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ABSTRACT
◥

Background: Estrogens are thought to contribute to breast
cancer risk through cell cycling and accelerated breast aging. We
hypothesize that lifetime estrogen exposure drives early epigenetic
breast aging observed in healthy women. In this study, we examined
associations between hormonal factors and epigenetic aging mea-
sures in healthy breast tissues.

Methods: We extracted DNA from breast tissue specimens
from 192 healthy female donors to the Susan G. Komen
Tissue Bank at the Indiana University Simon Cancer Center.
Methylation experiments were performed using the Illumina
EPIC 850K array platform. Age-adjusted regression models were
used to examine for associations between factors related to
estrogen exposure and five DNA methylation–based estimates:
Grim age, pan-tissue age, Hannum age, phenotypic age, and skin
and blood clock age.

Results:Womenwere aged 19–90 years, with 95 premenopausal,
and 97 nulliparous women. The age difference (Grim age � chro-
nologic age) was higher at earlier ages close to menarche. We found
significant associations between earlier age at menarche and age-
adjusted accelerations according to the Grim clock, the skin and
blood clock, and between higher body mass index (BMI) and age-
adjusted accelerations in the Grim clock, Hannum clock, pheno-
typic clock, and skin and blood clock.

Conclusions: Earlier age at menarche and higher BMI are
associatedwith elevations inDNAmethylation–based age estimates
in healthy breast tissues, suggesting that cumulative estrogen expo-
sure drives breast epigenetic aging.

Impact: Epigenetic clock measures may help advance inquiry
into the relationship between accelerated breast tissue aging and an
elevated incidence of breast cancer in younger women.

Introduction
Advancing age is a major risk factor for many cancers, including

breast cancer. However, the linear log–log relationship between cancer
incidence and age does not hold for patients with breast cancer (1). The
concept of “breast tissue age” developed by Malcolm Pike brings the
age-incidence curve of breast cancer in line with other cancers, and
explains key risk factors for breast cancer, including early menarche,
late first full-term pregnancy, late menopause, and postmenopausal
weight (1–6). In this model, breast tissues begin an accelerated aging
process at menarche, and there is an initial slowing of the rate of breast
aging with first full-term pregnancy, followed by a gradual slowing of
this rate during the perimenopausal period until the last menstrual
period (1). Estrogens are thought to modulate breast cancer risk
through chronic cell cycling and breast epithelial cell mitotic activity

associated with the normal menstrual cycle (1, 7). Estrogens and
progesterone/progestins together are thought to be associated with
greater cell proliferation.

We have previously shown that DNA methylation age, estimated
using the pan-tissue epigenetic clock (8), is elevated in normal breast
tissue compared with matched peripheral blood samples in healthy
women (9).We further found that the age difference (breast age - blood
age) is greatest at earlier ages closest to menarche, and that this gap
closes as women approach ages close to the menopausal transition (9).
These findings suggest that chronic cell cycling related to cumulative
exposure to either estrogen alone or the combination of estrogens and
progesterone/progestins may contribute to epigenetic age acceleration
of breast tissue. We hypothesize that elevations in epigenetic age
beginning shortly before menarche and ending in the postmenopausal
period are related to the same risk factors associated with “breast tissue
age” identified in themodels of Pike and colleagues (1), including early
age at menarche, nulliparity, late first full-term pregnancy, and body
mass index (BMI). In this study, we examine the relationship between
elevations in epigenetic age of breast tissue and self-reported measures
of lifetime exposure to estrogens and progesterone. In addition to the
pan-tissue DNA methylation age, we examine four new additional
estimates of epigenetic age: grim age, Hannum age, phenotypic age,
and skin and blood age.

Materials and Methods
Study population

We utilized specimens from the Susan G. Komen Tissue Bank
(KTB) at the Indiana University Simon Cancer Center. This unique
repository of breast tissue samples, donated by healthywomenwithout
a known history of breast cancer, is a resource to breast cancer
researchers. Its goals are to promote an understanding of normal
breast biology to better understand disruption occurring during breast
carcinogenesis, and to promote breast cancer prevention research.
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Each tissue sample is richly annotated with information about the
donor’s ethnicity, height, weight, family history, medical history,
reproductive history, and medication use.

