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We introduce a framework of energetics into the stochastic dynamics described by 
Langevin equation in which fluctuation force obeys the Einstein relation. The energy con­
servation holds in the individual realization of stochastic process, while the second law and 
steady state thermodynamics of Oono and Paniconi [Y. Oono and M. Paniconi, this issue] 
are obtained as ensemble properties of the process. 

§1. Introduction 

17 

This symposium features the statistics, stochastics and phenomenological the­
ories of diverse areas, and the present paper is also on these aspects, especially 
from the viewpoint of energy, which I tentatively call stochastic energetics. There 
are at least three levels of description of (classical) dynamical systems. One is a 
microscopic Hamiltonian dynamics including all degrees of freedom of the system 
concerned, whose evolution is deterministic. There is also a macroscopic thermody­
namic formalism with thermodynamics variables. The thermodynamics formalism 
usually does not specify the dynamics of a system, but the system is supposed to be 
somehow controlled by external agents. The intermediate level between them would 
be the stochastic dynamics such as the Langevin equation. At this level, we define 
the dynamics but it is not deterministic, and we introduce external agents to control 
the system but they only partly control it. 

We already know several relations between these three levels. For example, 
Zwanzig-Mori formalism relates the Hamilton dynamics and a generalized Langevin 
equation by using projection method. If we allow a Markovian approximation, we 
obtain the usual Langevin equation. l) Also the framework of statistical mechanics 
enables us to predict equilibrium thermodynamics if we are given the Hamiltonian. 
And the foundation of statistical mechanics, or ergodic theory, is still a research 
subject of fundamental physics. 

As we have exemplified the relation between the micro level and the macro 
level, and also the one between the micro level and the stochastic level, the question 
then is 'how is stochastic dynamics related to thermodynamics?' There have been 
pioneering work, 2)- 6) which taught us about the condition needed for consistency 
of stochastic dynamics with thermodynamics. To describe it, let us take a simple 
Langevin equation, 

dx dU 
,_ == -- + e(t). 

dt dx 
(1·1) 

Here x 1s the dynamical variable(s) of a system, 1 the friction constant, U the 
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18 K. Sekimoto 

potential energy for x, and ~(t) is the thermal noise from a heat bath, which we 
assume to obey Gaussian and white correlated stochastic process with the properties 
(hereafter we take the unit of kB = 1), 

(~(t)) = 0, (~(t)~(t')) = 2"fT<5(t- t'). {1·2) 

The coefficient of <5(t- t') in the last equation is from the Einstein relation by which 
x obeys the canonical distribution at the temperature T after a long time unless U 
depends explicitly on time. 

Intensive study has also been done by Lebowitz and his colleagues since late 50s 7) 

on the master equations consistent with either canonical or grand-canonical ensem­
bles. After completion of our framework, B) we noticed their work and found that 
ours is along the line of their master equation approach, with more emphasis on the 
mechanical aspects of an individual realization of stochastic process. Recently, since 
the proposal of Ajdari and Prost, 9) many models of thermal ratchet that rectifies 
thermal fluctuating force to yield a systematic work have been proposed and stud­
ied. 14) Those works, which are based on the framework of Langevin equation, how­
ever, lacked the analysis of energetics, except for some attempts. 10) 

Our question is, then, how Langevin dynamics is related to the first and second 
law of equilibrium thermodynamics and also to non-equilibrium thermodynamics. 
There might be a skepticism that a Langevin equation, or especially 'Y~~ term, 
describes only irreversible processes. In fact, if we multiply ~~ both sides of (1·1), 
we have 

dU /dx/
2 

dx - = -·"(- -~(t)-
dt dt dt' 

(1·3) 

which would tell us that the rate of the change of potential energy of the system is 
given by a definitely negative term together with the term which is apparently non­
constructive. But this interpretation is, of course, misleading, since, if so, Langevin 
equations may not describe thermal activation processes as Kramers ll) did success­
fully in 1940. 

§2. Framework of stochastic energetics 

Thus we assert that Langevin equations can describe reversible thermodynamic 
processes. More concretely we start with the following assertion: If a Langevin 
equation represents the balance of forces on a system, then the Langevin dynamics 
conserves the energy of the system plus the surrounding heat bath. This is essentially 
the first law of thermodynamics applied to an individual realization of the stochastic 
process. Let us take a simple example (1·1) again. If we rearrange the terms in (1·1), 
we have the expression 

dx dU 
0 = -"(- +~(t)- -. 

dt dx 
(2·1) 

The first two terms on the right-hand side (r.h.s.) are due to the interaction between 
the system and the heat bath; -'Y~~ is the systematic force, and ~(t) is the remaining 
fluctuating force. The last term is, on the other hand, the force due to the system's 
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Langevin Equation and Thermodynamics 19 

potential. These forces on the system's degree of freedom x sum up to make zero, 
that is, the balance of forces is established at every moment of time (the framework 
is valid also if we incorporate the inertia term, see Ref. 8)). 

