Detecting Activation of Ribosomal Protein S6 Kinase by Complementary DNA and Tissue Microarray Analysis

Maarit Bärlund, Farahnaz Forozan, Juha Kononen, Lukas Bubendorf, Yidong Chen, Michael L. Bittner, Joachim Torhorst, Philippe Haas, Christoph Bucher, Guido Sauter, Olli-P. Kallioniemi, Anne Kallioniemi

Background: Studies by comparative genomic hybridization (CGH) have shown that chromosomal region 17q23 is amplified in up to 20% of primary breast cancers. We used microarray analyses to measure the expression levels of genes in this region and to explore their prognostic importance. Methods: A microarray that contained 4209 complementary DNA (cDNA) clones was used to identify genes that are overexpressed in the MCF-7 breast cancer cell line as compared with normal mammary tissue. Fluorescence in situ hybridization was used to analyze the copy number of one overexpressed gene, ribosomal protein S6 kinase (S6K), and to localize it to the 17q23 region. Northern and western blot analyses were used to measure S6K gene and protein expression, and an enzymatic assay was used to measure S6K activity. Tumor tissue microarray analysis was used to study amplification of S6K and the HER-2 oncogene, another 17q-linked gene, and the relationship between amplification and prognosis was analyzed. The Kaplan–Meier method was used for data analysis, and the log-rank test was used for statistical analysis. All P values are two-sided. Results: S6K was amplified and highly overexpressed in MCF-7 cells relative to normal mammary epithelium, and protein expression and enzymatic activity were increased. S6K was amplified in 59 (8.8%) of 668 primary breast tumors, and a statistically significant association between amplification and poor prognosis (P = .0021) was observed. Amplification of both S6K and HER-2 implied particularly poor survival (P = .0001). Conclusions: The combination of CGH information with cDNA and tissue microarray analyses can be used to identify amplified and overexpressed genes and to evaluate the clinical implications of such genes and genomic rearrangements. S6K is likely to be one of the genes at 17q23 that is amplified during oncogenesis and may adversely affect the prognosis of patients with this amplification. [J Natl Cancer Inst 2000;92:1252–9]

Large-scale gene expression surveys, such as complementary DNA (cDNA) microarrays (1), serial analysis of gene expression (2), or high-throughput cDNA sequencing, have made it possible to screen for the expression levels of thousands of genes in a tumor. In a typical cDNA microarray experiment, up to 10 000 genes are simultaneously analyzed in a parallel fashion, revealing hundreds of genes that are differentially expressed relative to those of a control tissue. Analyzing and interpreting this genomic-scale information to pinpoint alterations in specific genes that could be utilized for developing clinical applications, such as finding targets with potential diagnostic, prognostic, or therapeutic applications, have become increasingly important challenges. To rank the large number of targets for further study, it is important to separate primary genetic alterations from secondary, downstream changes in gene expression.

Gene amplification is an important mechanism for increasing expression of critical genes involved in the initiation and progression of cancer. Indeed, in breast cancer, a number of important oncogenes have already been found to be activated by DNA amplification. These oncogenes include HER-2 (at chromosome 17q12), C-MYC (at 8q24), PRAD1/CYCLIN D (at 11q13), FGFR-1 (at 8p12), and FGFR-2 (at 10q24) (3). Furthermore, studies by comparative genomic hybridization (CGH) (4–7) and chromosome microdissection (8) have revealed that numerous other chromosomal regions frequently undergo amplification in breast cancer. Focused studies of the amplification region at 20q12–20q13 have implicated a number of overexpressed genes with putative oncogenic potential, such as AIB1, BTAK, CAS-1, and ZNF217 (9–12), indicating that multiple genes may be induced in a given amplification region.

