et al. (), a very similar

approach for the treatment of the submerged and non-

submerged weir boundary conditions is followed, but the

case of supercritical flow passing over the crest is not

taken into account, and consequently, the issue of multiple

solutions is omitted.
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Starting from these considerations, in the present paper

the analytical solution of the Riemann problem for the shal-

low-water equations over a dry bed step is exploited in order

to simulate the behaviour of the non-submerged broad-

crested weir during transients. After having demonstrated

that the classical weir equation is a particular solution of

this special Riemann problem, it is shown how physical evi-

dence from laboratory experiments available in the

literature can be used to pick up the correct solution of

the Riemann problem among the alternatives when multiple

solutions are possible for given initial conditions. Finally,

the proposed approach is implemented into a finite

volume model for the approximate solution of the one-

dimensional shallow-water equations. Numerical tests are

used to demonstrate its performance and its promising

capabilities.
THE BED STEP SHALLOW-WATER EQUATIONS

In order to introduce the frictionless sudden bed elevation

transitions into shallow-water models, we consider the sol-

ution of the bed step shallow-water equations (LeFloch &

Thanh )

@U
@t

þ @F Uð Þ
@x

þH Uð Þ @U
@x

¼ 0 (6)

where the vectors are defined by

U ¼ u
z

� �
, F Uð Þ ¼ f uð Þ

0

� �
, H Uð Þ ¼

0 0 0
0 0 gh
0 0 0

0
@

1
A (7)

The system (Equation (6)) cannot be written in conserva-

tive form because the non-conservative product H Uð Þ@U=@x

is present, and then the classic Rankine–Hugoniot conditions

(Toro ), which drivemoving bores and standing hydraulic

jumps in the shallow-water equations, are no longer valid at

bed discontinuities. In order to take this difficulty into

account, and define the weak solutions for Equation (6), we

resort to the theory of Dal Maso et al. (). If U1 and U2

are the states to the left and to the right of a discontinuity,

respectively, we assume a path s ∈ 0; 1½ � ! φ s, U1, U2ð Þ
om https://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
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connecting in the phase space (h, hu, z) the state U1 to the

state U2, and this path satisfies the following congruency

properties: φ 0, U1, U2ð Þ ¼ U1, φ 1, U1, U2ð Þ ¼ U2,

φ s, U, Uð Þ ¼ U ∀s, U. When such a path is defined, it is

possible to consider the generalized Rankine–Hugoniot

conditions F U2ð Þ � F U1ð Þ� Sφ U1, U2ð Þ ¼ ξ U2 �U1ð Þ, where

the term

Sφ U1, U2ð Þ ¼ �
ð1
0

H φ s, U1, U2ð Þð Þ @φ
@s

s, U1, U2ð Þds (8)

takes into account the effect of the non-conservative

product H Uð Þ@U=@x through the discontinuities, while ξ is

the propagation celerity of the discontinuities. When the

bed is smooth, the classic Rankine–Hugoniot conditions

F U2ð Þ � F U1ð Þ ¼ ξ U2 �U1ð Þ are recovered because the

term Sφ U1, U2ð Þ is null. We observe that the celerity of the

discontinuity is null at bed steps because these are fixed,

and then the generalized Rankine–Hugoniot conditions

reduce to

F U2ð Þ � F U1ð Þ ¼ Sφ U1, U2ð Þ (9)
The analytic solution of the Riemann problem at the dry

step

The classical weir equation (Equation (5)) is valid only in the

hypothesis of steady flow, with subcritical flow conditions

immediately upstream of the structure. Aiming at relaxing

these assumptions, and in order to consider a variety of con-

ditions that can be encountered during transients, we

consider a Riemann problem where Equation (6) is solved

considering the following initial conditions

U x, 0ð Þ ¼ UL, x< 0
UR, x> 0

�
, UL ¼ hL hLuL 0ð ÞT ,

UR ¼ 0 0 að ÞT , a � 0

(10)

Equations (6) and (10) define a special initial-value prob-

lem where the constant states UL and UR are separated by a

discontinuity of the flow variables and of the bottom

elevation, and the quantity a� 0 is interpreted as the height



Figure 2 | Riemann problem for the broad-crested weir: fields of existence of the

solutions.
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of the weir. The self-similar solution of the Riemann problem

defined by Equations (6) and (10) is characterized by the

external states UL and UR, connected by one or more waves

that separate one or more intermediate states, and we call

U1 ¼ h1 h1u1 0ð ÞT and U2 ¼ h2 h2u2 að ÞT the states

immediately to the left and to the right of the bed discontinu-

ity, respectively. In order to define the solution at frictionless

bed steps, we can choose from the literature one of the follow-

ing implicit definitions D1, D2 or D3 for the path linking the

states U1 and U2.