We requested samples from a subset of 200 healthy women donors
who had fresh frozen breast tissue specimens available and did not
have any history of breast cancer. We selected women from four
groups: (i) premenopausal and nulliparous, (ii) premenopausal and
with at least 1 live birth, (iii) postmenopausal and nulliparous, and
(iv4) postmenopausal and with at least 1 live birth. This study was
approved by the UCLA Institutional Review Board.

DNA extraction, bisulfite conversion, and methylation
experiments

Each donor underwent six core biopsies with samples taken from
the upper outer quadrant of one breast under local anesthesia. One of
the six core biopsies for each donor was placed into an embedding
cassette, within five minutes of procurement, and the cassettes were
placed into 10% buffered formalin and stored at room temperature.
The specimens were then embedded in paraffin. For the five remaining
core biopsies for each donor, tissues were flash frozen in liquid
nitrogen, then placed in labeled, chilled, cryovials, and stored in liquid
nitrogen at �166.2�C. 200 breast tissue samples, with 50 mg of breast
tissue per sample, were shipped to the Neurogenetics Core Sequencing
Laboratory at UCLA (UNGC).

DNA and RNA were extracted using the AllPrep DNA/RNA/
miRNA Universal Kit (Qiagen, catalog no. 80224). Thirty milligrams
of frozen tissue was lysed with 600 mL guanidine-isothiocyanate-
containing Buffer RLT Plus in a 2.0 mL micro centrifuge tube, and
homogenized using TissueLyser II (Qiagen) with 5 mm stainless steel
beads. Tissue lysate was continued with the AllPrep protocol for
simultaneous extraction of genomic DNA and total RNA using
RNeasy Mini spin column technology. Extracted DNA was then used
for bisulfite conversion and methylation analyses.

Methylation studies were performed using the Illumina Human
Methylation EPIC (850K) array BeadChip (Illumina). Five-hundred
nanograms of DNA was bisulfite-converted using the EZ-methylation
kit (Zymo Research). Upon bisulfite treatment, unmethylated are
converted to uracil, while methylated cytosines remain unchanged.
Following bisulfite conversion, theDNA is then hybridized to the EPIC
array, using site-specific probes, designed for methylated and
unmethylated sites, respectively. Fluorescence data from the hybrid-
ized chip were scanned on an iScan (Illumina) and analyzed to
determine the level of total methylation for each interrogated locus,
by calculating the ratio of the fluorescent signals from the methylated
versus unmethylated sites. A well-designed selection of samples was
drawn from each group (pre- or postmenopausal, nulliparous vs. at
least 1 live birth). DNA methylation levels (beta-values) were deter-
mined by calculating the ratio of intensities betweenmethylated (signal
A) and un-methylated (signal B) sites. We used the “noob” normal-
ization method implemented in the minfi R package (10, 11). Specif-
ically, the beta value was calculated from the intensity of the meth-
ylated (M corresponding to signal A) and unmethylated (U corre-
sponding to signal B) sites, as the ratio of fluorescent signals beta ¼
Max(M,0)/[Max(M,0) þ Max(U,0) þ 100]. Thus, beta values range
from 0 (completely un-methylated) to 1 (completely methylated).

