Heat Transfer to Horizontal Gas-Solid Suspension Flows

W. J. Danziger. The values of Nu in Figs. 5 and 7 show considerable difference from published data for vertical flow of air-solid mixtures. In [1] it was shown that up to W_s/W_a of about 1.0 there was little effect of the solids (although there was a tendency toward a slight increase in Nu), and that over W_s/W_a of 2.0, Nu varied as $(W_s/W_a)^{0.5}$. In [7] it was reported that Nu varied as Re$^{-0.5}$.

Fig. 7, however, shows zero effect of W_s/W_a and indicates values of Nu for air-solids mixtures only 80-90 percent of those for solide-free-air instead of approximately 230 percent that would be predicted for the maximum solids concentration used. Fig. 5 shows some points that indicate no dependence on either W_s/W_a or Re, and others that indicate no dependence on Re but show a greater effect of W_s/W_a than would be predicted. Both [1] and [7] were based on cataloging catalyst of about 50 μm average particle diameter, but extrapolation to either 30 μm or 200 μm average diameter glass particles could not be expected to introduce errors of the magnitude of the discrepancies indicated, and change from vertical to horizontal flow would not change the relationships noted as long as no solids accumulated on the bottom of the tube.

At least some of the discrepancy results from use of $(T_s - T_{mean})$ in calculation of the heat transfer coefficient. This gives a false value of h, since it is $(T_s - T_e)$ that represents the true driving force for transfer of heat from the hot surface. Though T_s wasn't measured, T_{mean} wasn't measured either, and only incorrect values of h can be calculated with it. It is suggested that useful information might be derived from the data by use of the equation given in [7] for the MTD between air and a solid particle, together with a heat balance, to estimate T_s. The possible error in the assumed value of h between gas and particle will result in some possible error in the calculated value of T_s, and therefore of h between fluid and wall, but h so calculated will still be more correct than the value used by the authors.

It is assumed that a higher-temperature at the top of the tube would stem from stratification, the reduced heat capacity of the resulting solids-poor mixture at the top of the constant-flux tube would require that the air temperature be higher than that in the lower portion, thus intensifying the error in h calculated on the basis of T_{mean}. However, it is inconceivable that gas flowing at a given mass rate does not prevent stratification of small beads yet does prevent stratification of beads of perhaps 300 times the mass of the small beads. A more reasonable explanation of the temperature discrepancy, top versus bottom, affecting the small bead but not the large bead might be that an electrostatic charge on the plate caused fines to plate out on the upper tube surface. At the bottom of the tube there would be enough scouring action to prevent such plating, whereas at the top of the tube the scouring would be less intense, with gravity acting to reduce particle impact, thus allowing an insulating coating to remain. Even the smallest diameter sphere in the size range of the large bead, however, is many times larger than any particle that would be expected to adhere to the wall because of its charge.

Fig. 8 shows pressure drop at Re of 30,000 remaining unchanged, whether air-only or the same quantity of air with up to about 4 lb of 30 μm beads per pound of air was flowing. Such constancy would seem to be more indicative of manometer leads plugged with beads than of a novel flow effect.

Authors' Closure

The authors wish to thank Mr. Danziger for his suggestion. The influence of the estimated mean air temperature on the evaluation of Nu is being studied, and the results will be presented along with additional data in the near future. More recent pressure-drop data have confirmed the previous findings, and plugged pressure taps can be ruled out as a possibility.

Heat Flux Through a Strip-Heated Flat Plate

Frederick A. Costello. An exact solution to the subject problem that is more convenient than that presented by Schmitz [8] can be obtained by use of the Schwartz-Christoffel transformation [9]. A typical section of the strip-heated plate is shown in Fig. 1. The transformation is given by $(d > 1)$

$$
\frac{dr}{d\tau} = K \frac{1}{\sqrt{\tau(\tau - 1)(\tau - d)}}
$$

(1)

An elliptic integral of the first kind, defined by

$$
F(k, \sin^{-1} R) = \int_0^R \frac{dr}{\sqrt{(1 - r^2)(1 - k^2r^2)}}
$$

(2)

results, with the one complication that the second argument is complex.

2 The M. W. Kellogg Company, New York, N. Y.

3 Numbers in brackets designate References at end of article under discussion.