Definition D1 for the path φ

The energy is conserved along the frictionless bed transition

when the discharge through the step is not null (Alcrudo &

Benkhaldoun ), and then the states U1 and U2 are linked

by the condition expressed in Equation (2).

Definition D2 for the path φ

There is a bed elevation zM, intermediate between the

elevations z1 and z2, where a standing hydraulic jump is collo-

cated (Baines&Whitehead ), and the intermediate states

U�
M ¼ h�

M h�
Mu�

M zMð ÞT and Uþ
M ¼ hþ

M hþ
Muþ

M zM
� �T are

connected by the hydraulic jump condition

F U�
M

� � ¼ F Uþ
M

� �
. The state U1 is linked to the state U�

M by

the discharge and head conservation conditions

q h1, u1ð Þ ¼ q h�
M, u�

M

� �
and H h1, u1, z1ð Þ ¼ H h�

M, u�
M, z�M

� �
,

respectively, while the state Uþ
M is linked to the state U2 by

the conditions q hþ
M, uþ

M

� � ¼ q h2, u2ð Þ and

H hþ
M, uþ

M, zþM
� � ¼ H h2, u2, z2ð Þ, respectively. The stateU2 cor-

responds to critical flow conditions.

Definition D3 for the path φ

When the discharge is null, the following conditions are

taken (Han & Warnecke ): h1� a, u1¼ 0, h2¼ 0, u2¼ 0.

The general methods described in LeFloch & Thanh

(), and Han & Warnecke (), can be used to solve

the Riemann problem of Equations (6) and (10), comple-

mented by the definitions D1, D2 or D3 of the path φ

connecting the states at the bed step. In Cozzolino et al.

(b), the cited Riemann problem is solved considering

different states UL, and it is shown that there are initial
s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
conditions that admit multiple solutions. In particular, if

FL ¼ uL=
ffiffiffiffiffiffiffiffi
ghL

p
is the Froude number related to the state

UL, and a=hL is the specific height of the bed step, it is poss-

ible to draw a classification diagram (see Figure 2) inspired

by that presented in Mehrotra (), where eight different

classes of solutions called regimes (from R-I to R-VIII) are

collocated. The curves of the plane (a=hL, FL) separating

the fields of existence of the regimes are described by the

equations contained in Table 1, and from Figure 2 it is

apparent that these fields of existence may overlap partially.

For each regime, the states U1 and U2 can be calculated

using the analytical approach summarized in Table 2,

where the path definitions used are also reported, together

with a brief description of the regime itself.
The numerical broad-crested weir boundary condition

When the definition D1 for the path φ is used, the assump-

tions made in order to establish the solution of the bed

step Riemann problem (discharge and head conservation

through the bed transition) are the same made in order to

establish the broad-crested weir boundary condition. In

this sense, the solution of the bed step Riemann problem

can be considered a generalization of the broad-crested

weir behaviour to general transients. In order to confirm

this, we have only to show that the solution of the Riemann

problem defined by Equations (6) and (10) is congruent with

the weir boundary condition when the flow is stationary.

Aiming at this, we observe that if hL and uL are linked by

Equation (3), the flow conditions corresponding to the



Table 1 | Curves limiting the fields of validity of the regimes in the (a/hL, FL) plane

Curve Definition

AG 1þ F2
L

2
� 3
2

ffiffiffiffiffiffi
F2
L

3
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8F2

L

q
� 3

� �3
,

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8F2

L

q
� 1

� �� 	
� a
hL

¼ 0.

BAMC 1þ F2
L

2
� 3
2

ffiffiffiffiffiffi
F2
L

3
q

� a
hL

¼ 0.

BME FL � a
hL

� 1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

1þ hL

a

� �s
¼ 0.

HB 1þ FL

2

� �2

� a
hL

¼ 0.

OBL FL ¼ 0.

HI FL þ 2 ¼ 0.

Table 2 | Analytical solution of the Riemann problem at the dry step

Regime
Path
definition Analytic solution Brief description

R-I D3 h1¼ 0, u1¼ 0, h2¼ 0, u2¼ 0. FL��2 and then there is cavitation at the bed step.

R-II D3 h1 ¼ hL 1þ FL

2

� �2

, u1 ¼ 0, h2 ¼ 0, u2 ¼ 0. The flow with �2< FL< 0 is blocked.

R-III (1) D1 Find h1 and u1 solving the system

uL þ 2
ffiffiffiffiffiffiffiffi
ghL

p
¼ u1 þ 2

ffiffiffiffiffiffiffiffi
gh1

p
u1 ¼ f a, h1ð Þ

�
.

The flow with �2< FL< 0 passes over the step.

Calculate h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1u1ð Þ2=g3

q
, u2 ¼ h1u1=h2.

