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A machine learning approach for estimation of shallow

water depths from optical satellite images and sonar

measurements
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D. J. Mandl, S. W. Frye, E. van Ettinger and R. de Zeeuw
ABSTRACT
There has been a rapid growth in the field of remote sensing and its various applications in the area

of water management. Nowadays, there are several remote sensing techniques that can be used as

a source to derive bathymetry data along coastal areas. The key techniques are: sonar (sound

navigating and ranging), LiDAR (light detection and ranging) and high-resolution satellite images. The

present paper describes a method which was developed and used to create a shallow water

bathymetry data along the Dutch side of Sint Maarten Island by combining sonar measurements

and satellite images in a nonlinear machine learning technique. The purpose of this work is to

develop a bathymetry dataset that can be used to set up physically-based models for coastal flood

modelling work. The nonlinear machine learning technique used in the work is a support vector

machine (SVM) model. The sonar data were used as an output whereas image data were used as an

input into the SVM model. The results were analysed for three depth ranges and the findings are

promising. It remains to further verify the capacity of the new method on a dataset with higher

resolution satellite imagery.
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INTRODUCTION
Over the last three decades there has been a rapid growth in

the field of remote sensing and its various applications in the

area of water management. There are many remote sensing

possibilities that can be used in various water management

applications. Typically, they include ground-based radar,

light detection and ranging (LiDAR) visible and thermal

infrared satellite imagery, and microwave satellite data.

Classification of land cover types is one of the first well

established remote sensing applications for water resources.

Rango et al. () showed how Landsat Multispectral Scan-

ner (MSS) data can be used as input to produce a reasonably

sound flood flow frequency curves for planning in urbanis-

ing areas. Furthermore, several authors have shown how

multispectral (MS) remote sensing data can be used to
determine sediment load in reservoirs and rivers (see, for

example, Verdin (), Ritchie et al. (, ) and Ritchie

& Cooper ()). An overview of how remote sensing can

be used in energy balance computations is given in Kustas

& Daughtry ().

In coastal and marine planning and management, the

use of remote sensing imagery is gaining increasing

importance for bathymetric estimation and characterisation

of the sea bed. One of the main reasons is that the conven-

tional ship-based acoustic surveys and airborne LiDAR

techniques, based on laser telemetry, proved to be more

expensive, time consuming and limited (see, for example,

Kammerer et al. () and Bird & Mullins ()). The

possibility of obtaining bathymetry data over clear shallow
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water from remote sensing imagery was first demonstrated

by Lyzenga () and enhanced by Philpot () and Mar-

itorena et al. (). Since then, the techniques have

expanded to include the use of optical MS satellite imagery

using satellites such as Landsat (see, for example, Lyzenga

()), IKONOS (see, for example, Stumpf et al. ())

and QuickBird (see, for example, Mishra et al. ()).

A number of algorithms have been proposed for bathy-

metry data estimations and most of them relate to the

local relationship between image pixel values and known

water depth values. For example, Lyzenga (, ) pro-

posed algorithms for both a single wavelength band and a

pair of wavelength bands. An inversion algorithm which

incorporates the solar elevation angle correction has been

proposed by Benny & Dawson (). Philpot () dis-

cussed the possibilities of extending the inversion

algorithm to more complex scenes where both bottom

types (reflectance) and water quality (optical properties)

vary spatially within the scene. Stumpf et al. () proposed

a non-linear inversion model that can be used for both

deeper benthic habitats and shallow habitats with low reflec-

tance (e.g. extremely dense algae or seagrass) and compared

to widely adopted log-linear inversion models.

The present paper presents a method based on the use of

a support vector machine (SVM) model for bathymetry data

estimation. SVM is often referred to as a machine learning

technique which uses data to find the approximating func-

tion (in regression problems) or the separation boundary

(in classification, pattern recognition problems). The SVM

model used in the present work performs learning by solving

a Quadratic Programming (QP) problem and is able to effi-

ciently reconstruct unknown functions from known data

which is, in the case of the present work, the ratio of blue

band to green band and ground true information obtained

from sound navigating and ranging (sonar) measurements.

The code has been implemented using a combination of

Borland Delphi and C programming languages and success-

fully applied to National Aeronautics and Space

Administration (NASA’s) Earth Observing 1 (EO-1) MS

images taken over the Dutch side of Sint Maarten Island.