Our laboratory is using cDNA microarray analyses of breast cancer cell lines that harbor high-level DNA amplifications to explore the consequences of these multiple genomic DNA amplifications on the pattern of gene expression. This strategy could highlight genes that are targets for the clonal selection process that leads to DNA amplification. Of particular interest are the consequences of genomic rearrangements at 17q23, a locus that has been shown by CGH to be amplified in up to 20% of primary breast cancers (4–7). We showed that at least two separate regions at 17q23 undergo high-level amplification in breast cancer (13).

Here we report the results of a cDNA microarray analysis of expression levels of 4209 clones in the MCF-7 breast cancer cell line. Tissue microarray (14) analysis of 668 primary breast cancers was used to determine the in vivo importance of the amplified and overexpressed genes that we discovered in the cell line and to explore the relationship between gene amplification and patient survival.

METHODS

Cell Lines

Breast cancer cell lines BT-474, HBL-100, MCF-7, MDA-436, and ZR-75-1wt were obtained from the American Type Culture Collection (Manassas, VA), KPL-1 from the German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany), and Sum-52 from S. P. Ethier (University of Michigan, Ann Arbor).

Affiliations of authors: M. Bärlund, Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, and Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, Finland; F. Forozan, J. Kononen, L. Bubendorf, Y. Chen, M. L. Bittner, O.-P. Kallioniemi, A. Kallioniemi, Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health; J. Torhorst, P. Haas, C. Bucher, G. Sauter, Institute of Pathology, University of Basel, Switzerland.

Correspondence to: Anne Kallioniemi, M.D., National Institutes of Health, 49 Convent Dr., Rm. 4B24, Bethesda, MD 20892-4470 (e-mail: akallion@nihrgi.nih.gov).

See “Notes” following “References.”

© Oxford University Press
Construction of Primary Breast Tumor Microarrays

Two groups of primary breast cancer tissue specimens were obtained from the Institute of Pathology, University of Basel, Switzerland, for the construction of tissue microarrays. The first group consisted of 372 ethanol-fixed primary breast cancer specimens [described in (14)]. The second group consisted of 61 formalin-fixed, paraffin-embedded primary breast cancer specimens from the years 1985–1995 obtained from patients with clinicopathologic information that included an average of 5.4 years of follow-up. All specimens were anonymous, archival tissue specimens. The use of these specimens for retrospective analyses was approved by the Ethics Committee of the University of Basel, and their use for tissue microarray analysis was approved by the National Institutes of Health Institutional Review Board.

The tumor samples were reviewed by one pathologist (J. Torhorst) and included 73.3% ductal, 13.6% lobular, 3.0% medullary, 2.6% mucinous, 1.5% cribriform, 1.4% tubular, and 1.1% papillary carcinomas; 1.9% ductal carcinoma in situ; and 1.7% of other rare histologic subtypes. The grade of these patients was 60 years (range 26–97 years); 50% of these patients had lymph node-negative disease and 50% had lymph node-positive disease.

The tissue microarrays were constructed as described previously (14). Briefly, a representative tumor area was selected from hematoxylin–eosin-stained sections of each tumor. The individual donor tissue blocks and the corresponding histologic slides were overlaid for tissue microarray sampling. A tissue microarray instrument (Beecher Instruments, Silver Spring, MD) was used to create holes in a recipient paraffin block, to obtain cylindrical core tissue biopsy samples with a diameter of 0.6 mm from the donor paraffin blocks, and to transfer these biopsy samples to the recipient block at defined array positions. Multiple 5-μm sections were cut from the tissue microarray block by use of a microtome with an adhesive-coated-tape sectioning system (Instrumenteds, Inc., Hackensack, NJ).

