
Estimation of missing precipitation records integrating

surface interpolation techniques and spatio-temporal

association rules

Ramesh S. V. Teegavarapu

ABSTRACT

Ramesh S. V. Teegavarapu

Department of Civil Engineering,

Florida Atlantic University,

777 Glades Road,

Boca Raton,

FL 33431-0991,

USA

Tel.: +1 561 297 3444

Fax: +1 561 297 0493

E-mail: ramesh@civil.fau.edu

Deterministic and stochastic weighting methods are the most frequently used methods for

estimating missing rainfall values. These methods may not always provide accurate estimates

due to their inability to completely characterize the spatial and temporal variability of rainfall.

A new association rule mining (ARM) based spatial interpolation approach is proposed, developed

and investigated in the current study to estimate missing precipitation values at a gauging

station. As an integrated approach this methodology combines the power of data mining

techniques and spatial interpolation approaches. Data mining concepts are used to extract and

formulate rules based on spatial and temporal associations among observed precipitation data

series. The rules are then used to improve the precipitation estimates obtained from spatial

interpolation methods. A stochastic spatial interpolation technique and three deterministic

weighting methods are used as interpolation methods in the current study. Historical daily

precipitation data obtained from 15 rain gauging stations from a temperate climatic region

(Kentucky, USA) are used to test this approach and derive conclusions about its efficacy for

estimating missing precipitation data. Results suggest that the use of association rule mining in

conjunction with a spatial interpolation technique can improve the precipitation estimates.

Key words | association rule mining, data mining, deterministic interpolation, missing

precipitation data, ordinary kriging, spatial interpolation

INTRODUCTION

Deterministic weighting and stochastic interpolation

methods (Wei & McGuinness 1973; Simanton & Osborn

1980; Tung 1983; Krajewski 1987; ASCE 1996; Vieux 2001)

have been used in the past for spatial construction of

rainfall fields or estimation of missing rainfall data at a point

in space. Traditional weighting and data-driven methods are

generally used for estimating missing precipitation. Weight-

ing methods belong to a class of spatial interpolation

techniques such as inverse-distance (Wei & McGuinness

1973), nonlinear deterministic and stochastic interpolation

methods (e.g. kriging). Regression and time series analysis

methods belong to data-driven approaches. The Handbook

of Hydrology (ASCE 1996) recommends two methods for

estimation of missing data. These methods are normal-ratio

and inverse-distance weighting methods. Singh & Chowdh-

ury (1986) compared thirteen rainfall estimation methods

and found isohyetal method yielded higher estimates of

mean daily, monthly aerial rainfall than other methods in

the area of their study.

Tung (1983) compared five methods used for estimating

point rainfall and indicated that arithmetic average and

inverse-distance methods did not yield desirable results for

mountainous regions. Variance-dependent surface interp-

olation methods that belong to the general family of kriging
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have been applied for several geophysical interpolation

problems in hydrology (Grayson & Bloschl 2001; Vieux

2001). These stochastic interpolation methods are based on

the principle of minimizing estimation variances at points

where measurements are not available. Kriging in various

forms is applied for estimation of missing precipitation data

and aerial precipitation from point measurements (Vieux

2001; Dingman 2002). Ashraf et al. (1997) compared

interpolation methods (kriging, inverse distance and co-

kriging) to estimate missing values of precipitation. They

indicate that the kriging interpolation method provided the

lowest root mean square error (RMSE). However, kriging

methods are plagued by several limitations. Selection of

semivariogram model, assignment of arbitrary values to sill

and nugget parameters, and distance intervals, and the

computational burden involved in interpolation of surfaces,

are a few difficulties associated with this method.

Regression and time series models (Salas 1993) were

used in the past for estimation of missing rainfall data.

Global interpolation methods that use trend surface

analysis and regression (Wang 2006) provide several

advantages compared to deterministic weighting tech-

niques. However, selection of the appropriate functional

form to model the trend poses a major problem in trend

surface analysis as there is an enormous range of candidate

functions (Sullivan & Unwin 2003). Local interpolation

methods such as thin-plate splines tend to generate steep

gradients in data-poor areas and errors in the estimation

process are compounded (Chang 2004).

Several limitations of spatial interpolation methods

were reported by many researchers in many recent research

studies. Vieux (2001) pointed out several limitations of the

inverse-distance weighting method (IDWM), a major one

being the “tent pole effect” that leads to higher estimates

closer to the point of interest in space. Grayson & Bloschl

(2001) list several limitations of Thiessen polygon and

inverse-distance methods. They suggest that these methods

are not recommended for spatial interpolation, considering

the limitations. However, they recommend the thin-splines

method and kriging for interpolation of hydrologic vari-

ables. The Thiessen polygon approach has a major

limitation of not providing a continuous field of estimates

if used for spatial interpolation (Sullivan & Unwin 2003).

Brimicombie (2003) indicated that the main point of

contention in application of IDWM for spatial interpolation

is the selection of the number and relevant observation

points for spatial interpolation at a point.

All these issues associated with spatial interpolation

techniques may lead to under- or over-estimation of rainfall

magnitudes at a gauge based on observations at all other

gauges. Burrough & McDonnell (1998) reviewed several

spatial interpolation techniques and concluded that geo-

statistical methods are superior to all other methods.