R-IV D1 The same as for regime R-III. The flow with 0� FL< 1 moves with head greater than
that strictly sufficient to pass over the step.

R-V D1 h1¼ hL, u1¼ uL. The flow with FL� 1 moves with head greater than that
strictly sufficient to pass over the step.

Find h2 selecting the supercritical flow solution of
H U2ð Þ ¼ H ULð Þ.

Calculate u2 ¼ h1u1=h2.

R-VI D3 u1¼ 0, h2¼ 0, u2¼ 0. The flow with FL� 0 is blocked.

Find h1 solving uL ¼ h1 � hLð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2
h1 þ hL

h1hL

r
.

R-VII
(1)

D1 Find h1 and u1 solving the system

u1 ¼ uL � h1 � hLð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2
h1 þ hL

h1hL

r
u1 ¼ f a, h1ð Þ

8<
: .

The flow with FL> 0 moves with head minor than that
strictly sufficient to pass over the step.

Calculate h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1u1ð Þ2=g3

q
, u2 ¼ h1u1=h2.

R-VIII D2 h1¼ hL, u1¼ uL. The flow with FL� 1 produces a hydraulic jump along
the bed transition.

Calculate h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1u1ð Þ2=g3

q
, u2 ¼ h1u1=h2.

(1): The function f (a, h1) is defined by Equation (3).
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stateUL are those found immediately upstream of the weir in

subcritical stationary conditions. In this case, the point (FL,

a/hL) lies on the arc AB of the curve BAMC in Figure 2, and

the arc AB is the boundary between the fields of existence of

the regimes R-IV and R-VII. From an inspection of Table 2 it

is clear that both regimes R-IV and R-VII supply h1¼ hL and

u1¼ uL for uL ¼ f a, hLð Þ, and then no propagating wave

connects the state UL to the state U1 because U1¼UL. This

shows that the flow field upstream of the weir does not

start to evolve, and that the stationary conditions upstream

of the weir are kept indefinitely. In conclusion, if the flow

UL upstream of the weir is subcritical and stationary, and

it satisfies the weir boundary condition, the solution of the

Riemann problem does not alter this equilibrium.

Having demonstrated that the theoretical weir equation

is a special solution of the Riemann problem considered, we

now consider the issue of the multiplicity of solutions for a

given state UL. Inspection of Figure 2 shows that the field

EGAM admits the regimes R-V, R-VII and R-VIII, while

the field CME admits the regimes R-V, R-VI and R-VIII.

The multiplicity of solutions is not only a consequence

of the multiplicity of choices of the path’s definition, because

the regimes R-V and R-VII, based on the definition D1,

superpose in the field EGAM. This observation seems to

make the analytical solutions presented in Cozzolino et al.

(b) useless for the establishment of a broad-crested

weir boundary condition valid for general conditions and

during transients.

In order to discuss how we can disambiguate the pro-

blem, choosing properly one solution among the

alternatives, we make first some observations on the mean-

ing of the mathematical representation of bed steps. The

shallow-water equations admit solutions containing discon-

tinuities, and these zero-length discontinuities are intended

to represent those phenomena (standing hydraulic jumps,

moving bores) where the velocity and depth vary rapidly

over a finite length. The length where these real fluid

phenomena develop (metres) is often small with respect to

the characteristic length of the problem at hand (hundreds

of metres or kilometres), making the mathematical disconti-

nuity a numerically accurate representation of the physical

phenomena. In a similar fashion, bed discontinuities can

be used not only to represent abrupt steps, but can be used

also to model smooth transitions of the bed where the
s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
elevation varies significantly on a short length (Ostapenko

). For this reason, steps at the end of stilling basin

aprons, broad-crested weirs, inlet and outlet transitions of

Venturi flumes, sills, and other structures, could all be rep-

resented by a bed elevation discontinuity. The substitution

of a finite-length structure with a bed step reduces the com-

putational burden because the use of very fine numerical

grids for the representation of rapid bottom variations is

avoided, and this is convenient. Nonetheless, the savings

made in terms of computational effort do not come for

free, and it is possible that the given initial value problem

admits multiple solutions. This ambiguity arises after the

cancellation of the actual bed profile, which is substituted

by the bed step. In this sense, the bottom step approximation

conserves the memory of the different solutions correspond-

ing to the original bed profiles, but the ability to discriminate

among these solutions is lost. This implies that, when mul-

tiple solutions of the Riemann problem of Equations (6)

and (10) are available, the choice of one solution from the

set of alternatives should be made by the modeller using

the knowledge about the physics of the phenomenon that

is external to the mathematical model, and taking into

account the actual profile of the channel bottom which is

modelled by means of a step. For the case of the broad-

crested weir, we observe what follows.