The purpose of the work is to generate a bathymetry dataset

which can be used to set up numerical models for coastal

flood risk assessment applications within the EU funded

Regional Risk Reduction Initiative Project or R3I project
s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
(www.bb.undp.org/index.php?page=regional-risk-

reduction-initiative).
BATHYMETRY ESTIMATION

Bathymetry estimation is usually referred to as the study of

the ‘beds’ or ‘floors’ of water bodies (NOAA a), and

hence it represents the record or data of seafloor topogra-

phy. Bathymetric data are used for many purposes which

includes study of ocean biology, management of coastal

zones, as well as for setting up of numerical models that

can be used for modelling coastal storm surges and tsunamis

(which is the purpose of the present work).

There are several remote sensing techniques that can be

utilised to derive bathymetry data in coastal areas. The key

techniques are: sonar, LiDAR and high-resolution satellite

images.

Sonar is the underwater measuring technique which

uses the pulse of sound to detect the seabed and objects in

the water column, see Figure 1(a). This technique is based

on the measurements of the speed of sound in water. By

determining the time lapse between the emission of the

sound pulse and its reception, the detector can determine

the range and orientation of the object (see also NOAA

(b)).

LiDAR is a technique which uses an optical remote

sensor for measuring properties of scattered light to obtain

a range and/or other information of a distant target. The

LiDAR technique, as illustrated in Figure 1(b), uses pulses

of laser light to illuminate the surface. The range to an

object is determined by measuring the time lapse between

transmission of a pulse and detection of the reflected

signal (for further details see Lillesand & Kiefer (),

Abdullah et al. (a) and Abdullah et al. (b)).

In addition to the Sonar and LiDAR techniques, bathy-

metry data can also be obtained from satellite images

taken by earth observing satellites. These images can be

acquired from MS scanners – passive sensors which

measure reflected electromagnetic energy by scanning the

earth’s surface (see Bakker ()). The Landsat satellites

are the oldest and the most common types of MS scanner

satellites, whereas the EO-1 is one of the latest satellites

with Advanced Land Imager (ALI).

http://www.bb.undp.org/index.php?page=regional-risk-reduction-initiative
http://www.bb.undp.org/index.php?page=regional-risk-reduction-initiative


Figure 2 | The principle of radiance measurement in remote sensing (after Jensen

(2007)).

Figure 1 | (a) Single beam sonar measurement from a jetski and (b) LiDAR measurement (Source: Vojinovic & Abbott (2012)).
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Sonar measurements could provide a good quality data-

set if done properly. However, performing complete and

detailed survey of a coastal zone using sonar techniques

can be a very expensive and time consuming task. As a

result of that, researchers and practitioners nowadays use

optical remote sensing images from satellites as a major

source of information for mapping bathymetry data. The

basic principle behind this method is that when the light

passes through water it becomes attenuated by interaction

with the water column. As shown in Figure 2, the total

upwelling radiance (Lt) registered by the remote sensor con-

sists of four components (see also Jensen ()): bottom

radiance (Lb), subsurface volumetric radiance (Lv), specular

radiance (Ls) and atmospheric path radiance (Lp). This can

be expressed as:

Lt ¼ Lb þ Lv þ Ls þ Lp (1)

Typically, estimation of water depth from MS satellite

images is established using theoretical, empirical or statisti-

cal models based on the relationship between pixel values

and measured depths. Some researchers have used either

LiDAR data (see, for example, Stumpf et al. ()) or

sonar data (see, for example, Corucci & Masini ()) as a
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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source of measurements in order to establish the feasible

methods and to evaluate their performances. Examples of

such methods are linear transform algorithm (Lyzenga

), ratio transform method (Stumpf et al. ), back

propagation artificial neural network (Wang et al. )

and SVM (which is the technique used in the work pres-

ented here).
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The present paper describes a method based on SVM

algorithm for creation of shallow water bathymetry. The

feasibility of this method has been evaluated on the case

of the Dutch side of Sint Maarten using a combination of

sonar and MS ALI satellite image data.
STUDY AREA

The study area comprises of the Dutch side of Sint Maarten

Island. The island encompasses an area of approximately

3,380 ha bounded by the French side of the island on the

north and the Caribbean Sea on the south and it is located

at 63W N and 18W W (see Figure 3). The coastal zone has a

rather irregular shape due to the numerous bays and

lagoons. The lagoons are closed off from the sea by sand

embankments. The landscape is hilly except in the low

lands on the west side. Elevations range from near sea
Figure 3 | Image of Sint Maarten Island (Source: Google Earth, imagery date 28/02/2011).