Eischeid et al. (2000) report several interpolation methods

for estimation of missing daily temperature and precipi-

tation records and discuss their limitations. Underestima-

tion of precipitation resulting from equating trace amount

of precipitation to a zero value leads to significant errors in

regional water balance assessments (Dingman 2002). Brown

et al. (1968) reported that trace amounts of precipitation

accounted for 10% of the summer precipitation on average

for a region in Alaska that might be equal to one-third of

the total precipitation observed over a few years. Under-

estimation of precipitation in minute amounts still leads

to significant errors in water balance studies or in hyd-

rologic modeling. Dingman et al. (1980) and Yang et al.

(1998) suggest that corrections have to be made to account

for underestimation associated with trace amounts of

precipitation.

Overestimation of precipitation amounts by spatial

interpolation techniques is not unusual. Traditional deter-

ministic spatial interpolation techniques (e.g. distance-

based weighting method) and stochastic techniques such

as isotropic kriging do not consider the spatial variability of

the precipitation patterns. In general, distance-based

weighting methods suffer from one major conceptual

limitation based on the fact that Eucledean distance is not

always a definitive measure of the correlation among spatial

point measurements. This also negates Tobler’s first law of

geography (Tobler 1970): “everything is related to every-

thing else, but near things are more related than distant

things”, which forms the basis for many interpolation

techniques. Also, the interpolation methods fail to estimate

missing values correctly, if errors are introduced into the

measurement process of rainfall at one or more rainfall

stations. These are artifacts of interpolation techniques that

cannot be avoided or eliminated all together in many

situations.
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Teegavarapu & Chandramouli (2005) reported several

limitations and advantages of deterministic and stochastic

spatial interpolation techniques when missing precipitation

data is estimated at a base station (i.e. station with missing

data) using data at all other stations. They indicate that all

interpolation techniques fail in estimation of missing

precipitation data at a point in space in two situations:

(1) when precipitation is measured at all or a few other

stations and no precipitation occurred in reality at the

base station; and (2) when precipitation is measured at

the base station and no precipitation is measured or

occurred at all the other stations. In case 1, all spatial

interpolation techniques provide a positive value of esti-

mate while in reality a zero value of precipitation is recorded

at the base station. It is impossible to estimate missing

precipitation data in the second case as the point obser-

vations are used to estimate the missing value at the base

stationbyusing spatial interpolation algorithmsalone.All the

interpolation techniques provide a zero value as an estimate

for situations encountered in case 2. Data from other sources

(e.g. radar-based precipitation estimates) can be used in the

above situations to estimate the missing values. However,

the reliability of radar-based precipitation measurements

is a contentious issue (Young et al. 1999; Adler et al. 2001).

In two cases identified earlier a station closest to the

base station is selected and the estimates provided by the

spatial interpolation technique are revised using the obser-

vations recorded at the closest stations. A remedial strategy

to address the first situation is proposed here. This strategy

is based on the assumption that the station closest to the

base station and the base station will experience similar

precipitation magnitudes and patterns. The observations at

a station that is closest to the base station by Euclidean

distance or a station selected based on strongest correlation

are used to modify the estimates provided by inter-

polation techniques or adopted as estimates. Teegavarapu

(2007) verified this approach and proved that Euclidean

distance is not always a surrogate measure of spatial

correlation between observations recorded at any two

stations. A similar approach was referred to as single best

estimator (SBE) by Eischeid et al. (2000).

The main objective of this study is to evaluate the use of

association rule mining (ARM), a data mining technique, in

conjunction with a spatial interpolation technique to obtain

the estimates of missing precipitation data and to overcome

one of the major limitations of spatial interpolation

techniques. Two of the four interpolation techniques used

in the current study are improvised weighting methods

recently reported by Teegavarapu & Chandramouli (2005).

The contents of this paper are organized as follows. A brief

introduction to the deterministic and stochastic interp-

olation techniques is provided first. Limitations of these

methods and concepts related to data and association rule

mining are discussed next. Development of association rule

mining based interpolation is then presented along with a

case study application. Finally results and analysis, general

remarks and conclusions are presented.

INTERPOLATION TECHNIQUES

Deterministic spatial interpolation techniques such as the

inverse-distance weighting method (IDWM) and its revised

versions, such as the modified inverse-distance weighting

method (MIDWM), the coefficient of correlation weighting

method (CCWM), along with the ordinary kriging esti-

mation method (KEM) are used in the current study to

estimate missing precipitation data. The CCWM and

MIDWM are two methods recently reported by Teegavar-

apu & Chandramouli (2005) for estimation of missing

precipitation data. The following subsections provide brief

details of these methods.

Inverse-distance weighting method (IDWM)

The inverse-distance (reciprocal-distance)weightingmethod

(Simanton & Osborn 1980) is most commonly used for

estimation of missing data. The weighting distance method

for estimation of missing value of an observation, um, using

the observed values at other stations is given by

um ¼

Pn
i¼1 uid

2k
m;iPn

i¼1 d2k
m;i

ð1Þ

where um is the observation at the base station m; n is the

number of stations; ui is the observation at station i; dm,i is the

distance from the location of station i to station m; and k is

referred to as the friction distance (Vieux 2001) that ranges
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from 1.0–6.0. A variant of IDWM that incorporates local

anisotropy was proposed and tested by Tomczak (1998).