Exclusion of regime R-VIII

Due to the sub-vertical profile of the broad-crested weir, the

actual length of the bed discontinuity is null, while the

length of the hydraulic jump is always finite. This implies

that the solutions that allow the existence of a hydraulic

jump entirely contained along the upstream face of the struc-

ture (path definition D2) are excluded, and then regime

R-VIII is never appropriate in the present situation.

Regime R-VI prevails over R-V

The sub-vertical profile of the broad-crested weir forces

strong vertical components of the flow immediately

upstream of the weir. For this reason, a structure with

height a greater than a limit defined by the arc BME in

Figure 2 acts as a wall, and the flow is blocked. This implies

that when both regimes R-V and R-VI are solutions of the
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Riemann problem, regime R-VI is chosen and regime R-V is

excluded.

Regime R-VII prevails over R-V

The laboratory experiments conducted by Karki et al. (),

approximately characterized by FL∈ [1.5; 3.7] and a/hL∈
[0.25; 1.25], show that there are values of FL and a/hL such

that the supercritical flow impinging on a non-ventilated sill

with vertical upstream face is able to pass over the structure

without becoming subcritical. In particular, Karki et al.

() present a criterion (represented in Figure 2 with tri-

angles) in order to discriminate between this situation

(regime R-V) and the condition where the supercritical flow

becomes subcritical before passing over the sill (regime R-

VII). Hager & Sinniger () discuss a number of laboratory

experiments from the literature, approximately characterized

by FL∈ [1.5; 10] and a/hL∈ [0.20; 6.5], confirming that there

are conditions where a supercritical flow is able to pass over

the step without causing the formation of a hydraulic jump.

When the bed step is vertical, no ‘hydraulic hysteresis’ effect

(Mehrotra ) is found, the passage from one condition to

the other is abrupt, and the two conditions are always

mutually exclusive for a given couple of values (FL, a/hL). A

limit criterion is suggested also by these authors, and it is rep-

resented in Figure 2 with circles. Both the limit criteria from

the literature, confirmed by the physical experiments, are

very close for FL< 6 to the theoretical curve AG that separ-

ates the field of validity of the regime R-V from the field

where both regimes R-V and R-VII are possible. We conclude

saying that, in order to be congruent with the physical evi-

dence, regime R-VII must prevail over regime R-V in the

field where both solutions are possible, if the upstream face

of the bed step is vertical.
DESCRIPTION OF THE NUMERICAL MODEL

The analytical solution of the Riemann problem for the

broad-crested weir is implemented as a boundary condition

option into the first-order finite volume scheme for the

approximate solution of the shallow-water equations,

derived from the third-order spectral volume model

described in Cozzolino et al. (). The one-dimensional
om https://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
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physical domain is partitioned into NV non-overlapping

control volumes, and the shallow-water equations are inte-

grated in each control volume, obtaining the following set

of ordinary differential equations:

dui

dt
¼ � 1

Δxi
fiþ1=2 � fi�1=2
� �þ sbi þ s fi ,

i ¼ 1, 2, . . . , NV
(11)

where Δxi is the length of the generic finite volume Ci,

ui ¼ hi hui

� �T is the vector of the conserved variables

averaged over Ci, and sbi and s fi are suitable numerical

approximations of the geometric and friction source terms,

respectively. In Equation (11), fiþ1=2 ¼ f u�
iþ1=2, u

þ
iþ1=2


 �
is

the vector of numerical fluxes through the interface iþ 1/2

between the cells Ci and Ciþ1, while

u�
iþ1=2 ¼ h�

iþ1=2 hu�
iþ1=2

� �T
and uþ

iþ1=2 ¼ hþ
iþ1=2 huþ

iþ1=2


 �T
are the vectors of the conserved variables reconstructed to

the left and to the right of the same interface following the

approach by Audusse et al. (). A small limit depth εh

is defined in order to distinguish between dry cells, where

the flow velocity is assumed null, and the wet cells, where

the momentum equation is adjourned as ordinary. The

numerical fluxes are evaluated using the HLLE approximate

Riemann solver (Einfeldt ), while the geometric source

terms sbi ¼ sþbi�1=2
þ s�biþ1=2

is defined as the sum of the inter-

face contributions sbþi�1=2
and s�biþ1=2

, and is calculated

following the approach by Audusse et al. (). While the

hyperbolic part of Equation (11) is solved by means of the

explicit Euler algorithm, the implicit Euler step is used in

order to evaluate the friction terms.

Implementation of the broad-crested weir boundary

condition

In order to show how the solution of the broad-crested weir

Riemann problem can be used to impose the weir boundary

condition, we hypothesize that a broad-crested weir with

height a is present at the right boundary of the one-dimen-

sional domain. In this case, UL coincides with the state in

the right end control volume of the numerical domain,

and we make the positions hL ¼ hNV and uL ¼ huNV=hNV .