s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
level at the southern end to 380 m above mean sea level at

the northern hilly part along the borderline. Overland

flows converge towards the low lying areas and the storm-

water runoff is discharged at many locations. The land use

in the study area is predominantly residential with some

scattered commercial areas. Residential areas are situated

on low-lying areas, with little consideration for stormwater

drainage and as such these areas are subject to flash flooding

from the surrounding hills, or extreme rainfall events such as

direct thunderstorms (see also Vojinovic & Van Teeffelen

()).

The island is affected by the North Atlantic hurricane

season from June 1 to November 30, with the strongest

operation months being September and October. As

described in Vojinovic & Van Teeffelen (), areas close

to the sea (such as Philipsburg) are very vulnerable to inun-

dation due to high water levels resulting from storm surge

(i.e. coastal flooding) as well as from localised pluvial
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flooding. It is worth noting that the tidal difference along

the coast of Sint Maarten is rather insignificant (i.e. it is

less than 10 cm).
Figure 4 | The flow chart of activities employed in the present work.
DATA AND METHODS

The flow chart in Figure 4 illustrates the methodology devel-

oped and used to obtain the bathymetry data along Sint

Maarten Island.

Available datasets

Two types of datasets were used to develop coastal bathyme-

try in the study area. For the near-shore bathymetry, sonar

data and MS satellite images (acquired from the ALI instru-

ment mounted on EO-1 satellite) were utilised, and for

deeper water areas, a dataset obtained from Royal Nether-

lands Navy was used.

Sonar data

A total of 70,369 sonar data were collected during a survey in

early 2011 along the south coast of Sint Maarten, Figure 5.

The sonar data were acquired by utilising Hydro-box Single

Beam Echo-sounder (SBES) which was mounted on a

JetSki. In addition, the JetSki was equipped with a global posi-

tioning system (GPS) receiver to identify the position in which

the measurements were taken. The role of SBES is to transmit

the acoustic signal through the water. Real time information

such as position, instrument status, sailed survey tracks and

planned survey lines were continuously captured within the

acquisition unit that was employed in the survey work.

The sonar survey was carried out in the period between

31 January 2011 and 8 February 2011. For economic

reasons, the survey was undertaken in two different offsets:

an offset of 50 m in the vicinity of densely populated bays

and bays with important landmarks (e.g. airport, govern-

ment offices, financial sector, etc.), whereas an offset of

100 m was undertaken in other areas. The raw data were

processed to derive meaningful information about the

bottom topography from the measurements. The process

included: transformation of GPS data; correction for the
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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Figure 5 | The extent of sonar data collected within the present work.
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speed of sound in water; correction for the offset between

SBES transducer and GPS antenna; correction for the

latency between SBES time and GPS time; filtering

spikes in the SBES data using a moving average filter;

coupling and matching the GPS signal to the SBES

signal by temporal interpolation and finally calculating

the depth for specified locations. The error of the sonar

equipment used in the present work is in the order of

10 cm (see van Son ()).

Satellite data

This present work utilises imagery data captured by the

NASA EO-1 satellite. The EO-1 is the first high spectral

and spatial resolution satellite which contains two passive

observing instruments with a spatial resolution of 30 m –

the Hyperion and the ALI (see Mandl & Middleton ()).

According to Mandl & Middleton (), the Hyperion, an

imaging spectrometer, has a 10 nm spectral resolution,

which covers a spectrum of 0.4–2.5 μm range with 242
s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
overlapping spectral bands; whereas the ALI, which serves

as the prototype for the future Landsat – 8, has a total of

nine Landsat-type MS bands and the pan band.