Modifications are incorporated into the IDWM for

estimation of missing data. These modifications are mainly

related to distance and weight calculations. In two proposed

variants of the IDWM, the distances are replaced by new

parameters that can help in better estimation of missing data.

Modified inverse-distance weighting method (MIDWM)

The inverse-distance weighting method is modified by repla-

cing the distance in Equation (1) by a distance defined by the

property of the proximity (Thiessen) polygons. The distance is

smaller than the actual distance measured from the base

station. Since the distances are smaller compared to the

original distances, the weights inMIDWMwill now be higher

for some of the stations than those used in the IDWM.

Estimation of missing data value, um, can be carried out using

Equation (1) with the revised distance. Details of this method

can be found elsewhere (Teegavarapu&Chandramouli 2005).

Coefficient of correlation weighting method (CCWM)

The success of the inverse-distance weighting method

strongly depends on the existence of strong positive spatial

autocorrelation. In the case of CCWM, the weighting

factors are replaced by the correlation coefficients and the

estimation method is given by

um ¼

Pn
i¼1 uirmiPn
i¼1 rmi

ð2Þ

where umi is the coefficient of correlation, which is the ratio

of covariance of two datasets to the product of standard

deviations of datasets. The coefficient, umi, is obtained by

using the data at station m and any other station i. In

applying this method available historical data are used for

deriving the values of umi. A similar approach of replacing

Euclidean distance with statistical distance was reported by

Ahrens (2006).

Kriging estimation method (KEM)

Kriging (Journel & Huijbregts 1978; Isaaks & Srivastava

1989; Webster & Oliver 2001) is widely recognized as the

standard approach used for surface interpolation, based on

scalar measurements at different points in space. This

method is used to estimate missing data in the current

study. Kriging is an optimal surface interpolation method

based on spatially dependent variance (Vieux 2001). The

degree of spatial dependence is generally expressed as a

semi-variogram in kriging. The general expression that is

used to estimate the semi-variogram is given by

gðdÞ ¼
1

2nðdÞdij¼d

X
ðui 2 ujÞ

2 ð3Þ

where g(d) is the semi-variance which is defined over

observations ui and uj lagged successively by distance d.

Surface interpolation using kriging depends on the selected

semi-variogram model and the semi-variogram must be

fitted with a mathematical function or model. Depending on

the shape of the semi-variogram several mathematical

models are possible that include linear, spherical, circular,

exponential and Guassian. A typical semi-variogram is

shown in Figure 1. Three semi-variogram models, namely

spherical, exponential and Gaussian given by Equations

(4)–(6), are used in the current study:

gðdÞ1 ¼ Co þ C1
1:5d

a
2 0:5

d

a

� �3" #
ð4Þ

gðdÞ2 ¼ Co þ C1 12 exp 2
3d

a

� �� �
ð5Þ

Figure 1 | Typical parameters (nugget and sill) of a semivariogram.
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gðdÞ3 ¼ Co þ C1 12 exp 2
ð3dÞ2

a2

 !" #
ð6Þ

The parameters Co, d and a are referred to as the nugget,

distance and range and are shown in Figure 1. The

summation of Co and C1 is referred to as the sill and

the semi-variance at range, a, is equal to the sill value. The

values of Co and C1 are obtained by trial-and-error

procedures and the final values used in the study are 0.2

and 0.8, respectively. In ordinary kriging the weights are

based not only on the distance between the measured points

and the prediction location, but also on the overall spatial

arrangement among the measured points and their values.

The weights mainly depend on fitted model (i.e. semi-

variogram) to the measured points. The general equation for

estimating missing value, um, is given by

um ¼
Xn
i¼1

diui ð7Þ

where ui is the weight obtained from the fitted semi-

variogram and ui is the value of the observation at location i.

The observed data is used twice, once to estimate the semi-

variogram and then to interpolate the values.

DATA MINING

Data mining is the process of extracting interesting (non-

trivial, implicit, previously unknown and potentially useful)

information or patterns from large information repositories

(Chen et al. 1996). It is also used to extract information and

patterns derived by any knowledge discovery methods

(Dunham 2002; Witten & Frank 2005). Knowledge dis-

covery and data mining terms are often used interchange-

ably in data mining literature.

Association rule mining (ARM)

Association rule mining (ARM) is one of the popular data

mining methods mainly aimed at extracting interesting

correlations, frequent patterns, associations or causal

structures among data available in databases (Agrawal &

Srikant 1995; Zhang & Zhang 2002; Zhao & Bhowmick

2003). Association rule mining is regarded as an unsuper-

vised knowledge discovery process. It has been successfully

applied for deriving spatio-temporal relationships hidden in

Earth science data (Zhang et al. 2005) and analysis of urban

land cover change (Mennis & Liu 2005). Li et al. (2003) used

data mining algorithms in conjunction with spatial interp-

olation to facilitate drought risk assessment using tempera-

ture and precipitation data.

ARM is carried out using an a priori algorithm

developed by Agarwal et al. (1993). It is also referred to as

a support–confidence framework for discovering associ-

ation rules within a database. Association rules take the

form “if antecedent then consequent”. The format is

generally expressed as X ) Y, suggesting that event Y is

expected to occur whenever event X is observed. The events

X and Y are generally referred to as items or itemsets in

traditional ARM literature. In the current context, an item

refers to a specific event (e.g. occurrence or non-occurrence

of rain at a station) and an itemset refers to a set of events

(i.e. series of stations with occurrence or non-occurrence of

rain). Before the details of the algorithm are explained, two

important measures for association rules need to be

discussed. These measures are support and confidence,

and are discussed in relation to the current context.