Suppose that the state of the system has changed by dx. The multiplication of 
the forces in (2·1) by ( -dx) should represent the energy balance, 

( 
dx ) dU 0=- -~-+~(t) dx+-dx. 
dt dx 

(2·2) 

On the r.h.s. of (2·2), - ( -~~~ + ~(t)) is the reaction force to the heat bath exerted 

by the system since it is the minus sign of the force exerted to the system by the 
heat bath, as mentioned above. The remaining term is the change of U. What is 
the work done by the reaction force? We may identify it as the discarded heat by 
the system into the heat bath, which we denote by dQ, 

dQ = - (--1 ~~ + ~(t)) dx. (2·3) 

(The sign convention here is opposite to the usual macroscopic thermodynamics; 
Q = -Q.) The energy balance, therefore, is symbolically expressed as 

0 = dQ+dU. (2·4) 

Let us consider a slight extension of the above example, which, in fact, is general 
enough to discuss thermodynamic processes. We assume that the potential energy U 
depends, not only on the system's variable x, but on the variable a which represents 
the effect of an external agent (or agents), 

1 
dx = _ au(x, a) + ~(t). 
dt ax 

(2·5) 

The argument above applies again, and we obtain the energy balance equation, 

( 
dx ) aU(x, a) 

0 =- _, dt + ~(t) dx + ax dx. (2·6) 

Here the last term of (2·6) is no more the total differential of U. To complete the 
differential form, we must add to the both side the quantity, ~~ da. We then have 
the general expression of the energy balance as 

au 
aa da = dQ + dU. (2·7) 

Now, from the energy conservation law of mechanics the left-hand side (l.h.s.) of 
(2·7) must be the work done by the external system through the change of the 
variable a. We may summarize that, for the type of Langevin dynamics (2·5), the 
following law of energy balance is obtained, 8) 

dW = dQ+dU, (2·8) 
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20 K. Sekimoto 

where the work by the external system, dW, has been defined as 

(2·9) 

We should note that, in the above expressions, dx and, consequently, dU are the 
actual changes obeying the Langevin dynamics (2·5) during the time interval dt when 
we specify a particular realization of both the fluctuation force ~(t) and the protocol 
of the parameter a. Another remark is that all the multiplication of fluctuating 
quantities, e.g. ~(t)dx, should be understood in the sense of Storatonovich calcu­
lus. 12) What we have introduced above is not any new dynamics, but a framework 
of energetics for a stochastic dynamics. We have noticed that the heat bath receives 
the reaction force from the system although we assume, as usual, that the heat bath 
is not affected by the system. 

§3. Thermal energy transducer and converter 

Before exploring more of the thermodynamics by the above framework, we de­
scribe some applications of it to show how it works. Suppose that there are two heat 
baths with the temperature T1 and T2, respectively, and that, in each heat baths, 
a vane is immersed (Fig. 1). These vanes can undergo rotational Brownian motion 
characterized by the temperature of the heat bath and the friction constants, 1'1 and 
')'2, respectively, if these vanes are uncoupled. Now we introduce the coupling be­
tween the rotation angles, x1 and x2 of these two vanes through the potential energy 
U ( x1, x2). We expect there to occur a heat flow from the high temperature bath, 
say the T1 side, to the cooler side, say the T2 side. The corresponding Langevin 
equations are 

(3·1) 

(3·2) 

Fig. 1. Thermal energy transducer: In each heat bath (shaded), a vane is immersed. The two vanes 
are connected to a spring (center). An external agent (thick arrow) may change the potential 
energy of the spring (see§ 5). 
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Langevin Equation and Thermodynamics 21 

where the fluctuating force terms obey the Gaussian and white processes with 
(~i(t)) = 0 and (~i(t)~i(t')) = 2"(iTi8(t- t'), fori= 1 or 2, while we assume that the 
cross-correlation is zero, (6(t)6(t')) == 0. Especially, if we assume the coupling by 
a harmonic spring having the elasticity against the twist, or the angle differences of 
the two vanes, U(x1, x2) = ~ (x1 - x2)2, then the ensemble average of heat flow in 
the steady state is explicitly given by 

I dQ2) = K (T1 - T2) = - I dQ1) . 
\ dt 'Y1 + 'Y2 \ dt 

(3·3) 

We can also show that if many heat baths are coupled by a quadratic potential like 
U(x1, ... ,xn) = !LiLjKijXiXj with {Kij} a positive definite symmetric matrix, 
then the rate of the discarded heat to each bath is the linear combination of the 
temperatures of these heat baths. 