Epigenetic clocks
We examined five measures of epigenetic age, estimated from

weighted regressionmodels usingmethylation values at selected CpGs
from our bisulfite sequencing data. These measures include Grim age,
based on 1030 CpGs (12), Pan-tissue age, based on the pan tissue clock

comprised of 353 CpGs (8), Hannum age, based on 71 CpGs (13),
phenotypic age, based on 513CpGs (14), and skin and blood age, based
on 391 CpGs (15). All of these measures are strongly correlated with
chronologic age. Pan-tissue age (8) was developed as an age estimator
in multiple tissues and has been shown to be accelerated in various
disease states (16–18), and predictive of mortality (19–21). In this
study, we focused our analysis on Grim age, a second-generation
epigenetic clock designed to be predictive of both health span and
lifespan. The Grim age clock stands out in terms of its association with
time to cancer and age at menopause (12, 22, 23). The remaining four
clocks were examined to provide a robustness analysis to confirm
association of epigenetic age estimates with variables we examine in
this study. Supplementary Table S1 compares features of the five
epigenetic clocks examined in our study. Measures of age acceleration
for each variable are calculated by taking the residuals from a linear
regression of each methylation age measure on chronologic age.

We used the minfi R function preprocessNoob perform quality
control assessments. Data integrity were confirmed by examining the
“corSampleVSgoldstandard” quality statistic for detecting outlying
samples. For the Grim, pan-tissue, phenotypic, skin and blood clocks,
imputation was performed using the impute.knn function based on a
small subset (n ¼ 2,381) of CpGs to fill in missing values. For the
Hannum clock, missing values get omitted, as the coefficients in the
Hannum formula are set to zero. Each of the epigenetic clockmeasures
was normally distributed and did not require transformation.

Statistical analysis
We examined the relationship between breast epigenetic age accel-

eration (dependent variable) and measures of lifetime estrogen expo-
sure (independent variables). Four measures of age acceleration
included age acceleration residual (from pan-tissue age), Hannum
age acceleration, phenotypic age acceleration, Grim age acceleration,
and skin and blood age acceleration. All models were adjusted for
chronologic age. Measures of lifetime estrogen and progesterone
exposure included age at menarche, menstrual status, total menstrual
years, gravidity, parity, age at first full-term birth, breast feeding
duration, and BMI (given the role of adipose tissue in peripheral
aromatization of androgens leading to increased estrogen exposure in
postmenopausal women), as well as variables related to exogenous
estrogen administration including oral contraceptive use and hormone
replacement therapy. Total menstrual years was defined as the age
difference (current age – age at menarche) for premenopausal women,
and the age difference (age at menopause - age at menarche) for
postmenopausal women. In addition, we examined additional covari-
ates related to cancer risk including tobacco smoking (current, ever,
never, and pack-years), alcohol use, and BMI (measured at the time of
specimen collection). BMI was examined as a continuous variable and
in categories including underweight (BMI <18.5), normal (18.5 ≤ BMI
< 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30). Because only
three women were characterized as underweight, we collapsed under-
weight and normal individuals (n ¼ 69) into one reference category.
There were balanced numbers of individuals in the underweight/
normal (n ¼ 72), overweight (n ¼ 55), and obese (n ¼ 65) categories.
Because the majority of women experienced menarche from age 12–
14, with 32 women reporting history of early menarche from 9–
11 years, and 21 women reporting history of late menarche from
15–19 years, we modeled menarche as a discrete variable. Likewise, we
modeled gravidity and parity as discrete variables as these variables
carry more information than their binary counterparts. We initially
examined bivariate models comparing each covariate with each mea-
sure of age acceleration, and constructed multivariate models using all
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variables found significant in the bivariate analyses. In multivariate
analyses, we excluded variables where only a small number of indi-
viduals were present in the high risk category (e.g., ethnicity and heavy
tobacco smoking). To examine whether associations between hor-
monal factors and breast epigenetic age differ for pre- and postmen-
opausal groups, we performed additional analyses, stratified by men-
opausal status.We use a P value cutoff of 0.05 to test for significance in
our main analysis focused on Grim age as outcome. Because the
epigenetic clocks in our robustness analysis are not independent, and
a Bonferonni correction for 5 clocks would be overly conservative, we
adjusted for multiple testing using a Bonferroni correction of 0.05/2.