After the calculation of the quantities FL and a/hL, the cor-

responding regime for the Riemann problem of Equations
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(6) and (10) is individuated from the classification diagram

(Figure 2), and this allows the calculation of the states U1

and U2 immediately to the left and to the right of the bed dis-

continuity, respectively, using the analytical approaches

reported in Table 2. When multiple solutions are possible,

the disambiguation criteria contained in the preceding sec-

tion are used.

Once U1 and U2 are known, we derive from Equation (9)

the following numerical flux and geometric source term that

are imposed at the end interface of the numerical domain in

Equation (11):

fNVþ1=2 ¼ h2u2
1
2
gh2

2 þ h2u2
2

� �T

,

s�bNVþ1=2
¼ 0

1
2
gh2

2 þ h2u2
2 �

1
2
gh2

1 � h1u2
1

� �T
(12)
Figure 3 | Laboratory dam-break experiment: gauges’ position and initial conditions.
A naive broad-crested weir boundary condition

Prior to evaluating the numerical method proposed in this

section, we describe also a naive implementation of the

weir boundary condition, based on the direct imposition of

the discharge formula of Equation (5). For this naive pro-

cedure, the positions hL ¼ hNV and uL ¼ huNV=hNV are

made immediately upstream of the bed step. If hL� a, an

exact wall boundary condition is used, and then h1 is calcu-

lated assuming the regime R-I if FL<�2, the regime R-II if

�2� FL< 0, and the regime R-VI if FL� 0, while u1¼
u2¼ h2¼ 0. If hL> a, then h1¼ hL and u1¼ uL, while the

specific discharge q over the weir is calculated by means

of Equation (5). Once q is known, the flow characteristics

over the weir are found hypothesizing critical state con-

ditions, and then h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1u1ð Þ2=g3

q
and u2 ¼ h1u1=h2 are

calculated. With these definitions of the states U1 and U2,

the numerical flux and the geometric source term at the

boundary are calculated using Equation (12).

In summary, during the generic transient the naive

boundary condition approximates the solution of the Rie-

mann problem of Equations (6) and (10) by means of the

solution valid for steady subcritical flow. This procedure is

expected to supply accurate results when the state UL lies

close to the arc AB of Figure 2, that is, when the quantity

uL � f a, hLð Þj j is small.
s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
NUMERICAL EXPERIMENTS

In this section, the numerical method proposed is used to

reproduce the results of a laboratory experiment character-

ized by highly variable conditions, in order to verify its

applicability to realistic applications. Other simplified tests

are used to highlight the differences between the procedure

proposed and the naive algorithm described in the preced-

ing section.
CADAM test

The results of the numerical model are compared with the

experimental data of a laboratory dam-break (Hiver ).

The original experimental set-up consisted of a L¼ 38 m

long horizontal channel, with rectangular cross-section of

constant width B¼ 0.75 m, in which a gate separated a

15.5 m long reservoir from the downstream portion of the

channel. A symmetric triangle-shaped sill, 6 m long and

0.40 m high, was located 10 m downstream of the gate,

and the Manning coefficient n¼ 0.0125 s m�1/3 was evalu-

ated for the channel bed. At the upstream end of the

channel, the boundary condition consisted of a wall, while

at the downstream end of the channel a weir with height

a¼ 0.15 m was located. The initial conditions were charac-

terized by a reservoir filled with hu¼ 0.75 m of water, and

a pool filled with hd¼ 0.15 m of water between the bump

and the downstream weir (see Figure 3): the sudden removal

of the gate allowed reproduction of the instantaneous failure

of a dam and the flooding of the pool downstream. Nine
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gauges (G2, G4, G8, G10, G11, G13, G14, G15, G20) were

installed at different distances from the gate (see Table 3), in

order to measure the water depth variations during the tran-

sient caused by the dam failure: in particular, gauges from

G2 to G11 were collocated to the left of the triangular sill

top, while the gauge G13 was collocated at the sill top,

and the gauges from G14 to G20 were collocated to the

right (Figure 3). After the gate removal at t¼ 0 s, the toe of

the dam-break profile reached the sill at about t¼ 3 s, over-

topped it at time t¼ 4 s, and then invaded the pool to the

right, causing the formation of waves in the pool and the

loss of water through the end weir. In order to numerically

reproduce this test, the computational domain is subdivided

into NV¼ 760 uniform finite volumes (Δx¼ 0.05 m), with

time step Δt¼ 0.025 s and limit depth εh¼ 10�7 m, while

the friction slope is calculated using the Manning formula

with roughness coefficient n¼ 0.0125 s m�1/3.

