the educational message by individual and group monthly meetings. 6-monthly follow-up in a year. We performed 24 hours ABPM using a SpaceLabs device at the beginning of the program and at the end of the period of intensive treatment (70 ± 24 days after). The table shows the result of the data analysis:

<table>
<thead>
<tr>
<th></th>
<th>Before treatment</th>
<th>After treatment</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI Kg/m²</td>
<td>29 ± 2.7</td>
<td>24 ± 3.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>137 ± 11</td>
<td>125 ± 9</td>
<td><0.005</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>84 ± 5</td>
<td>78 ± 6</td>
<td><0.001</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>76 ± 6</td>
<td>67 ± 5</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Conclusion: we found out that overweight pts had an (unknown before) increase of BP (Pamela study criteria). While the average of BP after weight loss was decreased. Thus, a comprehensive multidisciplinary approach to obesity leads to a loss weight and to a remarkable decrease in BP and heart rate.

Key Words: Obesity, ambulatory blood pressure monitoring, exercise, dietary rehabilitation

E016

ANTI-OBESEITY THERAPY WITH SIBUTRAMINE HAS NO CLINICALLY SIGNIFICANT EFFECT ON CARDIOVASCULAR VARIABLES, VENTRICULAR DIMENSIONS AND HEART VALVES IN OBESE PATIENTS

Faiez Zannad1, Olivier Ziegler2, Bertrand Gilles3, Alain Greintzinger2, Jean-François Brunet4, Mokrane Hammadi1, Laurence Fluckiger1, Jean-Marc Boivin1, Corinne Hanotin1, Pierre Doulin1, and the GPs investigators. 1Centre de Dépistage et de Prévention Cardiovasculaires et Centre d’Investigation Clinique INSERM-CHU, Nancy, France, 2Laboratoires Knoll France, Levallois-Perret, France

Background: Anorexigenes have been associated with cardiovascular side effects including heart rate (HR), blood pressure (BP) and valvular changes. We assessed the effect of sibutramine (sib), a monoamine reuptake inhibitor, on HR, BP, LV geometry and function and heart valves.

Methods: non-complicated obese patients (n = 184, 30 ≤ BMI < 40 kg/m²) were randomized double blind to 6 months o.d. sib 10 mg (n = 64) or 20 mg (n = 60) or placebo (n = 60). 2D-Echos were obtained using an ATL Peak 800+ machine, LV mass index (LVMI) was calculated according to Devereux and Reichek and adjusted for height. Heart valves were examined in various axes. Echo data were obtained for 173 patients (10 mg = 61, 20 mg = 56 or placebo = 56). Echo were performed at baseline (twice - poor quality and/or reproducibility echo were excluded) and at 6 months by a single operator.

Results: Baseline patients’ characteristics, comparable between the 3 treatment groups, were as follows: age = 38.7 ± 10.8 yrs, 85% female, BMI = 33.8 ± 2.8 kg/m², SBP/DBP = 121.4 ± 11.7/75.3 ± 8.6 mmHg, LVMI = 60.8 ± 15.9 g/m, LVEF = 65.0 ± 5.4%; grade 1 or 2 valve regurgitation was found in 11% (mitral), 8% (aortic), and 3% (tricuspid) of patients. At 6 months sib decreased BMI (ANOVA) (10 mg: −3.5 ± 2.1 vs 20 mg: −4.4 ± 2.5 vs placebo −1.7 ± 1.6, p < 0.001) and slightly increased HR (+5.7 vs +5.8 vs +0.1bpm, p = 0.001). SBP and DBP and ECG variables, including QT and QTc, were unchanged. Statistically significant differences for LVMI reductions were seen in the sib groups from baseline (p < 0.01) but pairwise comparisons with placebo were not significant (−4.4, −4.3 vs −3.0). Valvular changes were not significant.

Conclusion: Obese patients treated with sib 10 mg or 20 mg or placebo for 6 months falls in LVM associated with weight loss; these falls were significantly greater for the sib groups from baseline. Also, apart from a slight rise in HR, sib did not affect BP, ECG variables and heart valves.

E017

ARTERIAL HYALINOSIS IN KIDNEY VESSELS. A REAL INDEX FOR RENAL PROGNOSIS IN DIABETIC PATIENTS?

J.E. Toblli*, G. DeRosa, G. Cao, E. Maronna, and R. Ibarra. Hospital Alemán—Hospital de Clinicas, Buenos Aires, Argentina

Diabetes mellitus (DM) exerts its greatest impact throughout the vascular system. Moreover, large vessel disease contributes significantly to premature morbidity and mortality in DM. On the other hand, the development of high blood pressure is an additional well-known risk factor in the DM scenario. The aim of this study was to evaluate the arterial hyalinosis (AH) in renal tissue in patients with DM and correlate this finding with glomerular sclerosis (GS), interstitial fibrosis (IF), renal function and blood pressure. Twenty-six renal biopsy (RB) specimens from patients with DM (NIDDM n = 15 and IDDM n = 11), 21 male and 5 female with a mean age of 49 years (range, 27 to 63 years). Evolution time of DM 12 ± 7 years. RB tissue was processed for LM by standard techniques. Vessels lesions were graded according to Raji score used for glomerular sclerosis, with modifications (Kidney Int 1984; 26:137–143). Serum creatinine (SCr), systolic and diastolic blood pressure (SBP, DBP) were evaluated by standard methods. Results (mean ± SD): a)SCr = 1.74 ± 1.2 mg/dl; b)SBP = 154.9 ± 19.8 mmHg; c)DBP = 96.3 ± 12.6 mmHg; RB: 1) No. vessels/biopsy = 23.2 ± 11.1; 2) AH Score = 124.3 ± 59.1; 3) GS Score = 169.3 ± 86.3; 4) IF Score = 23.7 ± 9.1. Correlations (Spearman): a)AH Score vs. SCr: r = 0.787 p < 0.001; b) AH Score vs. SBP: r = 0.8259 p < 0.001; c) AH Score vs. DBP: r = 0.9131 p < 0.001; d) AH Score vs. GS Score: r = 0.2451 p = NS; e) AH Score vs. FI Score: r = 0.6647 p < 0.001. AH Score showed a high positive correlation with SCr, blood pressure and IF. These results suggest that AH score could be an applicable tool in RB for the assessment of renal prognosis in DM, when it is required.

Key Words: Diabetes mellitus, kidney vessels, arterial hyalinosis, renal outcome