CGH Analysis of MCF-7

CGH was done as described previously (15). Briefly, 400 ng of MCF-7 genomic DNA was fluorescently labeled with SpectrumGreen–deoxyuridine triphosphate (dUTP) (Vysis, Inc., Downers Grove, IL) by the use of nick translation. Normal placental DNA was fluorescently labeled in the same manner with SpectrumOrange–dUTP (Vysis, Inc.). The labeled DNAs were hybridized to normal metaphase chromosomes, and the chromosomes were counterstained with 4',6-diamidino-2-phenylindole (DAPI) (Boehringer Mannheim Biochemicals, Indianapolis, IN). The hybridizations were evaluated by use of a Zeiss microscope (Carl Zeiss, Inc., Thornwood, NY) and the Quips XL program (Vysis, Inc.). The fluorescence intensities of MCF-7 DNA and placental DNA were measured along chromosome 17, and their ratios (DNA sequence copy number in MCF-7 cells/copy number in normal tissue) were computed. The average copy number ratio from 10 chromosomes and the 95% confidence interval were calculated.

Fluorescent cDNA Microarray Analysis of MCF-7 Cells

Total RNA was extracted from MCF-7 cells by use of the RNeasy kit (Qiagen, Inc., Valencia, CA). The labeling and hybridization were done as described previously (18,22). Briefly, 100–200 μg of total MCF-7 RNA was used as template to prepare cDNA probes labeled with dUTP coupled to Cyanine5 (Cy5) fluorescent dye (Amersham Pharmacia Biotech, Inc., Piscataway, NJ) by use of oligo(dt)-primed polymerization by SuperScript II reverse transcriptase (Life Technologies, Inc. [GIBCO BRL], Gaithersburg, MD). Probes complementary to normal mammary gland RNA (Clontech Laboratories, Inc., Palo Alto, CA) were prepared in the same manner, except that the dUTP was coupled to Cyanine3 (Cy3) fluorescent dye (Amersham Pharmacia Biotech, Inc.). The labeled cDNAs were combined with 8 μg of polyoxyethylene (20) sorbitan monooleate (Tween 20) and 3x standard saline citrate (SSC) (i.e., 450 mM NaCl and 45 mM sodium citrate). The probe mixture was incubated at 55 °C for 5 minutes and at 4 °C for 2 hours and was applied onto the microarray slide. Hybridization was carried out at 65 °C for 16 hours. The slides were washed in 0.5x SSC (i.e., 75 mM NaCl and 7.5 mM sodium citrate) and 0.01% SDS at 55 °C for 5 minutes each.

Analysis of cDNA Microarray Data

Fluorescence intensities at the targets were measured by a custom-designed laser confocal microscope equipped with a scanning stage, appropriate excitation and emission filters, and a photomultiplier tube detector (18). Intensity data were integrated over 225-μm2 pixels and recorded at 16 bits. The fluorescent images from the MCF-7 hybridization and from the hybridization with normal mammary tissue were scanned separately. The MCF-7 image was assigned a red color and the reference image was assigned a green color to form a pseudo-color image. In this image, spots that appear in red correspond to genes overexpressed in MCF-7 cells, and those that are green correspond to genes whose expression is lower in MCF-7 than in the control sample (normal mammary tissue).

The results of the cDNA microarray experiments were analyzed by use of the ArraySuite program (developed at the National Human Genome Research Institute, Bethesda, MD, by Y. Chen) based on the IPLab Spectrum platform (23). The program identified and segmented spots in the images corresponding to the MCF-7 (red) and normal mammary (green) cDNA hybridizations. After background subtraction, average intensities at each spot in the MCF-7 hybridization were divided by the average intensity of the same spot in the normal mammary hybridization. The ratios were normalized on the basis of the distribution of ratios for the 88 housekeeping genes (22). This ensured that the ratios obtained were not affected by differential labeling or hybridization efficiency of the two cDNAs, by the quantity of the labeled cDNA in the hybridization reaction, or by the photomultiplier voltage settings during scanning. The ArraySuite program also allows visualization of the image for each spot. For this study, the spot images were displayed at the chromosomal locations of the relevant clones to provide a visual comparison of DNA amplification sites with chromosomal locations of overexpressed genes. The chromosomal locations of the clones came from radiation hybrid-mapping data available in the human gene map (21). Radiation hybrid mapping is a method of physical mapping that uses the frequencies of x-ray-induced DNA breakage to deduce distances between markers, which are expressed in centiRays (cR), the genetic map distance that corresponds to an interval in the radiation hybrid map in which there is a 1% probability of x-ray-induced DNA breakage.