Support

The support for an association rule X ) Y is the proportion

of days (D) that contain both X and Y:

a ¼ pðX > YÞ ð8Þ

Support is defined using itemsets and indicates the

proportion of the total number of days which contain both

X and Y. It is a measure of the significance or importance of

an itemset. An itemset with a support greater than a

minimum support threshold (um) value is called a frequent

or large itemset. One important property of support is the

downward closure property that suggests that all subsets of

a frequent set are also frequent. This property (i.e. no

superset of an infrequent set can be frequent) is mainly used

to reduce the search space in the a priori algorithm and

prune the association rules.
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Confidence

b ¼ p
Y

X

� �
¼

pðX > YÞ

pðXÞ
ð9Þ

Confidence is defined as the probability of seeing the

rule’s consequent under the condition that the transactions

also contain the antecedent. It is important to note that

confidence is directed and gives different values for the

rules X ) Y and Y ) X. Confidence is not downward

closed and was developed together with support by Agrawal

et al. (1993).

Support is initially used to find frequent (significant)

itemsets exploiting its downward closure property to

prune the search space. Then confidence is used in a

second step to produce rules from the frequent itemsets that

exceed a minimum confidence threshold. One main

limitation of confidence parameter is that it is sensitive to

the frequency of the consequent (Y) in the database.

Consequents with higher support will automatically

produce higher confidence values, even if there is no

association between the items.

ASSOCIATION RULE MINING BASED SPATIAL

INTERPOLATION

The association rule mining based spatial interpolation used

in the current study is illustrated in Figure 2. A spatial

interpolation technique is applied first to estimate missing

data at a gauging station (i.e. base station) based on

observations available at all other stations. The spatio-

temporal database of historical precipitation observations

are mined separately using the a priori algorithm and

several rules are derived. The a priori algorithm as provided

in the appendix is implemented in two major steps:

(1) generation of frequent itemsets and (2) generation of

association rules. In the current study the traditional

distance weighting method (IWDM) and its variants

(CCWM and MIDWM) and a stochastic interpolation

approach, ordinary kriging (KEM), are investigated.

The description of the algorithm format shown in the

appendix is a modified version of that presented by Zhao &

Bhowmick (2003). In the first phase all the candidate one-

item sets are identified. Using the parameters of minimum

support and confidence large one-item sets are then

selected. The process is continued to obtain two-item

candidates and two-item large itemsets. A few steps

associated with the implementation of the algorithm for

the current study are shown in the appendix in Tables (a–d)

respectively. Using the minimum confidence limit, associ-

ation rules are derived from the large-1, large-2 and large-k

itemsets. All the rules used in the current study are referred

to as single consequent rules as the base station, Lexington,

only features in the consequent part of all the rules.

Corrections are applied to the precipitation estimates

provided by the spatial interpolation methods using ARM-

derived rules. The ARM-based rules can be translated into

mathematical forms as described by Equation (10) and

conditions specified by inequalities (11)–(13):

ifð>ðui ¼ 0ÞÞ; then uo
m ¼ 0; else uo

m ¼ um ;i; i – m ð10Þ

i # n 2 1 ð11Þ

a $ am ð12Þ

b $ bm ð13Þ

The variable, i, is the number of stations identified based

on ARM of the database, um is the estimated value using the

spatial interpolation method at base station, m, uo
m is the

revised estimate of the precipitation value, n is the total
Figure 2 | Framework for integration of association rule mining (ARM) and spatial

interpolation method for estimation of missing precipitation data.
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number of stations, a, am, b and bm are the support and

minimum support, and confidence and minimum confi-

dence levels, respectively.

CASE STUDY AREA

The case study area comprises of the eastern part of the

state of Kentucky. The state-wide average annual precipi-

tation based on data from 1971–2003 varied between

76.2 cm (30 in) and 193 cm (76 in), with values higher than

127 cm (50 in) in the southeastern region and lower than

107 cm (42 in) in the northeastern part. The statistics of

rainfall data at different stations with the same historical

record length are given in Table 1. The Cumberland (or

Appalachian) Plateau dominates the eastern third of

Kentucky and contains the highest point, Black Mountain,

at 1,263m above mean sea level. The Bluegrass Region

(north-central) is a series of hills fronting the Ohio River.

The far western corner includes the Mississippi River flood

plain with the lowest elevation (78m) in the state. The state

with mean elevation of 229m is dominated by the Ohio

River forming its northern borders, and the Cumberland

and Tennessee River systems, and their many spin-off lakes.

Other major rivers include the Kentucky, Licking and

Mississippi along its western border with the state of

Missouri.