A little but ingenious sophistication of the above setup is due to Feynman, 13) 

which is now called the Feynman ratchet (Fig. 2). There, one vane is attached to a 
ratcheted wheel, and also to a loading system, while the other vane is replaced by a 
simple board and the latter is connected to the pawl which interacts with the ratchet 
wheel. If the board is in a cooler bath (i.e., if T1 > T2 in Fig. 2), this pawl acts 
as a (physical) Maxwell's demon. Then the ratchet wheel undergoes a systematic 
rotation, and we can extract a net work of lifting up the load unless the latter is 
excessively heavy. In this system we can define the efficiency of energy conversion, 
ry, as the fraction of energy used to lift up the load out of the total energy coming 
from the warmer heat bath. If the load under T1 "I T2 is just as heavy as to stall 
the rotation of the ratchet wheel on the average, the efficiency rt is much smaller 
than (T1 - T2)/T1 (here T1 > T2 is assumed), despite what would be anticipated 
from Carnot's heat engine operated through quasi-equilibrium processes. 13) This is 
because the stalled state does not correspond to an equilibrium state as Feynman 
argued, but to the steady heat conduction state as described above in Fig. 1. The 
equilibrium state (T1 = T2) has neither an analogy to Carnot cycle. 14) 

Fig. 2. Feynman's ratchet: 13
) A pawl (thick arrow) horizontally presses the ratchet wheel (center) 

with aid of a spring. See, for details, the text. 
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22 K. Sekimoto 

Before concluding this section, let us digress to the notion of entropy production 
which has been one of the central issues of irreversible thermodynamics people. As we 
shall show in the next section, stochastic energetics based on the Langevin dynamics 
involves the Helmholtz free energy as an isothermal reversible work, and we need not 
to introduce the entropy as a separate concept. We shall, however, write down the 
equation of entropy balance in the above two examples. Let P(x1, x2, t) be the prob­
ability distribution function of XI and x2 of these examples with a given initial con­
dition. The probability current along Xi direction is given by Ji = ~ ( g~ + f g~) , 
and P obeys the equation 8£ = - I:;=l ~- If we introduce the entropy of the 
system, S, by S(t) = - J P log PdT with dT = dx1dx2, then we have the following 
balance equation: 7) 

dS + t .!__ dQi = t 'Yi I Ji
2 

dr. 
dt i=l ~ dt i=l ~ p 

The right-hand side is the so-called entropy production. 

§4. Thermodynamics from stochastic energetics 

(3·4) 

When the parameter a is controlled by an external agent, the laws of thermody­
namics are formulated by considering a thermodynamic system which consists of the 
ensemble of an extensive number of the independent stochastic systems working with 
the different realizations of the ~(t). Then the first law is immediately obtained from 
(2·7) as (hereafter we shall use the expressions of the thermodynamics quantities per 
an individual stochastic system), 15) 

( ~~) da = (dQ) + (dU). ( 4·1) 

The second law of thermodynamics is obtained by recalling the expression of the 
work done by an external agent (2·9). From (2·9), we shall show that the reversible 
isothermal work of the thermodynamic system at the temperature T is 15) 

(dW) = dF(T, a), (T =fixed, quasi-equilibrium) (4·2) 

where F(T, a) is the Helmholtz free energy defined, up to a constant, as 

[/ ~ ] F(T,a) = -- Tlog e- r dx . (4·3) 

To evaluate (dW), or(~~) in (2·9), we introduce the probability distribution function 
P(x, t) of the system's state variable, x. Corresponding to the Langevin equation 
(2·5), 12) P(x, t) obeys the Fokker-Planck equation 

oP =~-_!_(au+ r~) P. (4·4) at o'.l: 'Y ax ax 
Using P, we have 

(~~)=/au~:, a) P(x,t)dx. (4·5) 
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Langevin Equation and Thermodynamics 23 

For the quasi-equilibrium processes, P(x, t) may be replaced, in the lowest order 
approximation, by the equilibrium distribution function with the instantaneous value 
of the control parameter, a= a(t), 

_ U(x,a) 
e r 

P(x, t) ~ Peq(x; a(t)) = ~ 
J dx'e- r 

(4·6) 

