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Abstract

Background: Pancreatic cancer is the fourth-leading cause
of cancer death in both men and women in the United States.
The currently identified common susceptibility loci account
for a small fraction of estimated heritability. We sought to
estimate overall heritability of pancreatic cancer and partition
the heritability by variant frequencies and functional
annotations.

Methods: Analysis using the genome-based restricted
maximum likelihood method (GREML) was conducted
on Pancreatic Cancer Case-Control Consortium (PanC4)
genome-wide association study (GWAS) data from 3,568
pancreatic cancer cases and 3,363 controls of European
Ancestry.

Results: Applying linkage disequilibrium- and minor allele
frequency-stratified GREML (GREML-LDMS) method to
imputed GWAS data, we estimated the overall heritability of
pancreatic cancer to be 21.2% (SE ¼ 4.8%). Across the func-

tional groups (intronic, intergenic, coding, and regulatory
variants), intronic variants account for most of the estimated
heritability (12.4%). Previously identified GWAS loci
explained 4.1% of the total phenotypic variation of pancreatic
cancer. Mutations in hereditary pancreatic cancer susceptibil-
ity genes are present in 4% to 10% of patients with pancreatic
cancer, yet our GREML-LDMS results suggested these regions
explain only 0.4% of total phenotypic variance for pancreatic
cancer.

Conclusions: Although higher than previous studies, our
estimated 21.2% overall heritability may still be downwardly
biased due to the inherent limitation that the contribution of
rare variants in genes with a substantive overall impact on
disease are not captured when applying these commonly used
methods to imputed GWAS data.

Impact:Ourwork demonstrated the importance of rare and
common variants in pancreatic cancer risk.

Introduction
Pancreatic cancer is one of the most lethal malignant neo-

plasms across theworld. The highest incidence andmortality rates
are found in North America and Western Europe, followed by
other more developed regions (1). Pancreatic cancer is currently
the fourth-leading cause of cancer death in both men and
women in the United States, responsible for an estimated
44,330 deaths in 2018 (2). By 2030, pancreatic cancer is predicted
tobecome the secondmost commoncauseof cancermortality (3).

Up to 10% of patients with pancreatic cancer report having a first-
degree relative (FDR) affected by the disease, and up to 10% of all
newly diagnosed patients with pancreatic cancer harbor a germ-
line mutation in a hereditary pancreatic cancer susceptibility
gene (4–6).

Although only a handful of studies have examined the herita-
bility of pancreatic cancer, a large population-based twin study in
European countries estimated the heritability of pancreatic cancer
to be 36% (95%CI, 0%–53%; ref. 7). Inherited geneticmutations
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in 11 genes including BRCA2, ATM, CDKN2A, PALB2, BRCA1,
PRSS1, STK11, MLH1, MSH2, MHS6, and PMS2 have been
associated with an increased risk of pancreatic cancer. Overall,
8% to 30% of patients with familial pancreatic cancer (FPC;
refs. 8–11) and 3% to 10% of unselected pancreatic cancer
cases (4–6) harbor a deleterious mutation in one of these 11
genes, demonstrating the important role of these genes in the
pancreatic cancer susceptibility. Recent genome-wide association
studies (GWAS) in European (12–17) and Asian (18, 19)
populations have identified 26 independent common suscep-
tibility loci for pancreatic cancer. Despite the large sample sizes
of these GWAS, the identified common susceptibility loci
together explain <5% of the total phenotypic variation
(pancreatic cancer/not pancreatic cancer) for pancreatic can-
cer (20, 12, 21). Comparing this with the family-based estimate
of heritability (36%; ref. 7), it appears that a large proportion of
heritability is unexplained, highlighting the so-called "missing
heritability" problem. Except for some conditions, such as age-
related macular degeneration in which heritability is substan-
tially explained by a small number of common variants of large
effect, for most complex traits or diseases the proportion of
heritability explained remains small despite a large number
of identified variants (22). Potential sources of missing heri-
tability are thought to be either rare variants not well tagged by
GWAS arrays or the common variants that have not yet reached
statistical significance in prior GWAS studies. Given that genetic
architecture varies across traits, the sources of missing herita-
bility are likely variable as well.

