A new Fourier transform approach for protein coding measure based on the format of the Z curve

Ming Yan, Zhe-Suai Lin and Chun-Ting Zhang

Department of Physics, Tianjin University, Tianjin 300072, China

Received on December 27, 1997; revised on June 27, 1998; accepted on July 1, 1998

Abstract

Motivation: At the core of most protein gene-finding algorithms are the coding measures used to make a decision on coding/non-coding. Of the protein coding measures, the Fourier measure is one of the most important. However, due to the limited length of the windows usually used, the accuracy of the measure is not satisfactory. This paper is devoted to improving the accuracy by lengthening the sequence to amplify the periodicity of 3 in the coding regions.

Results: A new algorithm is presented called the lengthen-shuffle Fourier transform algorithm. For the same window length, the percentage accuracy of the new algorithm is 6–7% higher than that of the ordinary Fourier transform algorithm. The resulting percentage accuracy (average of specificity and sensitivity) of the new measure is 84.9% for the window length 162 bp.

Availability: The program is available on request from C.-T. Zhang.

Contact: ctzhang@tju.edu.cn

Introduction

Computer-aided protein gene finding in uncharacterized genomic DNA sequences is one of the most important issues of bioinformatics. The problem seems to be simple, although the algorithms may be complicated. For most prokaryotic DNA sequences, the problem is to determine which ORFs in a given sequence are really coding sequences coding for proteins. For eukaryotic DNA sequences, the problem is to determine how many exons and introns in a given sequence there are, and what are the exact boundaries between the exons and introns.

In 1992, Fickett and Tung published a review paper which highlighted the progress of the gene-finding algorithms proposed over the past 13 years. The paper reviewed and synthesized the published algorithms, and compared them by a standardized benchmark. They pointed out that future algorithms should be based on Fourier, run, ORF and the in-phase hexamer measures. Based on these conclusions, other powerful gene recognition algorithms have been developed. For example, in GeneMark, the gene recognition algorithm used the fifth-order phased Markov chain model (Borodovsky et al., 1994). Here, utilization of the fifth-order phased Markov chain was based on the fact that the in-phase-hexamer statistics were thought of the most effect algorithm (Fickett and Tung, 1992).

Since then, great progress has been made. Probably the most important event that accompanied the development of computer-aided gene-finding studies in this period is the great advance of personal computers and the Internet, including the World Wide Web (WWW). A user can submit his (her) DNA sequence via the Internet to some address or URL of WWW to have the sequence analyzed and returned automatically. Furthermore, users may have many choices. For example, for an integrated gene identification task, they can choose FGENE (human), GeneID (vertebrate), GeneParser (human), GenLang (dicots, Drosophila and vertebrates), GRAIL (human) and EcoParse (Escherichia coli), where the organisms suitable for the special algorithm concerned are denoted within parentheses. For only a coding region identification task, they can choose GeneMark (many individual species). The detailed e-mail address or WWW URL for each of the above network services are described in Table 1 of a recent review by Fickett (1996). Readers may refer to other reviews and papers for the relevant algorithm description (Mural et al., 1992; Borodovsky et al., 1994; Fickett, 1995; Gelfand, 1995; Guigo and Fickett, 1995; Claverie, 1996; Fickett and Guigo, 1996; Snyder and Stormo, 1996; etc.).

Table 1. Fisher discriminant vector c and the corresponding threshold t

<table>
<thead>
<tr>
<th>Window length</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 bp</td>
<td>0.805</td>
<td>0.109</td>
<td>0.583</td>
<td>21.095</td>
</tr>
<tr>
<td>129 bp</td>
<td>0.735</td>
<td>0.092</td>
<td>0.672</td>
<td>12.212</td>
</tr>
<tr>
<td>162 bp</td>
<td>0.704</td>
<td>0.382</td>
<td>0.599</td>
<td>11.722</td>
</tr>
</tbody>
</table>

The decision on coding/non-coding for each DNA fragment with the given length is performed by the criterion of \(c \cdot m > t \) or \(c \cdot m < t \), where the measure vector \(m \) is defined by equation (4).