APPLICATION TO CASE STUDY

The association rule mining based spatial interpolation

method is used to estimate missing rainfall data at a base

station (i.e. Lexington, Kentucky). Data at the base station

are assumed to be missing for the purpose of testing the

improvised interpolation methods. Historical daily rainfall

data from year 1971–2002 available at 15 rainfall gauging

stations in the state of Kentucky are used for analysis. These

gauging stations are shown in Figure 3 and are numbered

for convenience. The data used in the current study are

compiled and provided by the Kentucky Agricultural

Weather Center, University of Kentucky. Approximately

67% of the historical data (7,800 d) is used for obtaining the

association rules and 33% of the data (3,900 d) is used for

testing the methods. This is consistent with procedures

generally used for comparison of spatial prediction models

(Kanevski & Maignan 2004). GSLIB (Duetsch & Journel

1992), a geo-statistical software library, is used to apply

ordinary kriging with three semi-variogram models given by

Equations (4)–(6). The existing code of GSLIB was

modified and additional code was developed to use the

GSLIB software library for temporal estimation of missing

precipitation data.

The association rule mining is carried out using the

WEKA (Waikato Environment for Knowledge Analysis)

Figure 3 | Location of precipitation gauging stations in the eastern part of the state of

Kentucky.

Table 1 | Statistics of observed daily and annual rainfall values at different stations

Station x̄1 S1 x̄2 S2

Bardstown 0.986 1.290 125.456 23.602

Berea 0.904 1.158 119.019 21.460

Bowling Green 1.052 1.430 129.931 22.489

Buckhorn 0.861 1.062 118.562 19.403

Campbellsville 1.064 1.410 132.268 24.305

Covington 0.810 1.087 108.575 16.068

Cumberland 0.892 1.120 125.280 22.278

Grayson 0.864 1.074 107.513 14.709

Hardinsburg 1.024 1.283 122.428 19.093

Jackson 0.889 1.133 125.042 20.554

Lexington 0.881 1.209 116.271 20.947

London 0.785 1.097 118.087 20.340

Louisville 0.912 1.245 114.691 18.880

Somerset 1.016 1.290 129.080 19.667

Williamstown 0.765 1.074 113.373 17.493

�x1¼Mean rainfall (cm), daily; S1 ¼ Standard deviation (cm), daily; �x2¼Mean rainfall (cm),

annual; S2 ¼ Standard Deviation (cm), annual.
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(WEKA 2001) modeling environment. Historical precipi-

tation data at all stations are converted from continuous

numerical values to categorical types of data. This process is

referred to as discretization and it is needed for spatial

association rule mining. The categorical data is specified as

“no rain” and “rain” within the database of the modeling

environment and they constitute only two class intervals.

The ARM is used in a supervized manner in which the

consequent (i.e. Lexington rain gauge station) is pre-

selected. Once the association rules are extracted, they are

applied to the estimates of the missing precipitation data to

obtain revised estimates. The performances of ARM-based

interpolation techniques are compared using two widely

recognized and commonly used error measures, root mean

square error (RMSE) and absolute error (AE), based on

actual and estimated rainfall values at the base station.

Several researchers (e.g. Chang 2004; Kanevski & Maignan

2004; Ahrens 2006) have recommended these two measures

for comparison of spatial predictions of interpolation

models for testing data. The error measures, RMSE and

AE, are given by Equations (14) and (15), respectively:

RMSE ¼

ffiffi
1

n

s Xn
i¼1

ðf̂i 2 fiÞ
2 ð14Þ

AE ¼
Xn
i¼1

jf̂i 2 fij ð15Þ

where n is the total number of observations, f̂i is the

estimated value and fi is the actual value of the observation.

The error measures, RMSE and AE, are provided in units of

inches in this paper.

RESULTS AND ANALYSIS

Historical precipitation data is used in the WEKA modeling

environment to obtain association rules. Initially low values

of support and confidence are used and the precipitation

data are mined. The values are systematically increased in

an iterative way and the association rules are obtained until

no large itemsets are possible. Rules with different confi-

dence and support values are used to improve the estimates

provided by spatial interpolation methods. The rules

obtained from the ARM process based on training data

are provided in Table 2. Rules related to the maximum

achievable confidence and support values based on the data

are selected. Any rule generated by ARM has a general form

with antecedent and consequent parts. For example, rule 2

(in Table 2) suggests that, in instances when no rainfall is

recorded at rainfall gauging stations, Louisville and

London, no rain was observed/recorded at the base station

(i.e. Lexington). Also the generation of rules is stopped

when the inequalities, Equations (12) and (13), are violated.

The ARM rules are transformed into mathematical

expressions (Equations (10) and (11)). These expressions,

along with the data at all other stations, are used to

revise the estimates provided by the spatial interpolation

methods. In the current study, three deterministic methods,

namely IDWM, CCWM and MIDWM, and one stochastic

interpolation approach, ordinary kriging, are used in con-

junction with ARM to evaluate the proposed integrated

methodology.

The results associated with these experiments are

reported in Table 3. Two error measures, namely RMSE

and AE, provided for three different methods for training

and test data suggest that the use of ARM rules improves the

overall estimation process. The performance is best for rule

1 and it decreased as the next-best rules are applied.

However, the performance is better than the case when no

rule was applied for revision of the precipitation estimates

for all the rules. On average a decrease of 75 in for absolute

error was evident from the application of the rules, with the

lowest decrease for the CCWM method. Table 4 provides

results for ordinary kriging with the application of rules.