The Hyperion provides a swath width of 7.7 km, which

only gives an image of one part of the island as shown in

Figure 6; while ALI provides a nearly five times wider

swath than Hyperion, and as such a full image of the

island was obtained. Furthermore, the sea bed classes in

the near-shore water body can be represented in two types

– sand and vegetation. In this case, it was sufficient to use

MS data since the two classes are quite distinctive and

have different radiance values irrespective of the depth,

which in turn does not require a hyperspectral data. Also,

the ALI instrument captured images throughout the entire

survey period, whereas Hyperion captured images only on

3 days within the survey period (see also Table 1). Therefore,

the present work concerns the use of ALI MS data for creat-

ing the near-shore bathymetry.

The ALI data were made available through the Earth-

Explorer website of the US Geological Survey (USGS).



Figure 6 | Images taken from the EO-1 satellite on 31/01/2011. Figure on the left illus-

trates the Hyperion swath and figure on the right illustrates the ALI swath.

Table 1 | Summary of satellite imagery taken by ALI and Hyperion during the survey

period. Symbol ✓ refers to dates for which images were found available and

symbol ✗ refers to dates for which images were not found available

DATE ALI HYPERION

21 Jan 2011 ✓ ✗

23 Jan 2011 ✓ ✗

26 Jan 2011 ✓ ✗

28 Jan 2011 ✓ ✗

31 Jan 2011 ✓ ✓

13 Feb 2011 ✓ ✗

21 Feb 2011 ✓ ✗

23 Feb 2011 ✓ ✓

26 Feb 2011 ✓ ✓
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These data refer to a Level 1R data which is radiometrically

corrected with no geometric correction applied (see also

Mandl & Middleton ()). The image used to create the

bathymetry is the image acquired on 31/01/2011. The JetSki

sonar measurements were also carried out on the same day.

Deep water data

A total of 358,131 depth data points along the coast of Sint

Maarten was obtained from the Royal Netherlands Navy.
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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The bathymetry map shown in Figure 7 has a deepest

depth of 218.8 m below sea level.

Atmospheric correction

Normalisation for solar irradiance by converting spectral

radiance to planetary reflectance or albedo is a standard

procedure that is used to reduce variability of ALI scenes.

This in turn helps to obtain a relatively clear image

(USGS/EO- ). The combined surface and atmospheric

reflectance of the Earth was computed with the following

formula (see also Chander et al. ()):

ρλ ¼
π:Lλ:d2

ESUNλ: cos θs
(2)

where ρλ refers to dimensionless planetary reflectance; Lλ

is spectral radiance at the sensor’s aperture; d is

Earth–Sun distance in astronomical units; ESUNλ is mean

solar exoatmospheric irradiance; and θs is solar zenith

angle in degrees.

The spectral radiance is the pixel value of the satellite

image. The Earth–Sun distance is tabulated in the Nautical

Almanac Office; or, it is tabulated by Chander et al. ()

based on the Julian day of the year (DOY). The mean

solar exoatmospheric irradiance for each spectral band is

also tabulated by Chander et al. (). The cosine of the

solar zenith angle is equal to the sine of the solar elevation

angle. The solar elevation angle at the ALI scene centre is

retrieved from the USGS EarthExplorer interfaces under

the scene metadata.

Geometric correction

As mentioned above, the satellite data are not corrected geo-

metrically; and hence, it needed pre-processing to remove

geometric distortions. The ALI MS imagery was geometri-

cally corrected using an ‘image to image’ correction

method which involves matching the coordinate systems,

or column and row systems, of two digital images with

one image being a reference image and the other being the

image that needs to be rectified. Manually selected ground

control points (i.e. points which represent positions of

selected sonar data measurements) were used for this



Figure 7 | Coast of Sint Maarten mapped from Royal Netherlands Navy data.
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purpose. The GPS of the JetSki tracks were referenced to the

WGS84 datum.

Ratio transform method

The ratio transform method used in the present work is based

on Stumpf et al. (). This method is based on the principle

that if bands having different water absorption are used in esti-

mation of depth, one band will have arithmetically lesser

values than the other. Consequently, as depth increases, the

log value of the reflectance of the band with higher absorption

(e.g. green band) will decrease proportionally faster than the

log value of the reflectance of the band with lower absorption

(e.g. the blue band). Accordingly, the ratio of the blue to the

green band will also increase. The ratio transform method

used in the present work can be expressed as:

Z ¼ m1
ln (nRw(λi))
ln (nRw(λj))

� m0 (3)

where Z is depth; Rw is reflectance of water of a particular

band λ; i and j denotes the types of spectral bands; m1 is a
s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
tunable constant to scale the ratio to depth; n is a fixed con-

stant for all areas; and m0 is the offset for a depth of 0 m

(Z ¼ 0).