Although great progress in computer-aided gene recognition studies has been made, the situation is still far from being perfect. This may be reflected by the fact that no algorithm currently available can yield a 100% recognition accuracy in
general cases. Furthermore, the parameters determined for an algorithm based on previously discovered sequences cannot be applied to identify genes on some recently discovered sequences with an accuracy as high as before (Fickett, 1996).

In addition, although the genetic codes are universal for all organisms, the artificially invented computer algorithms are generally only applicable to one or several organisms. The reasons are still not clear. All of these indicate that the development of protein gene-finding algorithms is still in its early stage. There is much room for further improvement. As mentioned above, Fickett and Tung (1992) pointed out that the Fourier measure is one of the most important gene recognition algorithms. In a recent review, Fickett (1996) still addressed the importance of direct measure of periodicity of 3, 6 and 9 for a given DNA sequence to look for possible genes. However, due to the limited length (usually 100 bp or so) of the window used in the gene-finding process, the application of the Fourier measure is without impressive success. This paper is devoted to improving the ordinary Fourier measure currently available. A new algorithm called the lengthen-shuffle FFT algorithm is proposed. The resulting percentage accuracy (average of sensitivity and specificity) reaches 84.9% for a window length of 162 bp. It is hoped that the algorithm proposed here is useful to improve the accuracy of some existing gene-finding algorithms, as discussed later.

Algorithm

Format of Z curves

Consider a DNA sequence with \(N \) bases read from the 5-end to the 3-end. Beginning from the first base, inspect the sequence one base at a time. Let the number of steps be denoted by \(n \), i.e., \(n = 1, 2, \ldots, N \). In the \(n \)th step, count the cumulative numbers of the bases A, C, G and T, respectively, occurring in the subsequence from the first to the \(n \)th base in the DNA sequence inspected. Denote the four positive integers by \(A_n, C_n, G_n \) and \(T_n \), respectively. The Z curve consists of a series of nodes \(P_n = (n = 1, 2, \ldots, N) \), whose coordinates are denoted by \(x_n, y_n \) and \(z_n \). It was shown that (Zhang and Zhang, 1994):

\[
\begin{align*}
\Delta x_n &= x_n - x_{n-1}, \\
\Delta y_n &= y_n - y_{n-1}, \\
\Delta z_n &= z_n - z_{n-1}, \\
\end{align*}
\]

where \(\Delta x_n, \Delta y_n \) and \(\Delta z_n \) can only have the values of 1 or –1 (Zhang and Zhang, 1994). \(\Delta y_n \) is equal to 1 when the \(n \)th base is A or G (purine), or –1 when the \(n \)th base is C or T (pyrimidine); \(\Delta y_n \) is equal to 1 when the \(n \)th base is A or C (amino-type), or –1 when the \(n \)th base is G or T (keto-type). Similarly, \(\Delta z_n \) is equal to 1 when the \(n \)th base is A or T (weak hydrogen bond), or –1 when the \(n \)th base is G or C (strong hydrogen bond). Therefore, a DNA sequence can be decomposed into three series of digital signals, consisting of 1 or –1, each of which has clear biological meaning. The first series of digital signals \(\Delta x_n \) represents the distribution of the bases of the purine/pyrimidines along the DNA sequences. The second series \(\Delta y_n \) represents the distribution of the bases of the amino/keto types along the sequence. Similarly, the third series \(\Delta z_n \) represents the distribution of the bases of the strong/weak hydrogen bonds along the sequence (Zhang, 1997).