To better understand the sources of missing heritability,
approaches including the genomic relatedness-based restricted
maximum-likelihood (GREML) were developed to quantify
the cumulative effects of causal variants in populations of
unrelated individuals (23). Heritability estimation using ped-
igree data is a foundation of genetic epidemiologic studies.
However, given the late age of onset and rarity of pancreatic
cancer, there is limited power even in studies using the largest
registries to estimate the heritability of pancreatic cancer (24).
In addition, it has been suggested that pedigree-based herita-
bility estimates can be upwardly biased due to the sharing
of nongenetic factors among pedigree members (25, 26). In
contrast, newer methods such as GREML, that estimates
genetic relationships using genome-wide array, are thought
to overcome this bias. The early version of GREML, single-
component GREML (GREML-SC), has been widely applied in
GWAS to estimate heritability. In pancreatic cancer GWAS,
heritability using this approach was reported to range from
9.8% to 18% (12, 21, 20).

However, despite its wide application in GWAS studies, heri-
tability estimated fromGREML-SC is known to be biased (27). To
overcome this bias, a multicomponent GREML approach was
developedwhich allows for stratification onminor allele frequen-
cy (MAF) and linkage disequilibrium (LD). The LD- and MAF-
stratified GREML (GREML-LDMS) has been shown to produce
more valid estimates of heritability across different simulated
scenarios (27, 28). The multicomponent GREML approach not
only provides less biased heritability estimates but also allows
for the estimation of heritability components from different
variant sets.

The goal of this studywas to understand the genetic architecture
of pancreatic cancer by applying a multicomponent approach to
GWAS array data after imputation.

Materials and Methods
Study participants

The data used in this study were obtained from the Pancreatic
Cancer Case Control Consortium (PanC4) GWAS, which com-
prises 9 hospital-based or population-based case–control studies
(http://panc4.org; ref. 12). Participating sites include Johns Hop-
kins Hospital (Baltimore, MD), Mayo Clinic (Rochester, MN),
MD Anderson Cancer Center (Houston, TX), Memorial Sloan-
Kettering Cancer Center (New York, NY), Yale University
(New Haven, CT), University of Toronto (Toronto, Canada),
University of California San Diego (San Diego, CA), Queensland
(Queensland, Australia), and International Agency for Research
on Cancer (Central Europe). Cases were defined as individuals
with adenocarcinoma of the pancreas and controls were indivi-
duals without a diagnosis of pancreatic cancer sampled from the
general population or hospital catchment area as described pre-
viously (13). In brief, the mean age of cases was 64.7 years
compared with 63.1 years in controls, 58% of the participants
were male and 95% reported European Ancestry. This study was
reviewed and approved by the Institutional Review Board of the
Johns Hopkins University School of Medicine, and of each par-
ticipating institution. Informed consent was obtained from all
participants in this study.

Genotyping, imputation, and quality control
A total of 7,956 PanC4 participants were genotyped with the

IlluminaHumanOmniExpressExome-8v1 array; additional var-
iants were imputed using IMPUTE v2 (29) to the 1000 Genomes
(phase III, v3; ref. 30) reference panel. Details on the genotyping
and imputation have been described previously (13). After impu-
tation, the genotype imputation probabilities were converted to
hard genotype calls using PLINK (the genotype with the highest
probability was the hard genotype unless the difference between
the highest two probabilities is less than 0.1, in which case
genotypes were set to missing; ref. 31). The following quality
control filters were applied to the 81,671,345 autosomal variants
in accordance with the GREML recommendations in which we:
(i) removed 372 known non-European samples, (ii) dropped
variantswith INFO score less than0.50, (iii) dropped variants that
failed Hardy–Weinberg equilibrium exact test at P < 10�6, and
(iv) dropped variants with a minor allele count of less than 5
(equivalent to aMAF <0.0003). After quality control checks, 1.9%
variants with missingness greater than 5% were excluded, and
60%of the variants were dropped due to beingmonomorphic. As
GREML is sensitive to cryptic relatedness, genetic relatedness was
determined using 99,138 common (MAF > 0.05) and indepen-
dent (pairwise r2>0.20) variants directly genotyped in thedataset.
At a relatedness cutoff of 0.025, 653 distantly related individuals
were excluded. The final dataset contained 6,931 samples and
16,184,129 variants (Supplementary Fig. S1). Annotation of the
variants was obtained from ANNOVAR (32). The functional
predictions were derived from the NCBI Reference Sequence
Database (33).