Mapping and Copy Number Analysis of Ribosomal Protein S6 Kinase by Fluorescence In Situ Hybridization

A P1 artificial chromosome probe (clone 18609) specific for ribosomal protein S6 kinase (S6K) was obtained by screening of a commercially available library (Genome Systems, Inc., St. Louis, MO) by the use of the polymerase chain reaction. The S6K probe was fluorescently labeled with SpectrumOrange–dUTP by use of random priming and was hybridized to normal metaphase chromosomes to map the S6K gene as described previously (13). The SpectrumOrange-labeled S6K probe was also used together with a SpectrumGreen fluorescently labeled probe for the centromere of chromosome 17 for copy number analysis by interphase fluorescence in situ hybridization (FISH) as described previously (13). The hybridizations were evaluated by use of a Zeiss fluorescence microscope. Approximately 20 nonoverlapping nuclei with intact morphology (evaluated by use of the DAPI counterstain) were scored to determine the mean number of hybridization signals for each probe. Amplification was measured by a comparison of the number of signals produced by use of the probe for S6K with the number produced by use of the probe for the chromosome 17 centromere.

Tissue Microarray Analysis by FISH

For the tissue microarrays, the FISH protocol was changed according to the type of tissue fixation used. The ethanol-fixed tissue microarray was deparaffinized, denatured at 73 °C for 5 minutes in 2x SSC (i.e., 700 mM NaCl and 30 mM sodium citrate), containing 70% formamide, and dehydrated in an ethanol series (70%, 80%, and 100%). The forma-
lin-fixed tissue microarray was deparaffinized, immersed in 0.2 N HCl, incubated in 1 M sodium thio-cyanate solution at 80 °C for 30 minutes, and immersed in a protease solution (0.5 mg/mL in 0.9% NaCl; Vysis, Inc.) for 10 minutes at 37 °C. These slides were then postfixed in 10% buffered formalin (Sigma Chemical Co.), air-dried, denatured at 73 °C for 5 minutes in 2x SSC containing 70% formamide, dehydrated in an ethanol series, incubated in 4 μg/mL proteinase K (Boehringer Mannheim Biochemicals) at 37 °C for 7 minutes, and dehydrated again as above. Both ethanol-fixed and formalin-fixed slides were hybridized with the SpectrumOrange-labeled S6K-specific probe and the SpectrumGreen-labeled chromosome 17 centromere probe overnight at 37 °C. An adjacent section from the tissue microarray was hybridized with a SpectrumOrange-labeled HER-2 probe (Vysis, Inc.). Specimens containing tight clusters of signals or more than a threefold increase in the number of S6K signals, as compared with chromosome 17 centromere signals, in at least 10% of the tumor cells were considered to be amplified.

Our tissue microarrays comprised 984 tumor samples. Analysis of S6K and HER-2 copy numbers was uninformative in 316 and 374 cases, respectively, because of missing or unrepresentative tumor samples in the array section or failure of the analysis.

Northern Blot Analysis

Total RNA was extracted from breast cancer cell lines by use of the RNeasy kit. RNA (10 μg) was subjected to electrophoresis through a 1 M formaldehyde-1% agarose gel and transferred onto a Nytran membrane (Schleicher & Schuell, Inc., Keene, NH) by standard methods (24). The insert from a sequence-verified cDNA clone (GenBank accession number H04661) representing the 3′-end of the S6K gene was 32P-labeled by random priming (PrimeIt; Stratagene Cloning Systems, La Jolla, CA). The blot was prehybridized with 10 μg/mL boiled, sheared DNA (Research Genetics, Huntsville, AL) for 1 hour at 68 °C and then hybridized with the SpectrumOrange-labeled chromosome 17 centromere probe overnight at 37 °C. An adjacent section from the tissue microarray was hybridized with a SpectrumOrange-labeled HER-2 probe (Vysis, Inc.). Specimens containing tight clusters of signals or more than a threefold increase in the number of S6K signals, as compared with chromosome 17 centromere signals, in at least 10% of the tumor cells were considered to be amplified.