A lengthen-shuffle Fourier transform

It is well known that there exists an imperfect periodicity of 3 in protein coding sequences (Silverman and Linsker, 1986; Trifonov, 1987; Lio et al., 1994; etc.), which is the basis of our method to distinguish between coding and non-coding sequences. For a long sequence, say, longer than 1024 bp, it is easier to detect the periodicity by the FFT algorithm, but for a short sequence, say, shorter than 150 bp or even much shorter, a typical window size usually used, the periodicity of 3 cannot be easily detected by applying the FFT algorithm directly. To solve the problem, the relatively short DNA sequence is first lengthened by repeating the sequence \(K \) times, where \(K \) is an integer \(\geq 1 \). For a sequence with 150 bp, for example, taking \(K = 8 \), we obtain a lengthened DNA sequence with a length of \(8 \times 150 = 1200 \) bp. Because the FFT algorithm needs data number to be \(2^n \) (\(n \) is a positive integer), the sequence of the first 1024 (\(2^{10} \)) bp is used in the FFT program to detect the periodicity. Obviously, a bogus periodicity of 150 will be observed in the power spectrum of the FFT in the example case. To eliminate such a bogus periodicity, and at the same time keep the periodicity of 3 unchanged, the lengthened sequence is then shuffled \(M \) times with three consecutive bases as a unit. A typical value of \(M \) used here is 10 000.

As mentioned above, based on the format of the Z curve, any DNA sequence can be transformed into three series of digital signals, \(\Delta x_n, \Delta y_n \) and \(\Delta z_n \), to which we can apply the FFT algorithm. The power spectrum for each digital series is calculated as follows:
New method for gene recognition

\[P(f) = \frac{1}{N} \sum_{n=1}^{N} \Delta x_n \exp(-i2\pi f n/N) \quad f = 1, 2, ..., N \] (3)

where \(P(f) \) is the power spectrum associated with \(\Delta x_n \) which represents \(\Delta x_1 \), \(\Delta y_1 \) and \(\Delta z_1 \), respectively. It is well known that protein coding genes may exist in one of three possible phases of either strands of a DNA double helix. One advantage of the present method is that the coding measure for six phases can be explored simultaneously.

The detailed procedure of our method is described as follows.

1. Given a DNA sequence with any relatively short length, which should be a multiple of 3, lengthen the sequence by repeating the given sequence many times until the total length of the lengthened sequence is >1024 (2^10) bp. Then the first 1024 bp of the resulting sequence are used as the input of the FFT algorithm.

2. To eliminate the bogus periodicity due to the repeat procedure, and at the same time keep the periodicity of 3, shuffle the resulting sequence at least 10000 times with three consecutive bases as a unit at each shuffling step.

3. Transform the shuffled sequence into three series of digital signals, \(\Delta x_1 \), \(\Delta y_1 \) and \(\Delta z_1 \), according to equation (2).

4. Calculate the power spectrum for each of \(\Delta x_1 \), \(\Delta y_1 \) and \(\Delta z_1 \) to obtain the three numbers \(P_x(N/3) \), \(P_y(N/3) \) and \(P_z(N/3) \) according to equation (3), where \(N = 1024 \). Note that 1024/3 is not an integer. To solve this minor problem, the maximum power spectra within the small interval \(1024/3 \pm 2 \) in the frequency axis \(f \) are taken as the values of \(P_x(N/3) \), \(P_y(N/3) \) and \(P_z(N/3) \).

The benchmark to evaluate the algorithm

The standardized benchmark to evaluate the algorithms used by Fickett and Tung (1992) is used again here to evaluate the lengthen-shuffle FFT algorithm. For the reader’s convenience, we describe the whole procedure briefly. For each window length, 1000 fragments of DNA sequences in fully coding regions or exons are prepared in advance. At the same time, 1000 fragments of DNA sequences of fully non-coding regions or introns are also prepared in advance. Each set of 1000 fragments is divided randomly into two equal parts, i.e. 500 are used as the training set and another 500 as the test set. Consequently, both the training and test sets consist of 1000 fragments in total.