One of the advantages of this method, as described by

Stumpf et al. (), is that it compensates for different

bottom types implicitly if the ratio condition applies. The

change in ratio due to depth is much greater than the

change in ratio caused by the change in bottom albedo,

suggesting that different bottom albedoes at a constant

depth will still have the same ratio. Besides that, the

method compensates for sun-glint effect in the same way

as it compensates for different albedoes. Another advantage

is that the method requires only two parameters (m0 and m1)

to be estimated which makes the method very convenient

for application.

However, in practice, the relationship between the

water depth and the ratio of blue and green bands may

not necessarily have the linear dependency, as was the

case with the function of Stumpf et al. () mentioned

above. This can be explained by the fact that in different cir-

cumstances the correlation can be captured with different

type of functions (e.g. linear, exponential, power function,
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etc.). Hence, we express the depth as a function of the ratio

of the bands as shown in Equation (4), and the mapping

function was established using a nonlinear machine learning

approach based on the SVM technique.

Z ¼ f
ln (nRw(λi))
ln (nRw(λj))

� �
(4)

Machine learning approach used in the present work

Typically, a machine learning method refers to an algorithm

that estimates hitherto unknown mapping (or dependency)

between a system’s inputs and outputs from the available

data (Mitchell ). The data are known samples that are

combinations of inputs and corresponding outputs such

that a dependency (through mapping, or ‘model’) is discov-

ered, which can be used to predict the future system’s

outputs from the known input values (Kecman ). The

learning tasks can be of the following four types – classifi-

cation, association, clustering and regression. Regression,

in which the task constitutes prediction of a real value

associated with an input data point, is the style of learning

applied here.

The relationship between the ratio of blue band to green

band and water depth which is represented by the function

given in Equation (4) was modelled by the SVM model

which was originally developed and presented in Vojinovic

& Kecman () and later on further enhanced. As

described in Vojinovic & Kecman (), SVM is a learning

machine that uses data to find the approximating function in

regression problems. The learning process in SVM used in

the present work is performed by solving a QP problem

with linear inequality and equality constraints.

In the case of regression, which is the case in the present

work, SVM can be expressed using the following notation:

E ¼
Xp

i¼1

Lsi þ λ Pfk k2¼
Xp

i¼1

Lsi þΩ(h, l) (5)

where Lsi represents the Vapnik’s ε-insensitivity loss func-

tion (Vapnik ). SVM minimises the right hand side of

Equation (5) by implementing an approach which keeps

the value of the training error fixed (equal to zero or equal
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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to some acceptable level) and minimise the confidence

interval.

Even though initially developed for solving classification

problems, the SVM technique has been successfully applied

in regression, i.e. for functional approximation problems.

Unlike pattern recognition problems (where the desired out-

puts yi are discrete values, e.g. Boolean), in the regression

learning style we deal with real valued functions. The gen-

eral regression learning problem is set as the learning

machine is given l training data from which it attempts to

learn the input–output relationship f (x).

A training dataset D ¼ x(i), y(i)½ � ∈ Rn × R, i ¼ 1, . . . , lf g
consists of l pairs (x1, y1), (x2, y2), . . . , (xl, yl), where the

inputs x are n-dimensional vectors and system responses are

continuous values. The SVM considers approximating func-

tions of the form:

f(x, w) ¼
Xp

l¼1

wlφl(x) (6)

Vapnik introduced a more general error (loss) function,

the so-called, ε-insensitivity loss function.

y � f(x, w)j jz¼
0 If y � f(x, w)j j � ε
y � f(x, w)j j � ε otherwise

�
(7)

Thus, the loss is equal to 0 if the difference between the

predicted f(x, w) and the measured value is less than ε. Vap-

nik’s ε-insensitivity loss function defines an ε tube around

f(x, w). If the predicted value is within the tube, the loss

(error, cost) is zero. For all other predicted points outside

the tube, the loss equals the magnitude of the difference

between the predicted value and the radius ε of the tube.

The number of support vectors is controlled through the ε

parameter which allows choosing the number of support

vectors in relation to errors. The parameter ε is an upper

bound of the fraction of training errors and a lower bound

of the fraction of support vectors.

