Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity

Emily Sonestedt, Charlotte Roos, Bo Gullberg, Ulrika Ericson, Elisabet Wirfalt, and Marju Orho-Melander

ABSTRACT

Background: The fat mass and obesity–associated gene (FTO) has been shown to be associated with obesity and to influence appetite regulation.

Objective: The aim was to examine whether dietary factors (macronutrient and fiber intakes) and leisure-time physical activity modify the association between genetic variation in FTO and body mass index (BMI; in kg/m²).

Design: A cross-sectional study examined 4839 subjects in the population-based Malmo Diet and Cancer study with dietary data (from a modified diet history method) and information on the genetic variant FTO (rs9939609). Direct anthropometric measures were made, and leisure-time physical activity was determined from the duration participants spent on 18 different physical activities.

Results: Significant interactions between energy-adjusted fat intake and FTO genotype (P = 0.04) and between carbohydrate intake and FTO genotype (P = 0.001) on BMI were observed. The observed increase in BMI across FTO genotypes was restricted to those who reported a high-fat diet, with a mean BMI of 25.3 (95% CI: 24.9, 25.6) among TT carriers and 26.3 (95% CI: 25.8, 26.8) among AA carriers (P = 0.0001). The FTO variant was not associated with a higher BMI among subjects with lower fat intakes (BMI = 25.7 and 25.9 in TT carriers and AA carriers, respectively; P = 0.42). Among individuals with a low-carbohydrate intake, we observed a mean BMI of 25.4 for TT carriers and of 26.8 for AA carriers. The increase in BMI across genotypes was mainly restricted to individuals who reported low leisure-time physical activity (P for trend = 0.004, P for interaction = 0.05).

Conclusion: Our results indicate that high-fat diets and low physical activity levels may accentuate the susceptibility to obesity by the FTO variant. Am J Clin Nutr 2009;90:1418–25.

INTRODUCTION

The increasing prevalence of obesity worldwide is largely influenced by the Western lifestyle, which is characterized by excessive energy intake and low energy expenditure. However, genetic factors may account for different predisposition to obesity between individuals. Genetic variation in the fat mass and obesity–associated gene (FTO) locus was recently identified in a genome-wide association study to be associated with obesity (1). The association has been replicated in several populations (2) and is the strongest common genetic predictor of obesity known so far. The FTO gene is highly expressed in the hypothalamus, a region involved in appetite regulation, and the A allele has been shown to be associated with increased energy intake, especially fat intake (3–5), and impaired satiety responsiveness (6) in children. There is also evidence in adults implicating that the risk-allele carriers consume more energy (7), whereas the genotype does not seem to influence energy expenditure (8, 9). These results indicate that FTO is associated with obesity mainly by influencing appetite regulation.

The increased genetic susceptibility of obesity may be modified by environmental factors, particularly physical activity and diet composition. For example, results from several studies suggest that high physical activity may reduce the effect of FTO on the risk of obesity (2, 10, 11). In a similar manner, diets with different macronutrient composition (ie, fat, carbohydrate, and protein) and fiber content could influence appetite and satiety (12) and thereby influence the risk.

One major concern when examining the association between diet and obesity in cross-sectional studies is that obesity status may influence the individual’s food choice. Studies have indicated that obese individuals generally consume less or the same amount of energy as normal-weight control subjects (13), but studies using the doubly labeled water technique have provided evidence of systematic misreporting of dietary intake among obese individuals (14). Moreover, previous studies have indicated that individuals with reported dietary change in the past generally are more obese and have a lower reported total energy intake than do individuals not reporting food habit changes (15).

The aim of the present study was to examine dietary intake depending on FTO genotype and examine whether dietary intakes (macronutrient and fiber intakes) and leisure-time physical activity modify the association between genetic variation in FTO and obesity among individuals in the population-based Malmö Diet and Cancer (MDC) cohort. Because the A allele has

1 From the Department of Clinical Sciences in Malmö, Nutrition Epidemiology, Lund University, Malmö, Sweden (ES, BG, UE, and EW); the Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease–Genetic Epidemiology, Lund University, Malmö, Sweden (ES, CR, and MO-M).