The window lengths 63, 64, 128, 129 and 162 bp are studied. The window lengths 63, 129 and 162 are listed in Table 1. The false-negative rate, the false-positive rate and the percentage accuracy (average of the sensitivity and specificity) for the fragments in the test set for the window lengths 63, 129 and 162 are listed in Table 2. Note that the lengthen-shuffle FFT algorithm is applied only to the lengths 63, 129 and 162, and the ordinary FFT algorithm is applied only to the lengths 64 and 128. Both algorithms are based on the format of Z curves. We compare the false-negative rate, the false-positive rate and their percentage accuracy of the window lengths 64 with those of 63, 128 with 129. The false-negative rate is defined as the fraction of errors on the coding windows. The false-positive rate is defined as the fraction of errors on the non-coding windows. Consequently, the sensitivity and specificity are defined simply by (1 – false-negative rate) and (1 – false-positive rate), respectively. We find that the percentage accuracy (average of the sensitivity and specificity) of the lengthen-
The periodicity of 3 in the coding regions was observed by many authors (Silverman and Linsker, 1986; Trifonov, 1987; Lio et al., 1994; etc.). Silverman and Linsker studied the overall periodicity of DNA sequences by the FFT algorithm. On the contrary, Lio et al. (1994) studied the periodicity of G + C in the third codon position. They first transformed the DNA sequence into S and W sequence, where S represents G or C and W represents A or T. Furthermore, S bases are coded as 1 and W bases are coded as –1. Accordingly, the DNA sequence was studied into a series of 1 and –1. Based on this format, the periodicity of G + C in the third codon position was studied by the correlation function and FFT methods (Lio et al., 1994). Interestingly enough, the series they used is exactly the minus z component of the Z curve. Therefore, the periodicity they observed can be detected by the measure \(m_3 = P_z(N/3) \) defined above. On the other hand, Trifonov found a G-non–G–N pattern in the coding regions, where N represents any base (Trifonov, 1987). Trifonov suggested that the pattern may be responsible for a reading frame correcting effect during the translation process. It was found early that the preferred codons are of the pattern RNY, where R and Y represent the purine and pyrimidine bases, respectively (Shepherd, 1984). Based on a graphic technique (Zhang and Zhang, 1991), we have observed that the predominant bases in the first codon position are purines. This finding is true for E. coli (Zhang and Chou, 1994), human (Zhang and Chou, 1993), HIV (Chou and Zhang, 1992) and many other species (data not yet published). Obviously, the above periodicity of 3 can be detected by the measure \(m_3 = P_z(N/3) \) defined above. Compared with \(m_1 = P_x(N/3) \) and \(m_3 = P_y(N/3) \), \(m_2 = P_z(N/3) \) seems to be less important for detecting the 3-periodicity in DNA sequences. Because the y component of the Z curve reflects only the distribution of the bases of amino/keto type along the sequence, it seems to us that the bases of amino/keto (M/K) type have less biological significance than those of purine/pyrimidine (R/Y) and strong H bond/weak H bond (S/W) types. This is also reflected by the fact that the magnitude of \(c_2 \) is generally far less than \(c_1 \) and \(c_3 \) (refer to Table 1). See the discussion below with respect to this point, too.

According to the theory of the Z curve (Zhang and Zhang, 1994; Zhang, 1997), any DNA sequence can be decomposed into RY, MK and SW sequence, corresponding to the x, y and z components of the Z curve, respectively. Consequently, various 3-periodicity of DNA sequences can be detected simultaneously by the coding measure vector \(m \) proposed here. The three components \(m_1, m_2 \) and \(m_3 \) of the vector \(m \) measure the 3-periodicity of bases of the purine/pyrimidine (R/Y), amino/keto (M/K) and strong H bond/weak H bond (S/W) types, respectively, in the DNA sequence studied. To compare the importance of the three measures \(m_1, m_2 \) and \(m_3 \) more clearly, we have performed the following test. Deleting one component from the 3D vector \(m \) each time, we obtain three 2D vectors. They are denoted by \(m_{12}, m_{23} \) and \(m_{13} \), respectively. Replacing the 3D vector \(m \) by the 2D vectors \(m_{12}, m_{23} \) and \(m_{13} \), respectively, we hope to see what will happen. The database of the window length 162 bp is used to test this idea. Repeating exactly the same lengthen-shuffle procedure and using the standardized evaluation benchmark, we obtain the percentage accuracy (average of the sensitivity and specificity) for each case, i.e. for \(m_{12}, m_{23} \) and \(m_{13} \), respectively. The results are listed in Table 3. As we can see, the accuracy derived from \(m_{12} \) is worse than that from \(m_{23} \), and both are worse than that from \(m_{13} \), indicating that the 3-periodicity of bases of the amino/keto (M/K) type is less important than those of the purine/pyrimidine (R/Y) and strong H bond/weak H bond (S/W) types. It seems that the 3-periodicity of bases of the strong H bond/weak H bond (S/W) type is more important than that of purine/pyrimidine (R/Y) type. Consequently, the order of importance seems to be \(m_3, m_1 \) and \(m_2 \). Furthermore, the accuracy of all three 2D vectors is worse than that of the 3D vector \(m \), indicating that all of \(m_1, m_2 \) and \(m_3 \) have their respective contribution to the overall recognition accuracy, even including the component \(m_2 \).