Aiming at the evaluation of the procedure proposed for

the treatment of the weir boundary condition, we determine

if there is a control volume of the experimental apparatus

where the flow is influenced exclusively by the presence of

the weir at the channel end, at least during well-defined

time intervals. In Figure 4, the numerical and the laboratory

experiment results are compared for the gauges from G14 to

G20. At G14, which is immediately downstream of the sill

top, the water height is consistently underpredicted: this

shows that the shallow-water equations cannot take into

account all the real water effects, such as turbulence, flow

separation and mixing with air, which can dominate the

flow immediately downstream of obstacles and topographies
Figure 4 | Laboratory dam-break experiment: comparison between experimental (circles)

and numerical results (continuous line) for gauges G14, G15 and G20 (water

depth).
Table 3 | Laboratory dam-break experiment: gauge positions

Gauge Abscissa (m)

G2 17.5

G4 19.5

G8 23.5

G10 25.5

G11 26.5

G13 28.5

G14 29.5

G15 30.5

G20 35.5

om https://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
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with high curvature. Nonetheless, a closer inspection of the

laboratory and numerical results at G14 shows that it is

possible to individuate two time intervals (t∈ [25; 40] and

t∈ [52; 72]) characterized by zero depth, and this guarantees

the separation between the flows to the left and to the right

of the triangular sill, during the same intervals.

The gauges G15 and G20 are collocated in the pool at a

short distance from the end weir, and are characterized by

complicated water depth patterns, due to the interaction

between the waves overtopping the triangular sill and the
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waves partially reflected by the weir. Despite these strong

interactions, the numerical and the experimental results

agree quite well. In particular, recalling the observations

made for G14, it is clear that for times t∈ [25; 40] and t∈
[52; 72] the flow in the pool is governed only by the presence

of the weir. For these time intervals, the numerical results

follow almost perfectly the experimental results, thus

indirectly confirming the applicability of the proposed pro-

cedure to the treatment of the weir boundary condition.

In order to appreciate the intrinsic difficulty to

implement correctly a boundary condition able to reproduce

the weir behaviour during transients, it is instructive to

inspect the results supplied for the same study case by

other authors (gauge G20 of Figure 14 in Rebollo et al.

; Figure 12(d) in Zhou et al. ). The numerical

methods proposed in these works underestimate the labora-

tory results in the zone close to the weir, showing that the

implementation of this type of boundary condition is not a

trivial task.

The numerical results of the naive procedure are not

reproduced here because they behave well for this test

case, and are almost indistinguishable from the numerical

results supplied by the complete procedure. In order to

investigate this circumstance, we consider the flow con-

ditions in the last cell of the numerical domain. In

Figure 5, the trajectory of these flow conditions is plotted

in the plane (a/hL, FL), having set hL ¼ hNV and

uL ¼ huNV=hNV . The inspection of the figure shows that,

during the simulation, the flow conditions in the last cell

of the numerical domain lie very close to the arc separating
Figure 5 | Laboratory dam-break experiment: the crosses represent the trajectory in the

(a/hL, FL) plane of the flow conditions immediately upstream of the weir.

s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
regimes R-IV and R-VII, and then very close to the steady

subcritical flow conditions implicitly defined by Equation

(5). In other words, the flow conditions in the last cell of

the domain are in balance with the weir during the simu-

lation. When this happens, the assumptions made to

establish the naive boundary conditions are met, and the

direct use of Equation (5) supplies accurate results.

In general, the time that the weir takes to influence

directly the state UL is proportional to the cell length, and

tends to zero for grid spacing tending to zero. This implies

that the naive boundary condition has the same accuracy

of the complete procedure on refined numerical grids,

because the state UL is always close to a balance with the

boundary condition during the entire transient. This con-

dition is actually met in the present test case, because the

state UL used for the application of the boundary condition

procedures refers to a control volume whose centre is at

only 0.025 m from the downstream end of the channel. Con-

versely, the time needed to drive the state UL towards a

balance with the boundary condition is large for coarse

grids, and the assumptions made to establish the naive

boundary conditions are inconsistent in this case. On

coarse grids, the complete procedure behaves better because

it solves accurately the Riemann problem at the boundary

also for states UL that are not close to the arc AB of Figure 2.

This will be apparent in the following numerical tests.

Supercritical flows over a sill

The proposed numerical method is tested with reference to

the passage of a supercritical flow over a sill where the

energy is conserved. This condition is not a mere mathemat-

ical curiosity, even for very high Froude numbers, being

instead a phenomenon to be considered in many circum-

stances. For example, stilling basins are structures where

the energy dissipation of supercritical flows can be obtained

by forcing the formation of a hydraulic jump, and the contain-

ment of the hydraulic jump roller into the basin is ensured

using a downstream sill. The formation of a supercritical

flow able to jump over the sill is a condition to be avoided

(Hager & Sinniger ). Of course, flow with high Froude

numbers are found in many other conditions, and it is poss-

ible to consider natural and man-originated phenomena

such as the impact of dam-break waves and debris flows on



1246 L. Cozzolino et al. | Boundary conditions in finite volume schemes: non-submerged broad-crested weir Journal of Hydroinformatics | 16.6 | 2014

Downloaded fr
by guest
on 24 January
obstacles, sills and other control structures, and the propa-

gation of flood waves in mountain streams as well.