Results
Table 1 reveals the demographic and clinical characteristics of our

study sample. Women were aged 19–90 years of age, with an average
age of 50.7� 12 years. All of the women in our sample were white, and
the majority were non-Hispanic (n ¼ 183), with 9 Hispanic women.
Donors aged 50 years and over were more likely to have ever smoked
tobacco (36%, compared with 26% of women under 50 years), and
those who smoked did so for a longer number of years on average
(18 years, compared with 12 years for women under 50 years) and
smoked more cigarettes per day. Women in both age groups had
comparable percentages of women who currently drink any alcohol
(68%young vs. 67%olderwomen.However, women aged over 50 years
who drank had more drinks per week.

Difference between epigenetic age and chronologic age
The raw age difference (Grim age - chronologic age) is significantly

higher with younger age (b¼�0.34 per year of age, P < 0.0001). This
difference is also higher in premenopausal women (b¼ 5.9,P< 0.0001)
compared with postmenopausal women. Likewise, the age difference
(Pan-tissue age - chronologic age) is higher with younger age (b ¼
�0.33 per year of age, P < 0.0001) and in premenopausal women (b¼
5.2, P < 0.0001). These findings are visualized in Fig. 1.

Epigenetic age acceleration is associated with earlier age at
menarche and higher BMI

Because measures of lifetime estrogen exposure are strongly cor-
related with chronologic age, we need to examine an age-adjusted
measure of epigenetic acceleration. Supplementary Table S2 reveals
results of our bivariate analysis examining associations between each
measure of epigenetic age acceleration and each predictor variable of
interest.Figure 2 shows the association of age atmenarchewith each of
the age-adjusted measures of epigenetic age acceleration. We found
that earlier age at menarche was associated with a higher degree of age-
adjusted acceleration of the Grim and skin and blood clocks.

Elevated BMI is significantly associated with age-adjusted acceler-
ation in Grim age, as well as Hannum, phenotypic, and skin and blood
clocks. Figure 3 reveals the association of BMI with each epigenetic
accelerationmeasure.When we examine BMI as a categorical variable,
we find that being overweight and obese are both significantly asso-
ciated with age-adjusted acceleration in the Grim age clock (see
Supplementary Table S2). In addition, being overweight is significantly
associated with acceleration of the phenotypic age clock, and obesity is
significantly associated with acceleration in the Hannum, phenotypic,
and skin and blood clocks. Hannum and skin and blood age were
accelerated in overweight individuals, although these findings were of
borderline significance.

In our full sample, we did not identify significant associations
between epigenetic age acceleration and gravidity and parity (see

Supplementary Table S2). Exogenous estrogen was not significantly
associated with elevation in age-adjusted epigenetic age acceleration
measures. While women who take postmenopausal hormone replace-
ment therapy had higher age-adjusted acceleration in both Grim age
and pan-tissue age (see Supplementary Table S2), these findings were
not significant. We found that age-adjusted acceleration in pan-tissue
age was higher in nulliparous women, women with higher age at first
full-term birth, and earlier age at menarche, though these findings did
not meet statistical significance. However, when we remove partici-
pants who undergo menopause early (age <45 years, n ¼ 27), we find
that age at menarche is significantly associated with age-adjusted
acceleration in Pan-tissue age (b ¼ �0.43 for each year of age of later
menarche, P ¼ 0.023).

Results of multivariate regression models examining factors asso-
ciated with epigenetic age are shown in Table 2. We included three
covariates for which significant associationswere foundwith any of the
measures of epigenetic age: chronologic age, BMI (categorical vari-
able), and age at menarche. In multivariate models, being overweight
or obese remained significantly associated with Grim age, as well as
Hannum age, phenotypic age, and skin and blood age. Women with
earlier age atmenarche had a higher degree of acceleration inGrim age,
as well as skin and blood age, although in multivariate models, these
associations were now of borderline significance. After adjustment for
multiple comparisons, we find that being overweight or obese is
significantly associated with acceleration in Grim age, while being
obese is associated with acceleration inHannum, phenotypic, and skin
and blood age.