Table 2. The false-negative rate, the false-positive rate and the percentage accuracy for various window lengths and algorithms

<table>
<thead>
<tr>
<th>Window length</th>
<th>64 bp⁸</th>
<th>63 bp⁹</th>
<th>128 bp⁴</th>
<th>129 bp⁴</th>
<th>162 bp³</th>
</tr>
</thead>
<tbody>
<tr>
<td>False-negative rate⁶</td>
<td>0.318</td>
<td>0.260</td>
<td>0.226</td>
<td>0.134</td>
<td>0.108</td>
</tr>
<tr>
<td>False-positive rate⁶</td>
<td>0.296</td>
<td>0.240</td>
<td>0.316</td>
<td>0.258</td>
<td>0.194</td>
</tr>
<tr>
<td>Accuracy⁶</td>
<td>0.693</td>
<td>0.750</td>
<td>0.729</td>
<td>0.804</td>
<td>0.849</td>
</tr>
</tbody>
</table>

⁸Use the ordinary FFT algorithm, based on the format of the Z curve.
⁹Use the lengthen-shuffle FFT algorithm, based on the format of the Z curve.

The percentage accuracy is the average of the sensitivity and specificity, i.e. the average of \((1 - \text{false-negative rate})\) and \((1 - \text{false-positive rate})\).
Table 3. The percentage accuracy of various measures for window length 162 bp

<table>
<thead>
<tr>
<th>Measures</th>
<th>m_{12}</th>
<th>m_{23}</th>
<th>m_{13}</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.707</td>
<td>0.778</td>
<td>0.830</td>
<td>0.849</td>
</tr>
</tbody>
</table>

\(^{a}\)Based on the lengthen-shuffle FFT algorithm.
\(^{b}\)The various measure vectors are defined as \(\mathbf{m} = (m_1, m_2, m_3)\), \(\mathbf{m}_{12} = (m_1, m_2)\), \(\mathbf{m}_{23} = (m_2, m_3)\) and \(\mathbf{m}_{13} = (m_1, m_3)\), where \(m_1\), \(m_2\) and \(m_3\) measure the 3-periodicity of RY, MK and SW sequences, respectively. See equation (4).
\(^{c}\)Average of sensitivity and specificity.

Based on the above analysis, the importance of \(m_1\) and \(m_2\) reminds us to compare the results of the lengthen-shuffle FFT and the ordinary FFT algorithm schematically by using a 2D diagram. Let the \(x\) and \(y\) axes represent \(m_1\) and \(m_2\), respectively. The distribution of \(m_1\) and \(m_2\) can be displayed on the 2D coordinate plane. The databases of the window lengths 128 and 129 bp are used as examples. Consider the database of 128 bp first. Accordingly, 1000 coding points representing 1000 coding fragments (including 500 in the training set and another 500 in the test set) and 1000 non-coding points representing 1000 non-coding fragments (500 in the training set and another 500 in the test set) are distributed in Figure 1a. The coding points are denoted by open circles and the non-coding points by filled circles. Then consider the database of 129 bp. The corresponding distribution is shown in Figure 1b. Again, the coding points are denoted by open circles and the non-coding points by filled circles. Note that the database of 128 bp and the database of 129 bp are almost identical, as mentioned above. Compare Figure 1a and b. As we can see, the coding points diverge wider after the lengthen-shuffle procedure than before, indicating that the signal of 3-periodicity is amplified. At the same time, the distribution area of the non-coding points is relatively shrunk after the lengthen-shuffle procedure, indicating that the noise is suppressed. Consequently, the overlap between the two kinds of points is reduced and the ratio of the signal/noise is raised by the lengthen-shuffle procedure.