In this numerical experiment, we consider a channel L¼
10 m long, without friction, where a broad-crested weir with

height a¼ 0.50 m is present at the right boundary, while the

left boundary is open. The initial conditions are characterized

by h x, 0ð Þ ¼ 0:45m and u x, 0ð Þ ¼ 8:50m=s, and the same

values of the depth and velocity are imposed at the left end.

This condition corresponds to the regime R-V, and then the

flow is expected to remain supercritical through the end

sill. In order to perform this numerical test, the compu-

tational domain is subdivided into NV¼ 20 uniform finite

volumes (Δx¼ 0.50 m), and the time step Δt¼ 0.02 s is used.

In Figure 6, the analytic solution of this problem is compared

with the numeric solution (open circles) at time t¼ 10.0 s,

with reference to the water depth h (left panel). Eye inspec-

tion of the figure shows that the analytical and the

numerical solutions are almost indistinguishable, and this is

confirmed by a close inspection of the numerical results tabu-

lated at the end of the calculations. Actually, the procedure

proposed in this paper is capable, by construction, to dis-

criminate the actual flow conditions over the weir, also in

supercritical flow conditions.

In the same panel, the results obtained by the naive

scheme are represented with crosses. The inspection of the

figure shows that the naive treatment introduces a flow

depth error at the right end of the channel, where the flow

is forced to become subcritical. The superficial observation

that the errors are confined to a limited portion of the com-

putational domain could support a general use of the naive

procedure, also in supercritical conditions. In fact, this con-

clusion is illusory, because the bad representation of the
Figure 6 | Supercritical flow over a sill: regime R-V (left panel) and regime R-VII (right panel).
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flow depth at the end of the channel induces an unaccepta-

ble error: if the water depth at the end of the channel is used

to evaluate the specific discharge flowing over the weir by

means of Equation (5), the value q¼ 4.077 m2/s is obtained,

which is in contrast with the analytical solution q¼
3.825 m2/s, and the mass conservation is violated. Of

course, this error is not eliminated if the grid is refined,

because the naive boundary treatment is not able to take

into account the case of supercritical flow upstream of the

weir. This counterexample demonstrates that a general treat-

ment for the weir boundary conditions is required, in order

to correct the issues introduced by simplified approaches.

Another example is considered, with initial conditions

h x, 0ð Þ ¼ 1:00m and u x, 0ð Þ ¼ 4:70m=s, and the same

values of the depth and velocity are imposed upstream,

while a¼ 0.80 m. This time, the flow conditions correspond

to regime R-VII (with FL> 1), and then the supercritical

flow becomes subcritical through a hydraulic jump that

moves backwards. A coarse grid is considered in order to

perform this numerical test, and the computational

domain is subdivided into NV¼ 20 uniform finite volumes

(Δx¼ 0.50 m), while the time step Δt¼ 0.01 s is used. In

Figure 6 (right panel), the analytical solution of this problem

is compared with the numerical solution (open circles) at

time t¼ 3.0 s, with reference to the water depth h. Despite

the numerical dissipation that smooths the flow depth pro-

file, the procedure based on the analytical solution of the

bed step Riemann problem captures with fidelity the pos-

ition of the moving discontinuity, together with the flow

depth at the weir. In the same panel, the results supplied

by the naive boundary conditions are also presented for

the same coarse grid, and it is interesting to observe that
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the naive procedure misses the hydraulic jump position,

while this error can be eliminated if the grid is refined.

The naive and the complete procedures converge to the

same solution when subcritical flow conditions are expected

upstream of the weir, but the complete procedure supplies

more accurate results on coarse grids.
Cavitation at the bed step

Cavitation numerical experiments are commonly used to

evaluate the robustness of numerical methods with respect

to the formation of dry bed (Toro ). A channel L¼ 10 m

long is considered, without friction, where a broad-crested

weir a¼ 0.20 m high is present at the right boundary, while

the left boundary is open. The initial conditions are character-

ized by h x, 0ð Þ ¼ 1:00m and u x, 0ð Þ ¼ �6:30m=s, and the

same values of the depth and velocity are imposed at the

left end. This condition corresponds to the regime R-I, and

then the cavitation of the flow is expected at the toe of the

broad-crested weir. In order to perform this numerical test,

the computational domain is subdivided into NV¼ 20 uni-

form finite volumes (Δx¼ 0.50 m), and the time step Δt¼
0.025 s is used. In Figure 7, the analytical solution of this pro-

blem is compared with the numerical solution (open circles)

at time t¼ 0.2 s, with reference to the water depth h. Despite

the coarse numerical grid used, the numerical procedure

based on the analytical solution of a bed step Riemann prob-

lem seems to capture the main features of the problem,

namely the strength of the rarefaction and its position,

while the discharge through the end weir is null as expected.
Figure 7 | Cavitation at the weir: comparison between the analytical solution and the

numerical experiments.