Western Blot Analysis

Breast cancer cell line monolayers were trypsinized to yield a cell suspension and centrifuged at 2000g for 8 minutes at room temperature. The precipitated cells were lysed in RIPA buffer (i.e., 1% phosphate-buffered saline [PBS], 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) by repeated passage through a 21-gauge needle and centrifuged at 10 000g for 10 minutes at 4 °C. Approximately 40 μg of total protein was boiled in loading buffer (1x SSC, 15 μg/mL RNAse, and 1.5 mM sodium citrate) at 55 °C. Hybridized probe was detected by autoradiography. After removal of bound 32P-labeled probe, the membrane was rehybridized with a probe for glyceraldehyde-3-phosphate dehydrogenase messenger RNA (mRNA) to confirm equal loading among samples. The expression levels were quantitated by use of the PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

RESULTS

Total RNA was extracted from breast cancer cell lines by use of the RNeasy kit. RNA (10 μg) was subjected to electrophoresis through a 1 M formaldehyde-1% agarose gel and transferred onto a Nytran membrane (Schleicher & Schuell, Inc., Keene, NH) by standard methods (24). The insert from a sequence-verified cDNA clone (GenBank accession number H04661) representing the 3′-end of the S6K gene was 32P-labeled by random priming (PrimeIt; Stratagene Cloning Systems, La Jolla, CA). The blot was prehybridized with 10 μg/mL boiled, sheared DNA (Research Genetics, Huntsville, AL) for 1 hour at 68 °C and then hybridized with the SpectrumOrange-labeled chromosome 17 centromere probe overnight at 37 °C. An adjacent section from the tissue microarray was hybridized with a SpectrumOrange-labeled HER-2 probe (Vysis, Inc.). Specimens containing tight clusters of signals or more than a threefold increase in the number of S6K signals, as compared with chromosome 17 centromere signals, in at least 10% of the tumor cells were considered to be amplified.

Western Blot Analysis

Breast cancer cell line monolayers were trypsinized to yield a cell suspension and centrifuged at 2000g for 8 minutes at room temperature. The precipitated cells were lysed in RIPA buffer (i.e., 1% phosphate-buffered saline [PBS], 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) by repeated passage through a 21-gauge needle and centrifuged at 10 000g for 10 minutes at 4 °C. Approximately 40 μg of total protein was boiled in loading buffer (1x SSC, 15 μg/mL RNAse, and 1.5 mM sodium citrate) at 55 °C. Hybridized probe was detected by autoradiography. After removal of bound 32P-labeled probe, the membrane was rehybridized with a probe for glyceraldehyde-3-phosphate dehydrogenase messenger RNA (mRNA) to confirm equal loading among samples. The expression levels were quantitated by use of the PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

Western Blot Analysis

Breast cancer cell line monolayers were trypsinized to yield a cell suspension and centrifuged at 2000g for 8 minutes at room temperature. The precipitated cells were lysed in RIPA buffer (i.e., 1% phosphate-buffered saline [PBS], 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) by repeated passage through a 21-gauge needle and centrifuged at 10 000g for 10 minutes at 4 °C. Approximately 40 μg of total protein was boiled in loading buffer (1x SSC, 15 μg/mL RNAse, and 1.5 mM sodium citrate) at 55 °C. Hybridized probe was detected by autoradiography. After removal of bound 32P-labeled probe, the membrane was rehybridized with a probe for glyceraldehyde-3-phosphate dehydrogenase messenger RNA (mRNA) to confirm equal loading among samples. The expression levels were quantitated by use of the PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

