Interrelationship between Ca\(^{2+}\) and a methionine-requiring step in *Halobacterium halobium* taxis

V.A. Baryshev, A.N. Glagolev and V.P. Skulachev

Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Moscow 117234, U.S.S.R.

Received 21 September 1981
Accepted 23 September 1981

1. INTRODUCTION

Halobacterium halobium possesses both phototaxis [1] and chemotaxis towards (or away from) attractants and repellants [2,3]. According to our data, the positive phototaxis towards green light which is mediated by the bacteriorhodopsin H\(^+\) pump [1,4,5] is governed by \(\Delta \mu \text{H}^+\)-sensing [6]. Blue light evokes negative phototaxis of *H. halobium* cells, and it was suggested that an as yet uncharacterized retinal-requiring pigment P\(_{370}\) [1,4,5] acts by causing a depolarization of the membrane [4,5]. However, we have recently found that blue light does not change the energy level at intensities that repel bacteria and suggested that P\(_{370}\) is a specific photoreceptor [6].

Sensory information from individual bacterial receptors is passed to methyl-accepting chemotaxis proteins (MCP) [7]; their methylation causes adaptation to attractant [8,9]. Recently a discovery of an MCP protein in *H. halobium* was reported [10]. It was shown that the addition of attractants increased, while the addition of a repellent decreased, \(-\text{CH}_3\) incorporation into a protein fraction. L-Ethionine, a non-metabolizing analogue of methionine, blocks methylation and was found to inhibit positive chemotaxis, but not phototaxis, in *H. halobium* [2]. A methyl-requiring process was also reported to be non-essential in the sensing of uncouplers by *Bacillus subtilis* [11]. We consider the sensing of uncouplers to be mediated by \(\Delta \mu \text{H}^+\) reception and thus to be closely related to *H. halobium* positive phototaxis. We therefore attempted to re-investigate the methionine requirement in *H. halobium* phototaxis.

In this paper we report that both positive and negative phototaxis in *H. halobium* is dependent upon methylation, and that a next step in the information processing requires Ca\(^{2+}\).

2. MATERIALS AND METHODS

2.1. Bacteria

H. halobium R\(_1\)M\(_1\) was kindly provided by Dr. D. Oesterhelt. Bacteria were cultivated for 72 h at 37°C with limited aeration in a complex Oxoid peptone medium [12]. Bacteria were harvested by centrifugation, washed and resuspended to approx. 2 \(\times 10^9\) cells/ml in the basal salts portion of the growth medium containing Ca\(^{2+}\) as contaminants of the salts (4.3 M NaCl, 27 mM KCl, 80 mM MgSO\(_4\), 14 mM sodium citrate pH 7.0) or in the Ca\(^{2+}\) starvation medium (4.3 M NaCl, 27 mM KCl, 2 mM MOPS, 10\(^{-5}\) M EGTA, pH 7.0). Incubation during 24 h at 37°C under illumination, was found to stimulate motility.

2.2. Reagents

All chemicals (reagent grade) were dissolved in Ca\(^{2+}\) starvation medium. Ionophore A23187 was
dissolved in ethanol and added at a 1:200 v/v ratio. The final concentration of ethanol (0.5%) had no influence on bacterial behaviour.

2.3. Observations

A drop of bacterial suspension (approx. 2 • 10⁻⁹ cells/ml) was placed between a slide and coverslip and sealed with vaseline oil to prevent evaporation. A 10-min incubation in the dark was allowed to ensure anaerobiosis that increases the sensitivity of the response to green light. Cells were observed in phase contrast (Reichert-Univar microscope). The slides were placed on a Biotherm (Reichert) stage at 37°C. Light stimuli provided with an incident light source passed through a blue or a yellow filter.

3. RESULTS

Bipolarly flagellated H. halobium move with a speed of approx. 4 µm/s reversing once about every 17 s. A decrease in yellow green light (λ > 500 nm) or an increase in blue light intensity causes cells to reverse. A quantitative estimate of taxis may be obtained by recording the fraction of cells that reverse to a given stimuli in a given time [6].

Green or blue light stimuli were selected that caused an approximate 50% response of H. halobium cells. Then 2 mM L-ethionine was added and the sensitivity to the same stimuli was recorded at different time intervals (Fig. 1). In accordance with the findings of Schimz and Hildebrand [2], a 2–3 h incubation with ethionine did not decrease the phototaxis sensitivity. However, a longer incubation caused a gradual loss of phototaxis sensitivity. However, a longer incubation caused a gradual loss of phototaxis that completely disappeared in 6 h. The ATP level hardly changed after a 6 h incubation with ethionine (measurements were done with luciferine-luciferase; data not shown). A prolonged incubation of cells with methionine had no effect on phototaxis sensitivity (Fig. 1).