Statistical analysis
Estimation of heritability using GREML-LDMS. The proportion of
phenotypic variation explained by all imputed variants was
estimated in a GREML-LDMSmodel. Variants were stratified into
2MAF bins (MAF < 0.01 andMAF� 0.01), as well as 2 LD groups
as aboveor below themedian regional LD score. A slidingwindow
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method was used to determine the regional LD score for each
variant (28). The genetic relationship matrix (GRM) from each
MAF-LD stratum were calculated and fitted jointly in a mixed
linearmodel using the average information approach for variance
estimation. Estimates of variance were transformed from the
observed 0 to 1 scale to the unobserved continuous "liability"
scale using a probit transformation (34). A disease prevalence of
0.0149 was specified, which corresponds to the lifetime risk of
being diagnosed with cancer of the pancreas for U.S. whites in the
2009 to 2011 SEER report (35). All analyses were adjusted for age,
sex, and the first 20 principal components. The variance in the
liability scale was reported along with its SEs. Potential bias in the
estimated heritability due to residual population stratification
and/or relatedness was quantified by comparing the variance
explained by individual chromosomes in a separate analysis to
that in a joint analysis, as previously described (36). For all
analyses, SEs of the summed variance were calculated from the
sample variance/covariance matrix using the delta method.

Genomic partitioning by chromosome. To determine the variance
captured by each autosomal chromosome, the variants in 4MAF-
LD groups were further allocated to 22 autosomal chromosomes,
resulting in 88 MAF–LD–chromosome strata. The Fisher scoring
approach was used in this analysis for variance estimation. The
variance captured by each chromosome was aggregated from the
variance due to 4MAF–LD groups allocated to each chromosome.
Linear regression was performed to assess the correlations
between variance explained by an individual chromosome and
the length of the chromosome, defined as the total number of
variants in the chromosome.

Genomic partitioning by MAF. To improve the resolution in
the MAF distribution of causal variants, variants were binned
into 6 MAF categories: 0.0003 �MAF < 0.01, 0.01�MAF < 0.10,

0.10 �MAF < 0.20, 0.20 �MAF < 0.30, 0.30 �MAF < 0.40, and
MAF� 0.40. Variants in eachMAF category were then stratified by
their regional LD score (above vs. below median LD) as done
previously, resulting in 12 MAF-LD strata. GRMs calculated from
each stratum were fitted jointly in a mixed linear model. The
variance captured by each MAF category was aggregated from the
variance due to 2 LD strata within the MAF category.

Genomic partitioning by functional annotations. Imputed variants
were categorized in 4 functional groups: coding (including exonic
and splicing variants); intergenic; intronic; and regulatory
[including noncoding RNA, variants in untranslated regions
(UTR), and upstream/downstream variants]. Variants in each of
the 4 functional groups were further stratified into 2 MAF cate-
gories and2LDgroups as in previous analysis. In the joint analysis
of all functional groups, the variance explained by each functional
category was summed from the variance due to 4 MAF–LD strata
within the functional category.

Contribution of GWAS loci. A total of 26 loci previously identified
by GWAS have reported to be significantly associated with pan-
creatic cancer risk at the genome-wide level (12–19). The index
SNP or the variants with the strongest LD (pairwise r2 in 1000
Genomes EUR population) to the index SNP were included in
the estimate to capture the GWAS signals. Then all variants
within �250 kb of the index SNP were grouped together with
the index SNP as a single genetic component. The remaining
variants across the genome were stratified into 2 MAF categories
and 2 LD groups as in previous analyses. The variance explained
by the GWAS loci was estimated by fitting 5 GRMs jointly in a
mixed linear model.

Contribution of established FPC genes. To evaluate the contribu-
tion of established FPC genes, all variants located within �50 kb

Figure 1.