Western Blot Analysis

Breast cancer cell line monolayers were trypsinized to yield a cell suspension and centrifuged at 2000g for 8 minutes at room temperature. The precipitated cells were lysed in RIPA buffer (i.e., 1% phosphate-buffered saline [PBS], 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) by repeated passage through a 21-gauge needle and centrifuged at 10 000g for 10 minutes at 4 °C. Approximately 40 μg of total protein was boiled in loading buffer (1x SSC, 15 μg/mL RNAse, and 1.5 mM sodium citrate) at 55 °C. Hybridized probe was detected by autoradiography. After removal of bound 32P-labeled probe, the membrane was rehybridized with a probe for glyceraldehyde-3-phosphate dehydrogenase messenger RNA (mRNA) to confirm equal loading among samples. The expression levels were quantitated by use of the PhosphorImager (Molecular Dynamics, Sunnyvale, CA).
displayed the data from our cDNA micro-
array analyses according to the clones’ chromosomal positions.

Fig. 1 illustrates the comparison of a CGH copy number ratio profile for chromosome 17 (panel A) with the distribution of the expression ratios for genes along chromosome 17, arranged from 17pter to 17qter (panel D). The largest peak in the cDNA microarray profile (Fig. 1, D) corresponds to an expressed sequence tag (EST) (image clone identification No. 133432). This clone showed a higher MCF-7-to-normal expression ratio (8.4) than any other evaluable cDNA clone in the cDNA microarray experiment (Fig. 1, C, and inset). This EST belongs to a UniGene cluster (Hs.124943 (25) located at 17q23 by radiation hybrid mapping (at 369 cR) (27)). Subsequent sequencing and extension of the cDNA clones in this UniGene cluster (Forozan F, Kallioniemi O-P: unpublished observations) indicated that this UniGene represented the 3′ untranslated region of the ribosomal protein S6K. The localization of S6K to 17q23 was confirmed by FISH to normal metaphase chromosomes (Fig. 1, E). Since S6K is an important signaling molecule involved in the transition from G1 to S phase of the cell cycle, we explored further the role of S6K as a possible amplification target gene.

S6K Copy Number, Expression, and Enzymatic Activity in Breast Cancer Cell Lines

The S6K gene copy number was analyzed in seven breast cancer cell lines by interphase FISH. Cell line MCF-7 showed at least a 10-fold amplification (Fig. 1, F), as did cell lines KPL-1 and ZR-75-1wt (data not shown). In other experiments for which the data are not shown, cell line SUM-52 showed a twofold amplification, cell line BT-474 showed at least a fivefold amplification, and cell lines HBL-100 and MDA-436 showed no increase in S6K copy number. Expression of S6K mRNA and protein was studied by northern and western blot analyses. Northern blot analysis revealed major transcripts with molecular sizes of 2.5 and 6.0 kilobases (Fig. 2, A), consistent with the results of Reinhard et al. (26). In the four cell lines that showed at least a fivefold increase in S6K copy number, expression of both of these transcripts was increased eightfold to 20-fold (relative to cell lines with no amplification). Western blot analysis of five cell lines revealed bands with apparent molecular masses of 70 and 85 kilodaltons, which correspond to the two known isoforms of S6K protein (27). Increased expression of both isoforms was seen in

alize the relationship between increased copy number and increased expression levels of genes along chromosome 17, we displayed the data from our cDNA microarray analyses according to the clones’ chromosomal positions.
three cell lines with S6K amplification (Fig. 2, B).