In B. subtilis, Ca²⁺ was shown to cause flagellar reversals at a certain step following reception [13] and we confirmed this finding in a study of Phormidium uncinatum and H. halobium behaviour [14]. It is known that Ca²⁺ easily penetrates the cells in the presence of the ionophore A23187; a 50% water solution of the salts medium was applied to insure A23187 penetration in our previous study [14]. We treated H. halobium with this ionophore and found that starting with 10⁻³ M Ca²⁺, cells in the presence of A23187 began oscillatory reversal, with a period of < 3 s (Table 1). Ca²⁺

<table>
<thead>
<tr>
<th>Ethionine CaCl₂ Motility pattern</th>
<th>% reversals without</th>
<th>% reversals with</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mM (M)</td>
<td>A23187</td>
<td>A23187</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>5–10</td>
<td>motionless</td>
</tr>
<tr>
<td>10⁻²</td>
<td>5–10</td>
<td>>90</td>
</tr>
<tr>
<td>10⁻³</td>
<td>5–10</td>
<td>>90</td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>5–10</td>
<td>5–10</td>
</tr>
<tr>
<td>+</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>10⁻²</td>
<td><5</td>
<td>>90</td>
</tr>
</tbody>
</table>
Fig. 2. Ca\(^{2+}\) dependence of *H. halobium* phototaxis. Cells were Ca\(^{2+}\)-starved for 24 h. Sensitivity was estimated as in Fig. 1, after a 30 min incubation with a given Ca\(^{2+}\) concentration. Ca\(^{2+}\) was added together with 10\(^{-5}\) M EGTA. Free Ca\(^{2+}\) was calculated in accordance with [13]. Stimuli: (©), decrease in green light; (○), increase in blue light. The dashed line represents the sensitivity of photoreactions after 24 h in a medium without Ca\(^{2+}\).

had little effect on *H. halobium* behaviour without the ionophore. However, a prolonged 24-h incubation of cells in the presence of 0.1 M Ca\(^{2+}\) caused all the cells to undergo oscillatory reversal. When 10\(^{-2}\) M Ca\(^{2+}\) + A23187 was added to cells pretreated with ethionine (Table 1), the extremely low reversal rate changed to oscillatory reversals.

A 24-h incubation in a medium without Ca\(^{2+}\) caused a sufficient loss in spontaneous or photoinduced reversals. The requirement of Ca\(^{2+}\) for phototaxis was briefly mentioned previously [4]; it seemed to be interesting to compare the relative dependence of both photoresponses on Ca\(^{2+}\). Cells with reduced phototaxis, after being Ca\(^{2+}\)-starved, were supplied with different concentrations of Ca\(^{2+}\) (no ionophore) (Fig. 2). Green or blue light stimuli that caused a 50% response in control cells were applied. An effective restoration of both blue- and green-light responses was observed upon a gradual increase of the Ca\(^{2+}\) concentration.

4. DISCUSSION

A relationship between chemotaxis and phototaxis in *H. halobium* is evident from the finding that the incubation of cells in the presence of ethionine impairs both chemotaxis [2] and photoreponses (present study). Since a reasonably longer period of incubation with ethionine is necessary to inhibit phototaxis (Fig. 1) than to suppress chemotaxis [2], one may speculate that the information inputs from these two different groups of stimuli feed into different MCP proteins. After a comparatively short period of ethionine treatment, the sensitivity of the negative phototaxis to blue light increased two-fold whereas that of the positive phototaxis remained unchanged. This difference may also reflect the involvement of two different MCP proteins, one collecting information from the P\(_{370}\) receptor and another from the Protomer \(\Delta\mu H^+\)-sensor (protomer) which mediates green light sensing [6]. Since the addition of Ca\(^{2+}\) together with the ionophore A23187 restored the reversing ability of *H. halobium* cells pretreated with ethionine, we conclude that MCP proteins are located at a stage prior to that regulated by Ca\(^{2+}\).

The large concentrations of Ca\(^{2+}\) necessary to cause oscillatory reversals are probably due to a low permeability of the cells to A23187. In a previous study we found that in a hypotonic solution, Ca\(^{2+}\) (+A23187) caused reversals with a \(K_d = 10^{-8}\) M [14].

The fact that it is very difficult to either starve *H. halobium* cells for Ca\(^{2+}\) or to observe oscilla-
tory reversals in the presence of Ca$^{2+}$ (without A23187) indicates that the bacteria maintain Ca$^{2+}$ intracellularly at a level that is essentially independent of its outer concentration. In *B. subtilis* it was found that Ca$^{2+}$, although regulating flagellar reversals, does not actually become redistributed between the cell and the outer medium during taxis [13]. We would suggest that the regulation of flagellar rotation is carried out by redistributing Ca$^{2+}$ between the cytoplasm and binding sites in the cell wall.

The close coincidence of the Ca$^{2+}$ requirements of both photo-reactions (Fig. 2) further indicates that the Ca$^{2+}$-dependent step is the next stage after the methylation process. Perhaps, information from all of the receptors and MCP proteins becomes unified at the level of Ca$^{2+}$. This is illustrated by the tentative scheme given above.

ACKNOWLEDGMENTS

The authors are most grateful to Dr. D. Oesterhelt for providing the R$_{1}$M$_{1}$ *H. halobium* strain and to Calbiochem Co. for a kind gift of A23187. The authors are grateful to Dr. M.Yu. Sherman for helpful discussions.

REFERENCES