Table 2 | Description of association mining rules along with support (a) and confidence

(b) values for each rule

Rule Description a b

1 Louisville ¼ no rain
) Lexington ¼ no rain

0.55 0.89

2 Louisville ¼ no rain,
London ¼ no
rain ) Lexington ¼ no rain

0.50 0.95

3 Louisville ¼ no rain,
Berea ¼ no
rain ) Lexington ¼ no rain

0.50 0.95

4 Louisville ¼ no rain,
Somerset ¼ no
rain ) Lexington ¼ no rain

0.50 0.94
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Average error (observed 2 estimated) can be used as one of

the error measures to provide an assessment of bias. In

general, all the methods resulted in over-estimation before

the application of association rules and under-estimation

after the application of rules. For example, application of

the IDWM, MIDWM and CCWM without application of

association rules to test data resulted in an over-estimation

given by average errors as 0.001, 0.002, 0.001 in, respect-

ively. With the application of rule, the methods (i.e. IDWM,

MIDWM and CCWM) resulted in under-estimation with

average errors of 0.023, 0.017 and 0.015 in, respectively.

To evaluate the effect of temporal scale on the number

or the nature of rules, monthly historical data was used to

develop ARM rules. The rules given in Table 5 suggest that,

in all the months excepting in the month of April and June,

the rules contained the rain gauging station, Louisville, in

the antecedent part. Tables 6 and 7 provide results related

to the months of April and June for ordinary kriging. It is

interesting to note that rules 6 and 7 provided lower AE and

RMSE values compared to those provided by rule 1. Results

related to the three deterministic methods, IDWM, CCWM

and MIDWM, are provided in Tables 8 and 9.

It is important to note that the error measures

calculated are average values for the testing period of

3,900 d. Absolute errors calculated based on the daily

estimated and observed values using the methods proposed

in the current study ranged from 1,387mm (55 in) to

680mm (27 in) for 3,900 d. The highest absolute error

resulted from the use of IDWM and the lowest absolute

error from CCWM when these methods are used in

conjunction with association rule mining. A 1% difference

in RMSE value can suggest on average one interpolation

method is either over-predicting or under-predicting rainfall

values by 1%. Small variations in rainfall intensity can

introduce significant changes in the runoff values generated

from distributed rainfall–runoff models (Vieux 2001). Any

improvement in the rainfall magnitude estimation, however

minute it may be, can be considered significant, as rainfall is

a crucial input that governs the response of hydrologic

systems and the results of continuous simulation models.

Similar arguments were made by Xu & Vandewiele (1994)

to suggest that errors in precipitation values may lead to

significant effects on the model performance and also on

parameters.

In general the RMSE and AE values decreased when

rules based on ARM methodology are applied to revise the

precipitation estimates from the spatial interpolation

methods. It is interesting to note that the rainfall gauging

station at Louisville appears in the antecedent part of

Table 3 | Performance of association rule mining based spatial interpolation methods

using different rules for training and testing data

Method

Error measure ARM rule Rule 1 Rule 2 Rule 3 Rule 4

IDWM IDWMþ

RMSE 0.235 0.227 0.233 0.234 0.234

AE 777.376 636.125 714.773 731.219 726.390

RMSEp 0.243 0.238 0.242 0.243 0.242

AEp 365.054 310.450 348.253 351.649 349.822

CCWM CCWMþ

RMSE 0.204 0.202 0.203 0.203 0.204

AE 639.095 570.285 605.578 609.320 610.248

RMSEp 0.226 0.225 0.226 0.226 0.226

AEp 320.907 294.135 311.394 310.921 311.984

MIDWM MIDWMþ

RMSE 0.210 0.207 0.209 0.209 0.210

AE 672.598 581.511 630.505 634.716 636.675

RMSEp 0.229 0.228 0.229 0.230 0.229

AEp 331.841 296.767 320.507 319.853 321.367

IDWMþ, CCWMþ, MIDWMþ: improved estimates with ARM based spatial interpolation;

RMSEp, AEp: error measures for test data in inches.

Table 4 | Performance of association rule mining based spatial interpolation using

kriging with different rules for test data

Error

measure

Method

ARM rule Rule 1 Rule 2 Rule 3 Rule 4

KEMp KEMaþ

RMSE 0.238 0.233 0.236 0.237 0.235

AE 424.912 318.582 352.503 360.250 354.27

KEM† KEMbþ

RMSE 0.464 0.309 0.348 0.354 0.351

AE 1691.166 619.857 830.790 852.712 846.307

KEM‡ KEMcþ

RMSE 0.647 0.404 0.461 0.471 0.464

AE 2408.448 845.278 1136.891 1172.498 1157.256

pSpherical semi-variogram model.
†Exponential semi-variogram model.
‡Gaussian semi-variogram model.

KEMaþ, KEMbþ, KEMcþ: improved estimates with ARM based spatial interpolation.
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almost all of the ARM rules. One possible explanation is

the highest correlation coefficient obtained based on

observations at Louisville and the base station, Lexington.

One might argue that there is no need for the whole exercise

of developing and using association rules to obtain revised

precipitation estimates in this situation. A plot of corre-

lation coefficients between different stations and the

base station is provided in Figure 4. The correlation

coefficients based on observations at Lexington and

between Bardstown, Bowling Green and Covington are

0.617, 0.593 and 0.589, respectively.