2 Supported by the Lund University Diabetes Center, the Swedish Medical Research Council, the Swedish Heart and Lung Foundation, the Region Skåne, the Malmö University Hospital, the Albert Påhlsson Research Foundation, and the Crafoord Foundation.

3 Address correspondence to E Sonestedt, Lund University, Department of Clinical Sciences in Malmö, Research Group in Nutrition Epidemiology, Clinical Research Centre, Building 60, Floor 13, Malmö University Hospital, Entrance 72, SE-205 02 Malmö, Sweden. E-mail: emily.sonestedt@med.lu.se. Received February 1, 2009. Accepted for publication August 7, 2009. First published online September 2, 2009; doi: 10.3945/ajcn.2009.27958.
been associated with impaired satiety responsiveness and increased fat intake, we hypothesized that fat intake could interact with the FTO variant in its effect on body mass index (BMI; in kg/m²). The availability of detailed data on energy expenditure and dietary data of high validity allowed us to exclude individuals with suspected nonadequate reporting of energy intake (16). We also have the ability to exclude individuals that reported significant dietary change in the past.

SUBJECTS AND METHODS

Study participants and data collection

The MDC study is a population-based prospective cohort (n = 28,449) with baseline examinations conducted from March 1991 to October 1996. All men born between 1923 and 1945 and all women born between 1923 and 1950 and living in Malmö were invited via personal letter or through public advertisements to participate. Limited skills in Swedish and mental incapacity were the only exclusion criteria. All participants visited the study center on 2 occasions. The first visit included detailed instructions about the dietary data collection procedure, distribution of the dietary questionnaire and menu book, and an extensive standardized questionnaire (to collect information on lifestyle, demographic, socioeconomic, and reproductive factors). Nurses conducted anthropometric measurements and collected blood. At the second visit, ~10 d after the first trained dietary interviewers conducted individual interviews to complete the diet history and to check the correctness of completed questionnaires. In total, 28,098 individuals completed the questionnaire, anthropometric measurements, and dietary assessment.

From November 1991 to February 1994, 6103 subjects were randomly selected from the cohort to participate in a cardiovascular subcohort (MDC-CC). Most of these subjects underwent additional measurements, including the donation of fasting blood. A total of 5135 subjects had both dietary data and had donated fasting blood. After individuals with current use of diabetes mellitus medication or a previous diabetes mellitus diagnosis were excluded, 4999 (2040 men and 2959 women) remained. Of these, 4839 individuals had information on FTO genotype and constitute the study population in this article. Ethical approval for the study was obtained from the Ethical Committee at Lund University (LU 51–90).

Dietary data

A modified dietary history method specifically designed for the MDC study was used (17), which combined 1) a 7-d menu book that collected information on cooked lunches and dinner meals and cold beverages, and 2) a 168-item dietary questionnaire covering foods regularly consumed during the past year. The participants estimated frequencies of food intake, and usual portion sizes were assessed by using a booklet of photographic aids. Thereafter, during a 1-h interview, the participants were asked questions about food choices, food-preparation practices, and portion sizes of the foods collected in the menu book (using a more extensive book of photos). The interviewer also checked the menu book and dietary questionnaire for overlapping information and for very high reported intakes.

The average daily intake of foods was calculated based on the information available in the menu book (and interview) and the questionnaire. The average daily food intake was converted to nutrient intake data by using the MDC Food and Nutrient Database, which was specifically developed for the MDC study and originated from PC KOST2-93 of the Swedish National Food Administration.

