The search for advanced non-invasive methods for the assessment of pulmonary hypertension is very important for cardiac surgery. In the paper by Albers et al. [1], the authors propose additional tissue Doppler parameters to assess pulmonary vascular resistance in adults. However, the chosen parameters—systolic myocardial motion (S'), strain and strain rate—are indicators of myocardial systolic function [2]. Pulmonary hypertension can be only one of many factors causing a decrease of right ventricle (RV) myocardial contractility in adult patients with coronary artery disease, or mitral/aortic valve disease. The authors present data on the high specificity and sensitivity of the parameter S', particularly in patients with high pulmonary hypertension (group 2). The variability of the parameter S' can be the result of RV preload [3]. Patients from group 2 had low left ventricle ejection fraction (LVEF) (35.7±16.8%), therefore we cannot exclude the influence of the contractility of the left ventricle on the reduction of the RV function (RV-fraction area change 35.8±12.3%) [4]. Half of the patients in this group underwent coronary artery bypass graft (CABG). What coronary artery was hit? Perhaps the main reason for the reduction in RV systolic function is not pulmonary hypertension? We agree that the study of systolic myocardial motion (S') can be used in clinical practice to assess systolic myocardial function, but we doubt the possibility of applying this method to assess pulmonary vascular resistance and the degree of pulmonary hypertension. We assume that the study would be more informative in its analysis with the following criteria: the registration of the changes in parameters proposed for analysis in the preoperative period; more than one study in the postoperative period; selection of patients with similar characteristics and disease treatment. Unfortunately, the many factors affecting the changes in parameters being studied by the authors may complicate the interpretation of the data. Without a doubt, the work is interesting because it stimulates further search for authentically informative markers for use in ultrasound studies of the heart to assess the degree of pulmonary hypertension.

References