Then we may use the Ehrenfest type identity concerning the equilibrium ensemble 
average ( ~~) eq which is easily verified from ( 4·3) and ( 4·6), 

oF(T,a) 
oa 

(4·7) 

which leads to the expression (4·2). We have shown that the stochastic energetics 
relates Langevin dynamics and isothermal process in the limit of ~~ ---+ 0. Then, a 
question is how far we can explore non-equilibrium processes, i.e., the processes at 
finite rate of change of a(t). Though we have no rigorous answers to it, a plausible 
domain of applicability is the process within the steady or non-steady processes 
near equilibrium so that the distortion of the velocity distribution function from 
the Maxwellian distribution be of higher order correction in ~~ than those explicitly 
appearing in the results. 

Our framework may still deal with far from equilibrium processes since we do 
not assume the local equilibrium (Gibbs) distribution to hold at each moment of 
time. We can derive the linear nonequilibrium thermodynamics and especially the 
expression of kinetic coefficient, the latter of which cannot be obtained within the 
frameworks with local equilibrium assumption for the system. As the lowest order 
correction to the result ( 4·2), we have L5) 

(
da da) (dW) = dF + --·A( a)·- dt + · · · 
dt dt ' 

(4·8) 

where the second and the further terms represent the irreversible work. The second 
term corresponds to the lowest order distortion, P1(x,t), of the probability function 
from the (instantaneous) equilibrium one, Peq(x, a(t)), 

P(x, t) = Peq(x; a(t)) + P1(x, t) + · · ·, (4·9) 

which can be obtained by the systematic expansion of the Fokker-Planck equation 
(4·4). As a result, the kinetic coefficient A(a) is given as a functional of the instanta­
neous value of a(t) (see, for details, Ref. 15)). The smallness parameter of the above 
expansion is the ratio of the time-scale of the change of a( t) to the equilibration time 
of the system. Under given initial and final values of the parameter a, the slowness of 
the whole process cannot be defined only by the time interval Llt of the process. The 
slowness of the process is unambiguously stated in the following way: Suppose we 
take a history, or a protocol, of the parameter a = a( t) for the time interval 0 ~ t ~ 1' 
and call it a scaled protocol. Now we uniformly stretch the scaled protocol along 
the time axis to have the time protocol between 0 and Llt; a(t) = aCit). With this 
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24 K. Sekimoto 

scaled protocol and (4·8), the total irreversible work, (LlW)- LlF, which is defined 
as the integration of (dW)- dF over the interval 0 ~ t ~ Llt, is asymptotically given 
as 

(LlW)- LlF rv - f __!!_ . A(a). __!!_dt 1 ( 1 d' dA ) 
Llt lo dt dt ' 

Llt ~ 00. (4·10) 

This leads us to a kind of (asymptotic) complementarity relation for Llt ~ oo, 16) 

[(LlW)- LlF]· Llt 2: Smin(ai, ar) > 0, (4·11) 

where Smin(ai, ar) is the minimum of the integral on the r.h.s. of ( 4·10) over all scaled 
protocols under the fixed initial and final values of a, ai = a(O) and ar = a(Llt). As 
A(a) is found to be a positive definite symmetric matrix, the minimum is positive 
unless ai =1- ar. (We will not go into the subtlety about the finite variation property of 
a.) The above relation tells that the irreversible work for a given Llt cannot be smaller 
than a positive lower bound which is inversely proportional to Llt. The relation is also 
described in the way reminiscent of the uncertainty principle of quantum mechanics, 
that is, the precise determination of the Helmholtz free energy function through the 
observation of the work (LlW) requires indefinitely large experimental time Llt. 

In the context of linear nonequilibrium thermodynamics, the integrand of (4·10) 
is twice the dissipation function, IJ!. Usually the dissipation function has been em­
ployed to consider steady nonequilibrium states with ~~ = canst. Here we have 
extended this usage to the non-steady processes with a finite time interval. As for 
the external system which controls the parameter a(t), the external system receives 
the potential force - ~~ and the 'friction' force -A( a) · ~~. For example, we can 
imagine to change the spring constant of a harmonic potential U(x, a) = ~x2 , where 
the system's degree of freedom, x, is coupled to the heat bath of the temperature T. 