Differential effectsof hormonal factors onbreast epigenetic age
acceleration based on menopausal status

Because the association of BMI with breast cancer risk differs for
pre- and postmenopausal women,we examined factors associatedwith
breast epigenetic age acceleration in separate analyses stratified by
menopausal status. Supplementary Table 3 reveals the results of
bivariate analyses performed in pre-menopausal and postmenopausal
women separately. Table 3 reveals results of multivariate analyses,
stratified by menopausal status, with models adjusted for age at
menarche and BMI (categorical). We found that both having earlier
age at menarche and being overweight were significantly associated
with acceleration in Grim age in premenopausal women, whereas in
postmenopausal women, being obese was significantly associated with
acceleration in Grim age. In addition, in premenopausal women, being
overweight or obese was associated with acceleration in Hannum age
and being overweight was associated with acceleration Phenotypic age.
For postmenopausal women, obesity was associated with acceleration
in phenotypic age.

Discussion
This is the one of the first and largest studies of normal breast tissue

examining epigenetic age estimates. We have confirmed that epige-
netic age acceleration in healthy breast is highest at earlier ages. We
have identified factors associated with the degree of epigenetic age
acceleration, including earlier age at menarche, and BMI. Because age
at menarche did not remain significant after adjustment for bodymass
index in multivariate analyses of our full population, the association
between earlier age atmenarche and epigenetic clock estimates is likely
driven by BMI. However, in additional multivariate analyses stratified
by menopausal status, both earlier age at menarche and BMI are
significantly associated with acceleration in Grim age in premeno-
pausal women. These findings suggest that estrogen exposure from
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Table 1. Characteristics of the study sample.

Age < 50 years Age ≥ 50 years
N ¼ 89 N ¼ 103 P

Demographics
Age (years), mean (SD) 40.8 (7.7) 59.3 (7.1) <0.0001
Ethnicity, n (%)

Hispanic 3 (3) 6 (6) 0.64
Tobacco smoking

Ever smoked, n (%) 16 (26) 37 (36) 0.009
Years smoked, mean (SD) 12 (8.5) 18 (12) 0.035
Current smoker 7 (8) 4 (4) 0.38
Cigarettes per day

1–10 9 (10) 18 (17) 0.042
11–20 10 (11) 12 (12)
21–40 1 (1) 8 (8)
41–60 0 (0) 2 (2)

Alcohol use
Currently drink, n (%) 61 (68) 69 (67) 0.94
Drinks per week

<1 1 (1) 7 (7) 0.017
1–7 51 (57) 42 (41)
14–21 9 (10) 20 (19)
>21 1 (1) 0

Ashkenazi Jewish, n (%) 2 (2) 2 (2) 1
Body mass index, mean (SD) 28.2 (7.3) 28.8 (6.5) 0.57

Underweight, n (%) 1 (1) 2 (2)
Normal, n (%) 44 (46) 25 (26)
Overweight, n (%) 28 (29) 27 (28)
Obese, n (%) 22 (23) 43 (44)

Gail scorea, mean (SD) 19.1 (39) 15.5 (36) 0.52
Gynecologic history

Age at menarche (years),
Mean (SD) 12.79 (1.6) 12.77 (1.6) 0.93

Postmenopausal, n (%) 8 (9) 89 (86) <0.0001
Age at menopause (years),

Mean (SD) 36.7 (7) 47.4 (7) 0.008
Total menstrual years (years),

Mean (SD) 27.5 (8) 35.4 (7) <0.0001
Reproductive history

Gravidity
0 40 (45) 46 (45) 0.26
1 8 (9) 13 (13)
2 15 (17) 26 (25)
3 14 (16) 11 (11)
4þ 12 (13) 7 (7)

Parity
0 40 (45) 54 (52) 0.39
1 5 (6) 12 (12)
2 25 (28) 20 (19)
3 12 (13) 12 (12)
4þ 4 (4) 5 (5)