The S6K protein is activated by phosphorylation on multiple sites (28,29). We, therefore, studied whether the increased expression of S6K protein would also lead to increased enzymatic activity. When compared with the average enzymatic activity in lysates of HBL-100 and MDA-436 (cell lines with neither amplification nor overexpression), the activity observed in lysates from four cell lines with S6K amplification and overexpression ranged from threefold (cell line BT-474) to 15-fold (cell line KPL-1) (Fig. 2, C).

Growth inhibition by rapamycin, which blocks the phosphorylation of S6K (28), was studied in six cell lines. Over the range of rapamycin concentrations used (0.01–100 nM), all cell lines showed concentration-dependent growth inhibition, regardless of their amplification status (data not shown).

S6K Amplification and Protein Expression in Primary Breast Cancers by Tissue Microarrays and Clinicopathologic Associations

We applied FISH analysis on tumor tissue microarrays to evaluate the amplification of the S6K gene in vivo in 668 informative primary breast tumors (Fig. 3, A). Fifty-nine tumors (8.8%) showed amplification of S6K (Fig. 3, B). The S6K protein expression was analyzed in a subset of 445 tumors by use of immunohistochemistry. Fig. 3, C and D, illustrates tumor samples with no S6K expression or high S6K expression, respectively. Moderate or strong cytoplasmic staining was seen in 69 primary tumors (15.6%). There was a statistically significant association between S6K amplification and high S6K expression (P = .0004), with 41.2% (14/34) of the amplified tumors exhibiting high S6K expression.

No statistically significant association was seen between S6K amplification and the age of the patient, tumor size, lymph node status, histologic grade, or the presence of estrogen or progesterone receptors (data not shown). However, patients with S6K amplification had a statistically significantly (P = .0021) worse survival than patients without S6K amplification (Fig. 4, A). A similar, statistically significant (P = .0083) prognostic relationship was also found with high S6K expression (Fig. 4, B).

Since amplification of the HER-2 oncogene (located on the same chromosome at 17q12) is also associated with poor prognosis in breast cancer (30), we analyzed whether S6K showed prognostic significance irrespective of HER-2. An adjacent section from the tissue microarray was hybridized with a probe for HER-2, which showed amplification in 106 (17.4%) of 610 informative cases. Amplification of both S6K and HER-2 was seen in 27 (4.4%) of the 610 cases, whereas S6K was amplified alone in 30 cases (4.9%). Patients with tumors showing both S6K and HER-2 amplifications had a statistically significantly (P = .0001) worse prognosis than those with no amplification or amplification of only one of the genes (Fig. 4, C).

DISCUSSION

Genomic DNA amplifications are common in breast cancer and affect a number of distinct chromosomal sites. At each amplification site, multiple genes may confer a clonal growth advantage to the cancer cells. Such genes could be promising targets for developing diagnostic, prognostic, and therapeutic approaches for breast cancer. This concept has been best demonstrated for the HER-2 gene [see (30) for a recent review], which originally was found to be amplified in neuroblastomas and subsequently was shown to be associated with poor prognosis in breast cancer. More than 10 years after these initial discoveries, treatment of HER-2-positive breast cancers with the monoclonal antibody Herceptin is now available (30).

To rapidly identify putative target genes for other genomic amplifications detected in cancer by CGH, we performed a parallel analysis of gene expression changes by use of cDNA microarrays in the MCF-7 breast cancer cell line and normal mammary gland tissue. The sensitivity of our cDNA microarray approach has been described in detail previously.
In earlier experiments, we were able to detect overexpression of several genes shown to be expressed in MCF-7, including CDK4, CAS, MYBL, and PCNA (Forozan F, Mahlama et al.: unpublished data). In separate control experiments, we have also been able to reliably detect expression of rare transcripts, such as that of the estrogen receptor (data not shown).