s://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
In the same figure, the results supplied using the naive bound-

ary condition are represented. It is seen that a spurious wave

appears in the naive solution. In fact, the naive boundary con-

dition supplies a discharge greater than zero through theweir

at the beginning of the transient, and this in turn causes the

overestimation of the thrust exerted by the weir on the flow,

with a consequent acceleration of the flow. Also in this

case, the spurious wave introduced by the naive treatment

of the boundary condition disappears if the grid is refined

and very short time steps are used.
Subcritical flow chocked at the bed step

In the present test case, we consider a subcritical flow with

energy insufficient to pass over the broad-crested weir, and

for this reason it is chocked by a bore that moves upstream

while critical conditions are attained at the weir crest

(regime R-VII with FL< 1). In a channel L¼ 10 m long, with-

out friction, where a broad-crested weir a¼ 0.50 m high is

present at the right boundary, and the left boundary is

open, the initial conditions are characterized by

h x, 0ð Þ ¼ 1:00m and u x, 0ð Þ ¼ 1:50m=s, and the same

values of the depth and velocity are imposed at the left end.

In order to perform this numerical test, the computational

domain is subdivided into NV¼ 20 uniform finite volumes

(Δx¼ 0.50 m), and the time step Δt¼ 0.05 s is used. In

Figure 8, the analytical solution of this problem is compared

with the numerical solution (open circles) at time t¼ 0.5 s,

with reference to the water depth h. Inspection of the figure

shows that the numerical dissipation smooths the numerical
Figure 8 | Subcritical flow chocked at the weir: comparison between the analytical sol-

ution and the numerical experiments.
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solution, but the strength of the bore and its position are cap-

tured correctly by the procedure proposed. In contrast, the

results supplied by the naive boundary conditions show

that the position of the bore is missed due to the underestima-

tion of the discharge at the beginning of the transient. Results

might improve by refining the numerical grid. This example

shows that major differences can be found between the sol-

utions obtained with the proposed procedure and the naive

boundary conditions alsowhen a subcritical flowapproaches

the weir. In particular, the complete procedure supplies

better results on coarse grids because it can take into account

the unbalancing between the boundary condition and the

flow upstream of the weir.
CONCLUSIONS

In this paper, it has been shown that the classical weir

equation can be regarded as a stationary solution of the Rie-

mann problem for the bottom step shallow-water equations,

obtained assuming the energy conservation at the bed step

and the dry bed state over the step top. Recalling that this Rie-

mann problem may exhibit multiple solutions for the given

initial conditions, for the first time the experimental evidence

from the literature has been used to define selection criteria

able to extract only the physically congruent solution. Finally,

the analytical solution of this special Riemann problem has

been exploited in order to implement the broad-crested

weir boundary conditions in a finite volume scheme for the

solution of the shallow-water equations.

The methodology proposed, which generalizes the non-

submerged broad-crested weir formula to transient flow con-

ditions, has been verified using the results of a dam-break

laboratory experiment, confirming its ability to reproduce

the expected flow behaviour during transients. In order to

highlight the merits of the procedure, an exhaustive evalu-

ation has been accomplished comparing its results with

those supplied by a naive boundary condition based on the

direct use of theweir formula.When the solution is character-

ized by subcritical flow conditions upstream of the weir, the

complete procedure and the naive boundary condition con-

verge to the same solution during a grid refinement process,

but the complete procedure supplies more satisfactory results

on coarse grids. Moreover, the procedure based on the
om https://iwaponline.com/jh/article-pdf/16/6/1235/387476/1235.pdf
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analytic solution of the weir Riemann problem is able to

tackle the case of a supercritical flow that remains supercriti-

cal when passing over the broad-crested weir, while the naive

boundary conditions cannot discriminate this condition.

In conclusion, the procedure based on the solution of a

Riemann problem has a wider application than those based

on the direct use of the weir formula, because it incorporates

more physical situations, and its results are less sensitive to

the grid density. Despite a nontrivial mathematical back-

ground, the presented methodology is recommended

because it is easy to implement, its computational burden

is negligible, and its application is not inhibited by a compli-

cated and scarcely robust numerical machinery.
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