Age at first live birth, years
Mean (SD) 27.3 (5.3) 26.1 (4.8) 0.24

Breastfeeding
Ever, n (%) 36 (40) 35 (34) 0.44
Total months, mean (SD) 14 (13) 20 (13) 0.26

Hormonal therapy
Ever, n (%) 1 (1) 44 (43) <0.0001

Birth control,
n (%) 22 (25) 8 (8) 0.0025

aGail score is estimated risk for breast cancer based on age, first menstrual period, age at first live birth, first-degree relatives with breast cancer, previous breast
biopsy, race, and ethnicity.
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Figure 1.

Difference between estimated epigenetic age and chronologic age,
by age and menopausal status. The raw age difference (estimated
epigenetic age � chronological age) is significantly higher with
younger age, for both Grim age (A) and pan-tissue age (B).
Regression lines demonstrate the linear relationship between this
difference and chronologic age. The difference (estimated epige-
netic age � chronologic age) is also higher in premenopausal
women compared with postmenopausal women for both Grim age
(C) and pan-tissue age (D). These bar plots demonstrate the mean
value (y-axis) and one SE, with P values from the results of a
nonparametric group comparison test (Kruskal–Wallis).

Figure 2.

Relationship between age at menarche
and age-adjustedmeasures of epigenet-
ic age acceleration. Earlier age at men-
arche is significantly associated with a
higher degree of age-adjusted acceler-
ation of the Grim and skin and blood
clocks.
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early menarche may drive chronic cell cycling and accelerated breast
aging during premenopause. Notably, in premenopausal women,
higher BMI is inversely associated with breast cancer risk, whereas
in our study we find that methylation-based aging markers are higher
in premenopausal women with higher BMI. Because elevated BMI is
not thought to substantially raise the estrogen levels above the level at
which proliferation is further affected in premenopausal women, our
findings suggest that BMI mediates increased breast cellular aging
through additional mechanisms, such as inflammation. In contrast, in
postmenopausal women, a major source of estrogen comes from
peripheral aromatization of androgens, and higher BMI is thought
to contribute substantially to estrogen exposure. Thus, a combination
of increased estrogen exposure and chronic cell cycling, as well as
inflammation, may contribute to accelerated breast aging in postmen-
opausal women.

Our finding that earlier age at menarche is associated with accel-
erated aging in breast is consistent with a recent study demonstrating
that Pan-tissue age acceleration in peripheral blood was associated
with faster pubertal development in girls (24). Recent studies have
shown that comparing breast tumor tissues of very young women (age
≤ 35 years) with those of older women, the age difference (pan-tissue
age - chronologic age) is higher in breast tumor tissue from younger
womenwith breast cancer (25). Thesefindings, taken togetherwith our
finding that the difference (pan-tissue age - chronologic age) is higher
at younger ages, suggest that accelerated epigenetic aging may drive
breast carcinogenesis in young women.

The highest degree of acceleration in breast methylation age occurs
at earlier ages closer to menarche and we hypothesize that accelerated
breast aging contributes to pre-menopausal breast cancer risk. While
we observe in our study that the age difference (breast age-chronologic

Figure 3.

Relationship between BMI and age-
adjusted measures of epigenetic age
acceleration. Elevated BMI is significant-
ly associated with age-adjusted acceler-
ation in Grim age and Hannum, pheno-
typic, and skin and blood clocks.

Table 2. Results of multivariate linear regression analysisa examining factors associated with breast epigenetic age acceleration.