In the present work, the decomposition was applied as a

method to solve the dual form with a linear cost function,

whereas the Karush–Kuhn–Tucker (KKT) conditions were

used for the optimum of a constrained function. The training

vectors are mapped into a higher dimensional space by a



Figure 8 | The parameters used in 1-dimensional support vector regression.

1417 Z. Vojinovic et al. | A machine learning approach for estimation of shallow water depths Journal of Hydroinformatics | 15.4 | 2013

Downloaded from http
by guest
on 24 January 2019
nonlinear kernel function. The SVM then finds a linear sep-

arating hyperplane with the maximal margin in the higher

dimensional space. Different kernel functions can be

applied in the SVM model used in the present work (for

example, linear function, polynomial function, radial basis

function (RBF) or sigmoid function). However, following

the demonstration of Girosi & Poggio () that RBF

kernel has better generalisation properties than other

kernel functions, it was used in the present work. Further-

more, the RBF kernel functions have a sound theoretical

foundation in regularisation theory developed by the mathe-

matician Tikhonov and his co-workers (Tikhonov , ;

Tikhonov & Arsenin ; Morozov ). Hence, this is the

rationale for application of RBF kernel function in this

paper.

After selection of the kernel function, the next step was

to select the ‘shape’, i.e. ‘smoothing’ parameter in the kernel

function (i.e. variance of the Gaussian RBF kernel), which is

one of the training parameters. After that, the values of the

penalty parameter C and insensitivity zone ε were chosen

from the learning (i.e. training) process. C is the penalty par-

ameter that determines the trade-off between the training

error and the VC (Vapnik–Chervonenkis) dimension of the

model. Increasing C corresponds to assigning a higher pen-

alty to errors, simultaneously resulting in larger weights. The

value of C used in the present study was 100. In terms of ε

parameter, increasing ε has smoothing effects on modelling

noisy data. An increase in ε means a reduction in require-

ments on the accuracy of approximation. It decreases the

number of support vectors leading to data compression

too. The ε value used in the present work was 0.01. The

values of C and ε were chosen as optimal in accordance

to the trade-off between the generalisation characteristics

and overfitting (i.e. trade-off between the training error

and VC dimension of the model).

The RBF used in the present work can be expressed as:

K(xi, xj) ¼ exp �φ xi � xj
�� ��2

� �
, φ> 0 (8)

where φ is the Gaussian function.

The SVM applied here utilises the QP method for find-

ing the optimal number of kernel functions for a given

accuracy of a learning machine. The regression function is
s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
designed to minimise the following:

min
w,ξ,ξ�

1
2

wk k2þC
Xl

i¼1
ξi þ

Xl

i¼1
ξ�i (9)

subject to the following constraints:

yi �wTxi � b � εþ ξi i ¼ 1, l,

wTxi þ b � yi � εþ ξ�i i ¼ 1, l,

ξi � 0 i ¼ 1, l,

ξ�i � 0 i ¼ 1, l,

(10)

where ξi and ξi
* are slack variables for measurements above

and below an ε-tube. Lagrange multipliers that are intro-

duced during the minimisation are αi and αi
*

corresponding to ξi and ξi
*, Figure 8.

The following form of an SVM model was used in the

present work:

y ¼ f xð Þ (11)

An external input to the process is denoted by x (i.e.

the ratio between the values of blue and green bands)

and y represents the observed series (i.e. sonar

measurements).

As mentioned earlier, a total of 70,369 sonar data were

collected during the survey work, Figure 5. After processing

the data and removing the noise, the entire coastal region

was divided into three parts (western part with 6,176 data
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points, central part with 13,321 data points and eastern

part with 18,891 data points). As a proof of concept, the

present work was carried out using the data from the

western part of the island. Therefore, the following

discussion concerns the work carried out for that part

of the island. For that dataset, 60% of data points

were used for training and the remaining 40% data

points were used for test (i.e. 3,710 data points were

used for training and the remaining 2,466 data points

were used for test, see also Table 2). The prediction
Figure 9 | Illustration of the sonar data combined with the satellite image in the near-shore e

Table 2 | Statistics of the training and test datasets for the western part of the island

Phase
Number of
data points

Minimum
depth

Maximum
depth

Mean
depth

Training phase 3,710 1.8 22.0 8.9

Test phase 2,466 1.9 21.6 10.7

om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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performance was evaluated using the following error

function:

E( exp dσ) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p¼1

dp � opk k2

PK

vuuut

e�
�dj jσd þ �d

		 		 (12)

where P is the number of training patterns (length of the data-

set), K is the number of output layer neurons (in the model

used here, there is a single output layer neuron, i.e. K ¼ 1), d

denotes the mean of the desired value (i.e. sonar measure-

ments), dp represents actual output (i.e. the desired values

during the training phase), op denotes the model output and

σd is the standard deviation of dp. For this error function the

better performance is close to zero. In the study of Vojinovic

& Kecman (), it was found that amongst 13 error func-

tions tested (out of which 10 are most commonly used) only
nvironment (along the western and central parts of the coast line).
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error function Equation (12) is not dependent on d or σd and

therefore it was the basis for its application in the present

work (see also Kecman () and Vojinovic et al. (,

)). In addition to this error function, we used some of

the traditional statistical measures such as mean absolute

error (MAE) and R2 (correlation coefficient).
RESULTS AND DISCUSSION

As explained earlier, the satellite images used in the present

work have a 30 m spatial resolution. In addition to that, as

shown in Figure 5, the sonar data have been acquired by

the use of an echo-sounder mounted on a JetSki and follow-

ing tracks in intervals between 50 and 100 m. The reason for

undertaking collection of sonar data in different intervals
Figure 10 | The performance of SVM model on the training (a) and test (b) datasets.

s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
was to keep the cost of the survey work as low as possible.

Figure 9 shows that there could be more than one sonar

measurement in a single 30 × 30 m image pixel along the

track of the JetSki, whereas there are no measured data in

pixels that are between the JetSki tracks. The close-up

views in Figure 9 show distribution of sonar data which

are overlaid with the pixels of the satellite image.

A single mean value of the sonar data was computed for

pixels with more than one measurement. This was necessary

in order to prepare the training and test datasets for the

SVM model.

A wider range of depths was used during the training phase

to avoid the out-of-range problem. Table 2 shows the statistical

characteristics of the datasets used for training and test phases.

As given in Table 2, the SVM was trained with 3,710

data points. Figure 10(a) shows the performance of the



Figure 11 | Scatter plots showing training and test results of the SVM model.

1420 Z. Vojinovic et al. | A machine learning approach for estimation of shallow water depths Journal of Hydroinformatics | 15.4 | 2013

Downloaded fr
by guest
on 24 January
SVM model after training. As mentioned earlier, the par-

ameters used to determine the trade-off between the

training error and the VC dimension of the model were

‘shape’, i.e. ‘smoothing’ parameter in the kernel function

(i.e. variance of the Gaussian RBF kernel), penalty par-

ameter C and ε parameter. The values for C and ε were

100 and 0.01, respectively. The number of support vectors

obtained in the training phase was 560 (or 15% of the train-

ing dataset). As can be observed from Figure 10(a), the SVM

model used produced better results for depths less than 15 m

and for depths beyond 15 m the model predictions deterio-

rated more significantly. Further to the adjustment of

model parameters during the training phase, the next step

was to test the model using an independent dataset. In this

case, the model was tested using 2,466 data points which

was a dataset different from the dataset used in the training

phase. Figure 10(b) shows the test result. Similar to the

results obtained from the training phase, in the test phase

the SVM model produced better results for depths less

than 15 m and for depths beyond 15 m the model predic-

tions deteriorated more significantly. The overall errors

expressed by Equation (12) during training and test phases

were 17 and 20%, respectively.

Figure 11 shows scatter plots obtained from training and

test phases. From the training phase, a correlation coefficient

(R2) value of 0.86 was achieved for the entire training data. In

the test phase, the correlation coefficient for the entire test

data dropped to 0.81. However, it is noted that the model pre-

dictions substantially deteriorated with depths greater than

15 m. Table 3 shows the performance of the method for

different data ranges in three different functions – E (as

expressed in Equation (12)), R2 and MAE. It shows that the

MAE from the test phase was found to be 0.61 m for

depths less than 10 m; whereas for depths beyond 15 m, the

MAE was found to be nearly 5 m. Overall, it is shown that

the MAE increases with the depth for both training and test

phases. The prediction performance of the SVM is poor for

depths greater than 15 m, and this is shown by the low corre-

lation coefficient in Table 3. A similar observation can be

made in relation to error values calculated using function E

(as expressed in Equation (12)).