It is interesting to note that none of the stations were

identified by the ARM procedure in antecedent parts of the

rules. Louisville with the highest correlation coefficient of

0.691 appears in all the rules except for two rules derived for

the month of June. This does not necessarily indicate

consistency between the association rules and the corre-

lation coefficients. Correlation is a measure of linear

Table 5 | Rules based on monthly historical data along with support (a) and confidence (b) values

Month Rule Description a b

January 1 Louisville ¼ no rain ) Lexington ¼ no rain 0.56 0.87

February 2 Louisville ¼ no rain ) Lexington ¼ no rain 0.55 0.89

March 3 Louisville ¼ no rain ) Lexington ¼ no rain 0.52 0.90

April 4 Louisville ¼ no rain ) Lexington ¼ no rain 0.54 0.90

5 Somerset ¼ no rain ) Lexington ¼ no rain 0.53 0.82

May 6 Louisville ¼ no rain ) Lexington ¼ no rain 0.53 0.87

June 7 London ¼ no rain ) Lexington ¼ no rain 0.55 0.86

8 Hardinsburg ¼ no rain ) Lexington ¼ no rain 0.55 0.81

July 9 Louisville ¼ no rain ) Lexington ¼ no rain 0.58 0.86

August 10 Louisville ¼ no rain ) Lexington ¼ no rain 0.63 0.88

September 11 Louisville ¼ no rain ) Lexington ¼ no rain 0.64 0.92

October 12 Louisville ¼ no rain ) Lexington ¼ no rain 0.67 0.92

November 13 Louisville ¼ no rain ) Lexington ¼ no rain 0.57 0.90

December 14 Louisville ¼ no rain ) Lexington ¼ no rain 0.55 0.90

Table 6 | Performance of association rule mining based spatial interpolation using

kriging with different rules for the month of April

Error measure

Method

ARM rule Rule 4 Rule 5

KEMp KEMaþ

RMSE 0.151 0.142 0.158

AE 32.085 23.213 27.365

KEM† KEMbþ

RMSE 0.433 0.266 0.312

AE 136.660 50.012 66.654

KEM‡ KEMcþ

RMSE 0.615 0.371 0.416

AE 196.411 70.900 90.152

pSpherical semi-variogram model.
†Exponential semi-variogram model.
‡Gaussian semi-variogram model.

KEMaþ, KEMbþ, KEMcþ: improved estimates with ARM based spatial interpolation.

Table 7 | Performance of association rule mining (ARM) based spatial interpolation

using ordinary kriging with different rules for the month of June

Error measure

Method

ARM rule Rule 7 Rule 8 Rule 1

KEMp KEMaþ

RMSE 0.44 0.458 0.458 0.526

AE 61.056 53.59 53.251 77.301

KEM† KEMbþ

RMSE 0.578 0.507 0.522 0.556

AE 156.895 83.378 86.904 102.034

KEM‡ KEMcþ

RMSE 0.727 0.575 0.599 0.642

AE 210.497 100.974 107.196 121.731

pSpherical semi-variogram model.
†Exponential semi-variogram model.
‡Gaussian semi-variogram model.

KEMaþ, KEMbþ, KEMcþ: improved estimates with ARM based spatial interpolation.
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association and is based on observed data whereas

association rules are developed based on categorical values.

It should be noted that confidence measures the strength of

the rule and support measures relevancy. A higher confi-

dence value should not be mistaken for high correlation

(Brijs et al. 2003). The relationships derived using the ARM

approach does not represent any sort of causality or

correlation (Dunham 2002).

The rules obtained from the ARM process can be

ranked by a concept referred to as the usefulness of

association rule. The usefulness is a measure given by the

product of support and confidence. The rules provided in

Table 2 have usefulness measures such as 0.489, 0.475,

0.475 and 0.47. Rule 1 is ranked highest in this case based

on the usefulness metric and it also provided the lowest

RMSE and AE values.

A look at the observed data in the test period at the base

station indicates that there are 2,495 d of no precipitation out

of a total of 3,900 d. The CCWM provided a zero value of

precipitation estimates for 1,106 d and a positive value for

1,389 d. The over-estimation of precipitation for 1,389 d is

51.71 in. Use of ARM rules can help eliminate this over-

estimation. In this context, the use of ARM rules eliminated

1,459 d of positive precipitation. Under-estimation of pre-

cipitation is possible due to the application of ARM-based

spatial interpolation. This happens when no rain occurred at

one of the stations identified in the antecedent part of the

ARM rule and precipitation occurred at the base station. In

spite of under-estimation, the overall absolute error obtained

is lower than the one obtained by using any interpolation

technique. Two error measures (root mean square error and

absolute error) were used to assess and compare the

performance of ARM-based interpolation techniques in this

study. However, these global error measures may not provide

a complete assessment of methods as they are average

measures calculated for a specific period of time.

GENERAL REMARKS

The use of association rule mining to improve estimates of

missing precipitation data by interpolation methods is

demonstrated in this study. Three main factors will affect

the nature of the rules generated from the ARM process.

These include: (1) the length of the spatio-temporal data,

(2) the minimum threshold support (a) and confidence (b)

Table 8 | Performance of association rule mining (ARM) based spatial interpolation

methods using different rules for month of April using test data

Error measure

Method

ARM rule Rule 4 Rule 5

IDWM IDWMþ

RMSE 0.164 0.164 0.173

AE 29.101 28.079 29.202

CCWM CCWMþ

RMSE 0.163 0.163 0.172

AE 27.850 27.113 27.959

MIDWM MIDWMþ

RMSE 0.164 0.164 0.173

AE 28.748 27.813 28.888

IDWMþ, CCWMþ, MIDWMþ: improved estimates with ARM based spatial interpolation.