Grim age Pan-tissue age Hannum age Phenotypic age Skin and blood age
b P b P b P b P b P

Age 0.64 <0.0001 0.66 <0.0001 0.33 <0.0001 0.20 0.0041 0.58 <0.0001
Body mass index

Overweight 1.27 0.012 0.81 0.24 1.62 0.046 4.25 0.035 2.81 0.066
Obese 1.69 0.00065 0.91 0.17 2.4 0.0025 5.21 0.0082 3.74 0.012

Age at menarche �0.24 0.064 �0.23 0.20 0.024 0.90 �0.36 0.48 �0.72 0.063

aModels adjusted for chronologic age, BMI, and age at menarche.
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age) approaches zero as healthy women reach the age of the meno-
pausal transition, there are a population of postmenopausal women in
our study who have persistently high breast epigenetic age relative to
their chronologic age. We hypothesize that these women may be at
higher risk of developing postmenopausal breast cancer. Further
studies with long-term follow-up are needed to investigate these
questions.

Our finding that elevated BMI is associated with several age-
adjusted epigenetic age acceleration measures is consistent with
previous studies showing obesity is associated with acceleration in
pan-tissue age in fatty liver tissue (16) and peripheral blood (26), as
well as previous findings that higher BMI is associated with intrinsic
and extrinsic epigenetic age acceleration (27) and Grim age acceler-
ation (12) in peripheral blood. Studies have shown that BMI is
associated with higher breast cancer risk in postmenopausal wom-
en (28), and that epigenetic age of breast is observed in normal breast
tissue of patients with luminal breast cancer (29), raising the question
whether accelerated epigenetic aging of breast tissuemediates this risk.
Notably, the influence of BMI on postmenopausal breast cancer risk is
greater in women with greater familial risk (28). A recent study
demonstrated that age-adjusted breast tissue aging, a measure esti-
mated using the Pike model, carries different associations with breast
cancer risk by family history and breast density (30). Further studies
are needed to investigate the link between BMI, accelerated breast
aging, and breast cancer risk, particularly in women at high familial
risk of breast cancer.

An important limitation of our study is the restriction of our
analyses to an all white sample of women. Future studies are needed
to examine the relationship between breast aging and hormonal factors
in more diverse racial groups. These proposed studies are feasible as
diverse groups of donors are well-represented in the Komen Tissue
Bank. Cross-sectional studies are limited in their ability to examine for
causal relationships between accelerated breast aging and duration of
exposure to a risk factor, such as time since menarche. Prospective
studies are needed to examine for longitudinal changes in accelerated
breast aging associated with variables such as time since menarche.
Another limitation is the lack of information on the type and formu-
lation of hormonal medication, both for oral contraceptives and
hormone replacement, as these were not always specified in patient
survey responses. Different formulations have been shown to have

different effects on the breast, and follow-up studies are needed to
examine epigenetic changes in the breast by exogenous hormone type.
A further limitation is the use of biomarkers that were developed in
peripheral blood.While the Pan-tissue clockwas developed inmultiple
tissues and cell types, and has shown to be associated with chronologic
age across multiple tissues including breast (8), the Hannum, pheno-
typic, and Grim clocks were all developed in peripheral blood.
Hannum age was developed in peripheral blood, using an elastic net
regression for selection of a set of markers that were highly predictive
of chronologic age (13). Phenotypic Age is estimated by formulating a
weighted composite of ten clinical characteristics known to be asso-
ciated with mortality and regressing that phenotypic measure on
CpGs (14). Grim age was developed by a regression of time-to-
death on DNA methylation–based surrogate biomarkers of smoking
pack-years and a selection of plasma proteins previously associated
withmortality ormoribidity (12). Skin and blood age was developed as
an age estimator in multiple cell types, including human fibroblasts,
keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin,
blood, and saliva samples (15). All of these clocks show a significant
correlation with chronologic age in breast tissue (see Supplementary
Fig. S1).

In our study, as demonstrated in other epigenetic studies, we note
that even the most consistent associations (e.g., epigenetic age and
chronologic age, epigenetic age and BMI) vary across the five epige-
netic clock measures examined. In addition to being derived using
different methods, each epigenetic clock captures different features of
the aging process. Supplementary Table S1 describes the comparative
features of each of the clocks. We focused our analysis on Grim age, as
it is most strongly correlated with lifespan and healthspan, and it has
been shown to be predictive of time to cancer. The other four clocks
were examined as a robustness analysis to confirm whether the
direction and strength of the association agreed with that of the Grim
clock. For example, the Grim clock and the phenotypic clock were
designed as mortality risk predictors while the Hannum and skin and
blood clocks were designed as predictors of chronologic age. In spite of
these contrasting and complementary features, the Hannum, pheno-
typic, and skin and blood clocks all confirmed that higher BMI was
associated with accelerated breast aging in multivariate analyses.