MAF and functional annotation of PanC4 imputed variants. A,MAF distribution of imputed variants passed all quality control filters showed that majority of these
variants had an MAF < 0.05. B, Imputed variants were annotated into 6 functional groups by ANNOVA, among which intergenic (52.7%) and intronic (37.2%)
variants were the 2 largest groups.
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of gene boundaries (30 UTR to 50 UTR) of these genes were used to
calculate a single GRM. The remaining variants across the genome
were stratified into 2MAF categories and 2 LD groups as described
previously. The variance explained by these 11 genes was esti-
mated by fitting 5 GRMs jointly in a mixed linear model.

Results
The final analytical population included 3,568 pancreatic can-

cer cases and 3,363 controls, all of whom were of European
ancestry and ages 40 years or older. Cases and controls were
similar in sex and age distributions. Fig. 1A shows the distribution
of MAFs in the final dataset containing 16,184,129 variants. The
majority of the variants have aMAF < 5%. The remaining variants
are evenly distributed across the MAF frequency categories. More

than half of the variants in the final dataset are intergenic (52.7%)
or intronic (37.2%). About 1% of the variants were located in
coding regions (Fig. 1B).

In PanC4 study, imputed variants explained in total of 21.2%
(SE¼ 4.8%) phenotypic variation for pancreatic cancer (Table 1).
We assessed the potential inflation due to residual population
stratification and/or cryptic relatedness by examining heritability
on each individual chromosome, and obtained an estimate of
0.31%, suggesting minimal inflation.

Genomic partitioning of the estimated heritability can provide
valuable insights on the underlying genetic architecture of the
disease. The estimated variance associated with each autosomal
chromosome is shown in Fig. 2. Chromosome 9 accounted for
the largest proportionof genetic variation (h2¼2.3%, SE¼1.6%),
followed by chromosome 7 (h2 ¼ 2.1%, SE ¼ 1.8%).

Table 1. Estimates of variance explained by imputed variants from GREML-LDMS analysis

Above mean LD Below mean LD
Est SE Est SE Row sum SEa No. variants (%)

MAF < 0.01 0.052 0.037 0 0.051 0.052 0.036 8,354,405 (51.6%)
MAF � 0.01 0.014 0.017 0.146 0.032 0.160 0.035 7,829,724 (48.4%)
Column sum 0.067 0.040 0.146 0.058
Total sum 0.212 0.048
No. variants (%) 8,092,536 (50%) 8,091,593 (50%)

Abbreviation: Est, estimate.
aSE for row sum and column sum was calculated from variance/covariance matrix.

Figure 2.

Estimated variance explained by imputed variants on individual chromosome stratified by MAF and LD. Variants on each chromosome were stratified into 2 MAF
categories and 2 LD groups. The estimated variance associated with individual chromosomewas aggregated from the variance explained by 4 MAF–LD groups.
This analysis ranks chromosome 9, 7, 16, 8, 5, 2, and 1 as top contributors to the estimated heritability.
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Chromosomes 8 (h2 ¼ 1.8%, SE ¼ 1.7%), 16 (h2 ¼ 1.8%, SE ¼
1.4%), 5 (h2¼ 1.5%, SE¼ 1.9%), 2 (h2¼ 1.5%, SE¼ 2.0%), and 1
(h2 ¼ 1.5%, SE ¼ 2.0%). Common susceptibility loci for pancre-
atic cancer have been identified in GWAS studies on each of these
chromosomes. Regression of the variance explained by individual
chromosomes on the length of the chromosome found no corre-
lations (Supplementary Fig. S2).

Partitioning of the estimated heritability by 6 MAF categories
found a substantial amount of genetic variation for pancreatic
cancer attributed to rare variants, with h2¼ 6.9% (SE¼ 3.8%) for
variants with MAF < 0.01, corresponding to one-third of the
estimated heritability (Fig. 3). Variants with 0.01 � MAF <
0.10 explain a comparable amount of variance for pancreatic
cancer (h2 ¼ 6.2%, SE ¼ 3.1%).