Fig. 1. The graph of \(m_3\) versus \(m_1\), where \(m_3\) and \(m_1\) measure the 3-periodicity of SW and RY sequences, respectively. (a) The data of \((m_1, m_3)\) are derived from the ordinary FFT algorithm for the window length 128 bp and (b) from the lengthen-shuffle FFT algorithm for the window length 129 bp. Note that the database of 128 bp and that of 129 bp are almost identical. On each figure, there are 1000 coding points representing 1000 coding fragments (denoted by filled circles) and 1000 non-coding points representing 1000 non-coding fragments (denoted by open circles). Compare (a) with (b). Note that the coding points diverge wider after the lengthen-shuffle procedure than before, indicating that the signal of 3-periodicity is amplified. The distribution area of the non-coding points is relatively shrunk after the lengthen-shuffle procedure, indicating that the noise is suppressed. Consequently, the overlap between the two kinds of points is reduced and the ratio of the signal/noise is raised by the lengthen-shuffle procedure.

One advantage of the present method is that the coding potential of six phases in a DNA double helix can be explored simultaneously. The method proposed here is of the ‘region-coding’ (Fickett and Tung, 1992). The result of our method has no apparent difference for three phases in a direct strand. It can be shown that the result obtained in the direct strand can be applied to the complementary strand directly. Therefore, the present method provides a tool to scan the double helix quickly to explore the coding potential. Related to the lengthen-shuffle procedure, the second advantage of the present method is that the result is quite insensitive to the
sequencing errors that are substitutions, but it may be very sensitive to frame-shift sequencing errors. Besides the above two advantages, there is a third possible advantage. Since the 3-periodicity is generally a coherent feature for most of the coding DNA sequences, it is expected that the method and its improved version could be applied to recently discovered sequences with an accuracy as high as to previously discovered sequences, which are used to derive the Fisher discriminant vector c and the threshold θ.

For the window length 162 bp, the percentage accuracy of the lengthen-shuffle FFT algorithm reaches 84.9% (see Table 2). 4% higher than the corresponding value listed in Table 2 of Fickett and Tung (1992). Note that besides the 3-periodicity, 2-, 4-, 5-, 6-, 7-, 8- and 9-periodicity were also considered to obtain the accuracy 80.8% in Table 2 (Fickett and Tung, 1992). It is hoped that the accuracy of the lengthen-shuffle FFT algorithm could be improved further by taking other periodicity into account. The meaning of our work is not only of theoretical interest, but also for some realistic applications. By collaborating on the present algorithm with other existing algorithms, the accuracy of the joint algorithm would be increased more than without such collaboration. For example, there are some artificial intelligence approaches to the protein gene-finding problem, e.g. GRAIL used the neural network to recognize the coding regions or exons (Mural et al., 1992). By changing the form of the output result of the present algorithm appropriately, we suggest that the output of the present algorithm may served as an additional input of the neural network of GRAIL. Since the 3-periodicity is a universal feature for most coding sequences, as discussed above, it is hoped that the accuracy of the neural network approach, such as GRAIL (Mural et al., 1992), might be increased by collaborating with the method proposed here. The key challenge in eukaryotic gene finding is to recognize the splice sites, i.e. to find the boundaries between introns and exons. We are developing a new algorithm to tackle this important problem (e.g. Zhang et al., 1998). By collaborating on such an algorithm, we will develop a new integrated gene identification package based on the present algorithm and its improved version.

Acknowledgements

The present study was supported in part by the Pandeng Project of China and the 39570187 of the China Natural Science Foundation.

References

