ERRATUM for a missing eComment to ‘Intrathoracic chemo-thermotherapy with radiofrequency waves after extrapleural pneumonectomy for malignant pleural mesothelioma’


Toshiteru Tokunaga, Masahiko Higashiyama, Jiro Okami, Jun Maeda, Ayako Fujiwara, Ken Kodama
Department of Thoracic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan

The publisher regrets having failed to include the eComment below, pre-published on the website on 22 July, along with the above-mentioned article.

Our sincere apologies to the authors of this eComment.

eComment. Malignant pleural mesothelioma: a therapeutic challenge

Georgios Dimitrakakis
Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff CF14 4XW, UK,
Taha BinEsmail, Adam Szafranek, Peter A. O’Keefe

doi:10.1510/icvts.2011.270561A

In the article by Tokunaga et al. [1] regarding the multimodal treatment of malignant pleural mesothelioma (MPM), the authors in their conclusion suggested that treatment with extrapleural pneumonectomy and postoperative intrathoracic chemo-thermotherapy with radiofrequency waves is a promising therapy [1]. We would like to add a brief comment related to our experience with the surgical multi-modality management of MPM.

In 2009, Luckraz and colleagues published the retrospective analysis of 139 patients who underwent surgical treatment of MPM in our department during the last 30 years [2]. Butchart staging was used [3] during the data collection (pre and after 1995) for the maintenance of consistency of the staging data [2].

Forty-nine patients underwent extra-pleural pneumonectomy (EPP) and 90 patients pleurectomy and decortication (PD). The groups were categorised as having had either radiotherapy, chemotherapy or both (PD alone = 34 patients, PD with radiotherapy = 19 patients, PD with chemotherapy = 13 patients, PD with both = 24 patients, EPP with chemotherapy and radiotherapy = 15 patients and EPP with radiotherapy = 15 patients [2]. Thirty-day post-operative mortality was 1.1% for PD and 8.2% for EPP group (P=0.03%).

The longest survival occurred in the PD group with combined postoperative and radiotherapy treatment (median 26 months, 95% CI: 11.4–40.9 months) and on the univariate analysis was the strongest predictor of prolonged survival (Hazard Ratio=3.6) [2]. The multivariate analysis showed that EPP was an independent risk factor for decreased survival (Hazard Ratio=9.2) [2]. The epithelial type of mesothelioma showed better survival (P=0.002) however, the staging according to the Butchart classification did not influence long-term survival (P=0.78) [2]. The results of this study are compared with the relevant published literature.

In their multi-institutional study with 663 patients, Flores et al. [4] showed operative mortality of 7% for EPP and 4% for PD and the multivariate analysis demonstrated a hazard ratio of 1.4 for EEP. Patients who underwent PD had a better survival...
than those who underwent EPP; however, the reasons according to the authors are multifactorial and subject to selection bias [4].

At present, the choice of surgical procedure should take into consideration the extent of disease, patient comorbidities, and type of multimodality therapy planned by a multidisciplinary team.

In conclusion, the goal of surgical treatment is to achieve macroscopic complete resection (if it is possible) with postoperative adjuvant therapy for residual macroscopic and microscopic disease, and to provide better survival; however, the overall survival of these patients remains poor.

Furthermore, it is very important to remember that for the proposal of promising therapies, a large number of patients is needed (to increase statistical power). In the absence of a large enough volume of patients, a multi-institutional trial is a good option: proper design, including a control group with randomization, well-defined inclusion/exclusion criteria, and assessment of quality of life and survival are of paramount importance.

References