In normal breast tissue, myeloid and lymphoid cells are present in
lobules, while cytotoxic T cells, CD4 T cells, B cells, and dendritic cells

Table 3. Results of multivariate linear regression analysisa examining factors associated with breast epigenetic age acceleration,
stratified analyses based on menopausal status.

Grim age Pan-tissue age Hannum age Phenotypic age Skin and blood age
Premenopausal b P b P b P b P b P

Age 0.65 <0.0001 0.73 <0.0001 0.33 <0.0001 0.28 0.052 0.61 <0.0001
Body mass index

Overweight 1.49 0.019 1.07 0.23 2.35 0.038 6.44 0.022 4.08 0.055
Obese 1.07 0.13 �0.55 0.57 2.74 0.030 3.78 0.22 3.43 0.15

Age at menarche �0.34 0.041 �0.20 0.40 �0.28 0.34 �0.57 0.44 �0.95 0.091

Postmenopausal b P b P b P b P b P

Age 0.66 <0.0001 0.59 <0.0001 0.35 <0.0001 0.33 0.015 0.64 <0.0001
Body mass index

Overweight 1.02 0.22 0.72 0.51 0.44 0.71 1.91 0.52 1.24 0.59
Obese 2.04 0.0071 1.52 0.12 1.71 0.11 6.16 0.024 3.68 0.078

Age at menarche �0.14 0.47 �0.34 0.20 0.39 0.17 �0.15 0.83 �0.46 0.41

aModels adjusted for chronologic age, BMI, and age at menarche.
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are integrated in the ductal epithelium. While Grim, phenotypic, and
Hannum ages correlate with age-related changes in cell composition,
correcting for estimated cell-specific composition carries the risk of
eliminating informative signals. For example, Grim and phenotypic
age capture aspects of inflammation that may be relevant to breast
aging and risk of carcinogenesis. Future studies are needed to examine
whether Grim age and other clocks differ for cells that compose breast
tissue, including ductal epithelial cells, myoepithelial cells, and
immune cells within the breast.

Global methylation analyses in peripheral blood demonstrate a
relationship between epigenetics and breast cancer risk. A recent study
compared peripheral blood epigenetic patterns of 440 women in the
EPIC-Italy with 440 unaffected women (31). Global methylation
analysis revealed an epigenetic signature associated with a 5% increase
in breast cancer risk for 1 year longer lifetime estrogen exposure.
Pathways identified in this analysis include genes associated with cell–
cell adhesion (CTTNA2), interaction with receptor tyrosine kinase
signaling (GRB10), tumor suppressor genes (RPH3AL), and long non-
coding RNA that binds RNA and may be involved in cancer progres-
sion (TINCR; ref. 31). Future studies are needed to examine global
methylation studies in breast to identify pathways associated with
lifetime estrogen exposure.

Our findings lend support to the hypothesis that cumulative
estrogen exposure is associated with elevations in breast epigenetic
aging, asmeasured by a variety of epigenetic clocks.We further identify
an association between BMI and accelerated breast epigenetic aging,
which raises questions about the role of adipose and chronic inflam-
mation in breast aging and carcinogenesis. Understanding biological
pathways that underlie accelerated aging in breast tissue will aid in the
development of prevention and therapeutic strategies (32). Further
studies are needed to examine how gene expression patterns change
with methylation patterns, whether accelerated aging is dramatically
elevated inwomen at high risk for breast cancer, and to test whether the
identification of accelerated aging signatures may play a role in earlier
breast cancer detection and prevention.
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