In the genomic partitioning by functional groups, intronic
and intergenic variants account for 12.4% (SE ¼ 6.6%) and
6.0% (SE ¼ 6.8%) of phenotypic variance for pancreatic cancer,
respectively (Table 2). Coding variants, including exonic and
splicing variants, despite being the smallest functional group,
explained 1.0% (SE ¼ 3.9%) of the phenotypic variance for
pancreatic cancer. The remaining 1.8% variance (SE¼ 4.5%) was
attributed to variants in regulatory regions (UTR, ncRNA, and
upstream/downstream).

Of the 26 common susceptibility loci reported in GWAS,
23 index SNPs were available in our dataset. For the 3 GWAS
loci whose index SNP was not available in our dataset, including
rs2736098 on chromosome 5p13.33 (TERT-CLPTM1L),
rs10094872 on chromosome 8q24.21 (MYC), and rs4795218

Figure 3.

Estimated variance explained by imputed variants stratified by MAF. Variants were stratified into 6 MAF categories: <0.01, 0.01–0.10, 0.10–0.20, 0.20–0.30,
0.30–0.40, and�0.40. Across the MAF categories, rare variants with MAF < 0.01 accounts for the most variance, followed by variants with MAF ranged
from 0.01 to 0.10.

Table 2. Estimates of variance explained by imputed variants in 4 functional groups

Above mean LD Below mean LD
Est SE Est SE Row sum SE No. variants (%) Subcategory sum SE

Coding MAF < 0.01 0.002 0.022 0.004 0.029 0.005 0.036 103,133 (0.6%) 0.010 0.039
MAF � 0.01 0.005 0.009 0 0.014 0.005 0.017 50,753 (0.3%)

Intergenic MAF < 0.01 0.033 0.036 0 0.059 0.033 0.063 4,305,707 (26.6%) 0.060 0.068
MAF � 0.01 0 0.015 0.027 0.026 0.027 0.030 4,220,706 (26.1%)

Intronic MAF < 0.01 0.042 0.037 0 0.055 0.042 0.061 3,173,417 (19.6%) 0.124 0.066
MAF � 0.01 0.009 0.014 0.074 0.025 0.082 0.028 2,856,226 (17.6%)

Regulatory MAF < 0.01 0 0.024 0 0.036 0 0.043 746,866 (4.6%) 0.018 0.045
MAF � 0.01 0.0002 0.009 0.018 0.014 0.018 0.016 676,634 (4.2%)

Abbreviation: Est, estimate.
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on chromosome 17q12 (HNF1B), variants in strong LD (pairwise
r2) with the index SNP were included in the analysis (Supple-
mentary Table S1). To assess the aggregate contribution of these
26 GWAS loci to the estimated heritability for pancreatic cancer,
72,225 variants located within �250 kb of the index SNP were
analyzed. Together these explained 4.1% (SE ¼ 0.8%) of the
phenotypic variance for pancreatic cancer.

A total of 9,445 variants located within �50 kb of gene
boundaries (30 UTR to 50 UTR) of the established 11 pancreatic
cancer susceptibility genes were evaluated for their contribution
to the estimated heritability. Together these variants explained
0.4% (SE ¼ 0.3%) of the phenotypic variance for pancreatic
cancer.

Discussion
Our study presents a systematic investigation of the genetic

architecture of pancreatic cancer. The heritability for pancreatic
cancer was estimated to be 21.2% (SE ¼ 4.8%). This estimate is
substantially higher than previously reported heritability, which
ranged from 9.8% to 18% (12, 20, 21). We had previously
estimated the heritability of pancreatic cancer in the PanC4GWAS
to be 16.4% (95% CI, 10.4%–22.4%) applying the GREML-SC
approach using 620,357 directly genotyped variants only (12).
The use of imputed data in this analysis allowed greater capture of
the variance explained by rare and low-frequency causal variants.
In addition, GREML-LDMS approach has been shown to provide
more accurate estimates than GREML-SC. GREML-LDMS allows
for stratification of variants by MAF and LD, which can minimize
the differences in LD between causal variants and analyzed
variants and consequently reduce the bias associated with the
GREML-SC estimate. Therefore, our estimate of 21.2% is a more
reliable estimate of heritability than reported previously. How-
ever, it is important to note that this estimatemay still not capture
the full impact of very rare high-penetrance variants.