The most highly overexpressed gene in the MCF-7 cells was an EST corresponding to the ribosomal protein S6K, a gene mapping to 17q23, a chromosomal region that harbors the most prominent amplification site in the MCF-7 cell line. Based on its biologic role, S6K represents an ideal candidate for a gene whose activation by amplification could contribute to oncogenesis. The S6K protein is rapidly activated in response to various mitogenic stimuli, such as growth factors (e.g., epidermal growth factor and platelet-derived growth factor), cytokines, and oncogene products (28,31,32). S6K regulates protein synthesis, translation of specific mRNA species, and progression from the G1 to the S phase of the cell cycle (28,32,33).

We observed high-level amplification of the S6K gene in all four of the cell lines with 17q23 amplifications that we examined. We also observed that the levels of mRNA and protein expression were often higher than those anticipated from the level of DNA amplification and that S6K activity was increased in all cell lines that showed S6K gene amplification. These observations support the hypothesis that the S6K gene is an amplification target gene in breast cancer cell lines.

Although 17q23 amplifications are detected by CGH in both breast cancer cell lines and uncultured primary breast tumors (4–7), it is important to validate any data from cell line model systems in clinical specimens. The tissue microarray technology (14) provides an ideal method for rapid in vivo analysis of candidate cancer genes in a large series of patient specimens. The tissue microarray technology (14) provides an ideal method for rapid in vivo analysis of candidate cancer genes in a large series of patient specimens. S6K gene amplification and protein expression were seen in 8.8% and 15.6%, respectively, of breast cancer specimens. Statistically significant associations were found between gene amplification or protein expression and poor prognosis of patients. These results suggest that S6K amplification is characteristic of aggressive breast cancers. In more than half of the tumors, S6K was amplified irrespective of HER-2, a known indicator of poor prognosis in breast cancer (30). Co-amplification of both of these genes implied a much worse prognosis than did amplification of either one alone.

A recent study (34) also supports the role of S6K as a possible target gene for amplification of 17q23 in breast cancer. Couch et al. (34) found amplification of S6K in two of 14 patient specimens evaluated. Our results, which are based on samples from a large number of patients, indicate that additional clinical studies are warranted to explore the role of S6K amplification both as an independent prognostic indicator and as a modifier of disease progression (such as response to Herceptin therapy) in patients with tumors in which HER-2 is amplified.

Inhibition of the increased S6K activity in cancer cells with 17q23 amplification could provide an attractive target for therapeutic intervention. Our results indicate that growth inhibition by rapamycin, a known inhibitor of S6K activity, was not appreciably different between cell lines with increased S6K activity and those with no S6K involvement. This observation may indicate that rapamycin is not a sufficiently specific inhibitor, since it also influences a wide variety of other cellular functions such as induction of apoptosis and inhibition of several cyclins.
Our results illustrate how the combination of CGH information with cDNA and tissue microarray analyses can be used to identify amplified and overexpressed genes and to evaluate the clinical implications of such genes and genomic rearrangements. cDNA microarrays are now widely used to identify differentially expressed genes in human cancer (38). CGH information on genomic copy number provides a new parameter to take into account when interpreting gene expression information from thousands of cDNA clones and may help to identify the most important targets first. Focused high-throughput analysis of hundreds of clinical samples by use of tissue microarray technology complements these genome-screening tools and provides information on genes that are likely to be important for cancer development and progression in patients.

Our analyses imply that the S6K gene is likely to be an important—but perhaps not the only—target gene involved in the 17q23 amplifications in breast cancer. S6K amplification is characteristic of aggressive types of breast cancer, and detection of S6K amplification in conjunction with HER-2 amplification may provide more prognostic information than either one alone. Further research is required both on the role of S6K and on the possible presence of other overexpressed genes in this amplicon.
REFERENCES

NOTES

Supported in part by the Finnish Cultural Foundation, the Emil Aaltonen Foundation, the Tampere University Hospital Research Foundation, and the Swiss National Science Foundation (81BS-052807).

We thank Yuan Jiang for excellent technical assistance.

Manuscript received July 26, 1999; revised May 19, 2000; accepted May 30, 2000.