The results obtained in the present work show strong

capabilities of the SVM method for estimation of bathymetry

for depths less than 15 m. This finding is in line with findings
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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obtained from some other studies using some other machine

learning (or data driven) techniques (e.g. Wang et al. ()

and Stumpf et al. ()).

Finally, the SVM model was applied to each pixel within

the study area and the depth was estimated using the



Table 3 | Performance of the SVMmethod expressed in three different error functions for

three depth groups

Training phase Test phase

E (%) R2 MAE E (%) R2 MAE

Full range 17 0.86 1.22 20 0.81 1.51

<10 m 11 0.61 1.02 10 0.88 0.61

10–15 m 17 0.48 1.22 16 0.24 1.74

�15 m 19 0.02 2.54 30 0.01 4.90
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reflectance value of the satellite image which served as an

input. Figure 12 shows example of the final product,

which is the near-shore bathymetry for the western part of

the island, obtained by combining the sonar data and

SVM model predictions.

The above data were further processed in order to

exclude areas affected by clouds. Finally, adding the deep-

water data (i.e. the data obtained from the Royal

Netherlands Navy) completes the final bathymetry. The
Figure 12 | The near-shore bathymetry along the west coast of Sint Maarten.

s://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
final bathymetry which is shown in Figure 13 extends up

to 5 km from the shoreline.

The bathymetry obtained from the method described in

the present paper was merged with the terrain data and used

to set up a coupled 1D/2D model for coastal and pluvial

flood simulation, Figure 14.
CONCLUSION

Over the last three decades there has been a rapid growth in

the field of remote sensing and its various applications in the

area of water management. There are many remote sensing

possibilities that can be used in water management appli-

cations. The present study deals with estimation of

bathymetry data from sonar measurements and satellite ima-

gery for the purpose of setting up the numerical model for

coastal and pluvial flood simulations.



Figure 13 | Final bathymetry along the west coast of Sint Maarten.
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In this paper, we describe a method based on a

machine learning algorithm for creation of shallow

water bathymetry. The feasibility of this method was eval-

uated on the west coast of Sint Maarten Island using a

combination of sonar and MS ALI satellite data. The

sonar data were acquired by utilising Hydro-box SBES

which was mounted on a JetSki. The imagery data were

captured by NASA’s Earth EO-1 satellite. The EO-1 is

the first high spectral and spatial resolution satellite

which contains two passive observing instruments with

a spatial resolution of 30 m – the Hyperion and the ALI.

The data collected displayed a strong nonlinear depen-

dency, and therefore it highlighted the need for a

nonlinear technique. As one of the prominent nonlinear

machine learning techniques to date, the SVM model

was used and it showed capability for dealing with a

non-linear relationship between the image pixel values

and the depth measurements.
om https://iwaponline.com/jh/article-pdf/15/4/1408/387210/1408.pdf
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The learning process in the SVM model used in the pre-

sent work is performed by solving a QP problem with linear

inequality and equality constraints. The model utilised the

RBF kernel functions and the number of support vectors is

controlled through the ε parameter which allows choosing

the number of support vectors in relation to errors. The

decomposition method was used to solve the dual form

with a linear cost function.

The findings obtained from the present study are in line

with findings obtained from some other studies using some

other machine learning (or data driven) techniques. From

the overall analysis of model results, it can be concluded

that the SVM modelling technique has proven to be capable

to reconstruct geometry of nonlinear datasets which clearly

demonstrates their versatility in the bathymetry estimation

applications. It should be noted that the method used in

the present work produced better results for depths less

than 10 m (i.e. the MAE was found to be less than 1 m).



Figure 14 | Combination of terrain and bathymetry data for the flood modelling work within the R3I project.
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For depths that range between 10 and 15 m, the MAE was

found to be 1.8 m and for depths beyond 15 m the model

predictions deteriorated more significantly. The capacity of

the method used in the present work remains to be tested

with higher resolution satellite images as the overall model

error may be reduced. Overall, the results obtained to date

suggest that the method developed represents a cost-effec-

tive means for mapping near-shore bathymetry data for

depths less than 15 m.
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