Heritability estimated using GREML or similar approaches
does not fully capture variance due to rare causal variants for
several reasons. Rare variants are not included in the analysis due
to (i) not captured on reference panels, (ii) low imputation
quality, (iii) not polymorphic before or after converting genotype
probabilities to hard calls, and (iv) minor allele count below the
recommended threshold of 5. In our analysis, over half (56.3%)
of all imputed variants were dropped due to poor imputation
quality (INFO <0.5). In addition, because GREML cannot incor-
porate imputation uncertainty, genotype probabilities were con-
verted to hard calls resulting in 1.9%of imputed variants dropped
due to missingness >5%. Although some of these limitations can
be overcome with the use of whole genome sequencing data, the
recommendation of excluding very rare variants (variants
observed on 5 or fewer chromosomes) is harder to overcome
and requires extremely large sample sizes. Even when the overall
mutation prevalence for a given gene is >1%, which is the case for
BRCA2 (5, 8, 37) and ATM (5, 38) for pancreatic cancer, each
mutation is only observed in 1 to 2 patients (with the exception of
founder effects). This is an important limitation to consider not
only when investigating the genetic architecture of pancreatic
cancer but also any disease where rare high-penetrant variants
are known to cause a considerable fraction of the disease.

The overall prevalence of rare high-penetrancemutations in the
population analyzed is not known. However, the cases and
controls included in this analysis were drawn from the same

study sites reporting that 4% to 10% of patients with pancreatic
cancer have rare high-penetrance mutations in established pan-
creatic cancer predisposition genes (4–6). The gene-based odds
ratios range from 2.58 to 12.33 (6), yet the individual level
variants were rare. In contrast, in the analysis we present here
using GREML-LDMS, these same gene regions explain only 0.4%
of the phenotypic variance for pancreatic cancer.

However, our estimates of the contribution of common
variants should be more robust. Our analysis demonstrated
that chromosomes 9, 7, 8, 16, 5, 2, and 1 were the top
contributors to the heritability of pancreatic cancer. This is
consistent with the GWAS findings as common susceptibility
loci have been discovered on all these chromosomes. Because
imputation captures almost all variation at common variants
but only a proportion of variation at rare variants, our results
when partitioned by chromosome are likely driven by common
causal variants, some of which had been identified through
GWAS studies.

In our analysis, known GWAS loci explained 4.1% of pheno-
typic variance for pancreatic cancer, leaving >10%of the common
phenotypic variance unexplained. The large proportion of unex-
plained heritability highlights the need to continue searching for
common susceptibility loci for pancreatic cancer. SNP array-based
genotyping followed by imputation will remain a cost-effective
strategy for gene discovery of common variants. However, larger
sample sizes are needed to increase the power of current GWAS.
Furthermore, as imputation reference panels of large sample size
(e.g., Haplotype Reference Consortium, HRC) continue to be
developed, further improvements in the power to detect associa-
tions on these variants are expected, particularly those in above
average LD regions (39, 40).

Across 4 functional groups, intronic variants account for most
of the phenotypic variance of pancreatic cancer (12.4%). Inter-
estingly, 12 of 21 GWAS loci identified in the European popula-
tion are mapped to intronic variants. However, it is unclear
whether these variants are of direct functional significance, as
opposed to simply being in LDwith another functional variant in
the vicinity. The coding variants, comprising about 1%of imputed
variants, account for 1% of the phenotypic variance of pancreatic
cancer. This is likely an underestimate since a proportion of rare or
extremely rare coding variants were not imputed or were removed
by quality control. It is possible that the poor imputation accuracy
on rare and extremely rare variants has a greater impact on
coding variants than variants in the other 3 functional groups
(Supplementary Fig. S3).

Heritability of pancreatic cancer estimated in our study is still
an underestimation of the overall heritability due to the imperfect
characterization of genomic variation in imputation and the
inherent limitations of GREML approach in capturing the con-
tribution of very rare variants.
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