§5. Model study of steady state thermodynamics 17) 

It is conceivable to extend our study of quasi-equilibrium processes to what we 
may call quasi-steady processes. 18) For example, in Fig. 1 with the coupling potential 
U = ~(x- x') 2 (here we denote a forK), we can ask the force to change the spring 
constant a. Here the heat flows between the two heat baths as an irreversible process 
even if the parameter a is kept constant. If we focus on the system of the spring 
with the vanes being attached to both ends, we may ask what potential (reversible) 
force and the frictional (irreversible) force are received by the external agent. In 

2T* *T* d the present example, these force are found to be, -----;;- and - 1
2a 3 • d~, respectively, 

where T*::::::: y'T+yT' and,..,*::::::: ~. 
-y+-y' I -y+-y' 

In the thermodynamic formalism of steady states, 18) we discuss the system's 
thermodynamics such as quasi-steady processes or thermodynamic potential in terms 
of properly chosen external operations and the data obtained thereby. In general 
steady states, the external system controlling the system's parameter and the driving 
system that keeps the system far from equilibrium may be identical. In such case 
we must be careful in extracting the reversible and irreversible works concerning the 
change the state of the system out of the total work done by the driving system. 
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Langevin Equation and Thermodynamics 25 

Fig. 3. Driven. 

Let us consider a simple system that exhibits this aspect Ref. 17)(Fig. 3). A bead 
(the thick dot in Fig. 3), whose position is denoted by x, is subject to the influence 
of a heat bath (at rest) of the temperature T. The friction constant of the bead in 
the heat bath is 'Y. The bead is connected to an external agent via a spring. The 
potential energy of the spring is assumed to be U(x- a(t), b(t)), where a(t) and b(t) 
are controled by the external agent. The parameter a(t) may be regarded, up to a 
constant difference, as the position of the opposite end of the spring (the thin dot in 
Fig. 3). We can specify the system's state by the variable X = x-a( t). The difference 
from the previous example of two vanes is that we study the thermodynamics of the 
system under the change of the drive v(t) = d~1t), not that of a(t) itself. The 
pertinent Langevin equation is given as 

dX 8 
'Ydt =-oX [U(X, b(t)) + "fV(t)X] + ~(t). (5·1) 

The stochastic properties of ~(t) is assumed as before (see the description below 
(1·1)). It is natural to define the (nonequilibrium) Helmholtz free energy F*(T, V, b) 
as 

[/ 

(U(X,b)+-yVX] ] 
F*(T, V, b)= -Tlog e- T dx . (5·2) 

If we can obtain F*(T, V, b) in an operational way similar to the one we demonstrated 
in the previous section (see (4·2)), we may describe the system's thermodynamics 
and study the potential function U(X, b), etc. The point is that (dW) is not zero 
even under a constant drive, v(t) = const(:f: 0), when a(t) changes steadily. In order 
to extract the net work to change the system's thermodynamics state, we must 
carefully substract the house-keeping work needed for a macroscopic ensemble of the 
stochastic system to keep its instantaneous state as a steady state. The latter work 
is ~ ( g;{-) 2 dt and we find, after a straightforward calculation, the second law of the 
quasi-steady isothermal processes, which corresponds to ( 4·2) for quasi-equilibrium 
processes, 

(dW)- ~\Z~)
2

dt = dG*(T, (X), b), (T =fixed, quasi-steady) (5·3) 
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26 K. Sekimoto 

where the new free energy G* is related to the Legendre transform of F* as 

G*(T (X) b)= F'*(T V b)- V{)F*(T, V, b) 
' ' - ' ' av ' (5·4) 

(X)=~ oF*~~V,b). (5·5) 

Since the work (dW) as well as the house-keeping work rate ~(g~)2 
are, in prin­

ciple, measurable quantities, we can operationally obtain G* or F* and thus the 
potential U(X, b) through the quasi-steady processes. It is not yet clear whether a 
thermodynamic potential can always be obtained by a general recipe. A system of 
the Brownian particle confined in a three-dimensionally rotating potential may be a 
good test. 

§6. Concluding remarks 

We have shown that the method of stochastic energetics provides a link between 
Langevin dynamics and thermodynamics. The energy conservation, which underlies 
the first law of thermodynamics, is realized for each realization of stochastic process. 
The present method may be useful where the fluctuations are important, such as 
metastable states including those in proteins, diffusion processes including ion trans­
port across ion channels, as well as theoretical studies on the Maxwell demon, 19) 

etc. 
The relation between the phenomenological approach 18) and the statistical ap­

proach 20) is not yet established. We should explore also the possible extension of the 
method, such as to an discrete stochastic processes where the small scale stochastic 
fluctuation is further eliminated, 21 ) the open systems with particle exchanges, 22 ) 

non-Gaussian external noise 23) and non-Gibbsian statistics. 
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