Table 9 | Performance of association rule mining (ARM) based spatial interpolation

methods using different rules for the month of June for test data

Error measure

Method

ARM rule Rule 7 Rule 8

IDWM IDWMþ

RMSE 0.451 0.468 0.469

AE 60.083 56.983 55.951

CCWM CCWMþ

RMSE 0.432 0.450 0.451

AE 53.888 50.922 51.274

MIDWM MIDWMþ

RMSE 0.436 0.454 0.456

AE 55.679 52.838 52.935

IDWMþ, CCWMþ, MIDWMþ: improved estimates with ARM based spatial interpolation.

Figure 4 | Correlation coefficients based on observations at each station and the base

station.
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limits and finally (3) the discretization of the data into

categorical data classes. In general pseudo-association is

expressed by either distance in IDWM (or MIDWM) or by

correlation coefficient in CCWM. By integrating ARM with

spatial interpolation techniques in the current study,

associations between observations are expressed in the

form of rules. Historical data are required to estimate

missing precipitation values using CCWM and KEM and

also to obtain association rules using ARM.

The threshold values of support and confidence factors

influence the number of best rules found by theARMprocess.

Selection of final rules at the end of the ARM completion

process canbe a contentious yet crucial issue thatmight affect

the revised estimates obtained from spatial interpolation

techniques. However, the rules obtained from the historical

data can be used to obtain revised estimates from IDWM,

CCWM, MIDWM and KEM, and performance of these

methods can be evaluated before they can be applied to the

test data. In the current study strong association is detected

based on the data mining approach between observations at

any two stations. The rules thus generated based on the ARM

concept are limited in number. However, the case may be

different if an entirely separate rain gauging network is used.

It is possible that many interesting rules are pruned or not

reported, as the support and confidence values are restricted

to a few pre-specified limits. The number of association rules

grows exponentially based on the number of stations and the

categorical attribute values. In the current case, 15 stations

with binary attributes (i.e. yes or no) associated with rainfall

occurrence and non-occurrence, a total of 15 £ 21521

association rules are possible. Also the discretization scheme

will affect the nature of association rules. Exhaustive studies

using ARM concepts need to be conducted before any

recommendations can be made about the transferability of

the approach discussed in this study to other climatic regions

under different meteorological conditions.

CONCLUSIONS

An association rule mining (ARM) based spatial interp-

olation approach is presented in this paper. This innovative

approach is used to improve the precipitation estimates

provided by traditional and improved deterministic

and stochastic spatial interpolation techniques. The ARM

methodology, besides offering insights into the spatio-

temporal precipitation data patterns and the associations

among observations, also helps in addressing one major

ubiquitous limitation of all spatial interpolation techniques

in accurately estimating missing precipitation records. The

use of ARM is not equivalent to the use of correlation

analysis to revise estimated precipitation values obtained

from deterministic and stochastic interpolation techniques.

Considerable improvements in the estimates were achieved

when ARM is used in conjunction with interpolation

techniques. However, the uncertainty in the revised

estimates can only be assessed by using support and

confidence indices available within the ARM framework

and ultimately through the use of calibrated and validated

hydrological simulation models.
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APPENDIX

Structure of a priori algorithm used in ARM

implementation

Input:

Spatio-temporal database of historical precipitation

records at all stations (D)

Support (minimum value) ¼ am

Confidence (minimum value) ¼ bm

Method:

L1 ¼ large 1–itemsets;

C1 ¼ candidate itemsets;

for (k ¼ 2; Lk21 – Ø; kþþ) do begin

Ck ¼ a priori–generation(Lk21); {Generation of new

candidates from Lk21}

for all data T [ D do begin

Ct ¼ subset (Ck, T);

for all candidates C [ Ct do

Count ¼ Count (C) þ1; {Increment support count

of C by 1}

end

Lk ¼ {C [ CtjCount (C) $ am £ jDj}

end

Lf ¼ <kLk

Rt ¼ Generate-rules (Lf, bm)

Output:

Association rules (Rt) derived from the spatio-temporal

precipitation database

am: Minimum Support

bm: Minimum Confidence

T: Observed precipitation data represented in categorical

form for one day.

D: Number of days of spatial precipitation data

(b) L1

Large 1 items

Louisville (no rain)

Lexington (no rain)

London (no rain)

Berea (no rain)

(c) C2

Items Count

Louisville (no rain), Lexington (no rain) 3,000

Berea (no rain), Lexington (no rain) 2,500

London (no rain), Lexingotn (no rain) 1,900

Louisville (no rain), Berea (no rain) 1,200

(d) L2

Large 2 items Count

Louisville (no rain), Lexington (no rain) 3,000

Berea (no rain), Lexington (no rain) 2,500

London (no rain), Lexingotn (no rain) 1,900

(a) C1

Items Count

Louisville (no rain) 4,000

Lexington (no rain) 3,500

London (no rain) 3,000

Berea (no rain) 2,000

Somerset (no rain) 1,000

Willimastown (no rain) 900

Progress of association rule mining (ARM) process

based on a priori algorithm
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