The dietary variables examined in this study were total intake of fat (g/d), carbohydrates (g/d), and protein (g/d); total energy (kcal/d), including energy from fat, carbohydrates, protein, alcohol and fiber; percentage of energy (from nonalcohol and nonfiber energy intake) from fat, carbohydrates, and protein; and fiber density (g fiber/1000 kcal total energy). The relative validity of the dietary method was examined among 105 women and 101 men; 18 d of weighed food records (3 d every second month) collected over 1 y was used as the reference method (18). Energy-adjusted Pearson correlations for fat, carbohydrate, protein, and fiber intakes were in the range of 0.54–0.74.

Misreporting of dietary data

Taking total energy expenditure into account, we can identify individuals that potentially report nonadequate energy intake. We identified such nonadequate reporters of energy by comparing the individually estimated physical activity level (PAL), expressed as energy expenditure divided by basal metabolic rate (BMR), with energy intake divided by BMR. We used equations for predicting BMR from age, sex, weight, and height recommended by the WHO (19), and total energy expenditure for each individual was calculated from self-reported information on physical activity at work, leisure-time physical activity, household work, estimated sleeping hours, self care, and passive time. Hours per day spent on each activity were multiplied by an activity-specific factor to create individual PALs. Nonadequate energy reporters were defined as those with a ratio of reported energy intake to BMR outside the 95% confidence limits of the calculated PAL. The confidence limits for the agreement between energy intake:BMR and the individual PAL were calculated according to recommendations for evaluating “habitual” intake in individuals by Black (20, 21). A 3-category variable was constructed discriminating between underreporters, adequate reporters, and overreporters of energy. Underreporters and overreporters were classified as nonadequate reporters. This procedure is described in detail elsewhere (16).

Individuals with dietary change in the past are suspected to have unstable food habits (15, 22). Dietary change in the past (yes or no) was derived from the questionnaire item, “Have you substantially changed your eating habits because of illness or for some other reason?”

Leisure-time physical activity

Leisure-time physical activity was obtained from a list of different physical activities in the questionnaire (18 items) that were adapted from the Minnesota Leisure Time Physical Activity Instrument (23). Participants were asked to estimate the number of minutes per week, and for each of the 4 seasons, they spent performing 18 different physical activities. The duration of each activity was multiplied by an intensity factor to create a leisure-
time physical activity score. The score was separated into sex-specific tertiles.

The ability of the physical activity questionnaire to rank individuals was examined among 369 subjects against an accelerometer (model 7164; CSA Inc, Shalimar, FL). The accelerometer was monitored for 4 consecutive days, except when sleeping or water-based activities. Spearman’s correlation coefficients between the 2 methods were 0.35 in males and 0.24 in females (24).

Anthropometric measurements

Weight (kg) was measured to the nearest 0.1 kg by trained project staff members using a balance-beam scale while the subjects were wearing light clothing and no shoes; height (cm) was measured with a fixed stadiometer calibrated in centimeters. BMI was defined as weight divided by height in square meters (kg/m²). Obesity was defined as a BMI (in kg/m²) ≥30. Trained project staff members also measured waist and hip circumferences. Bioelectric impedance analysis was used to estimate body composition (single-frequency analyzer, BIA 103; JRL Systems, Detroit, MI). The algorithm used to estimate body fat from impedance was supplied by the manufacturer. Percentage body fat was calculated based on the estimated body fat mass.

Other variables

A variable was created for the seasons of data collection: winter (December–February), spring (March–May), summer (June–August), and fall (September–November). Smoking status was categorized as current smokers (including irregular smoking), ex-smokers, and nonsmokers.

Genotyping

Genotyping of rs9939609 was performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry on the Sequenom MassARRAY platform (San Diego, CA). The rs9939609 was in Hardy–Weinberg equilibrium in the studied population (P = 0.76). Genotyping was successful in 4839 (97%) of the subjects.

Statistical methods

SPSS (version 17.0) was used for all statistical analyses. All analyses were performed in 1) all individuals, 2) individuals reporting adequate energy intake (ie, nonadequate reporters excluded), and 3) individuals reporting stable dietary habits (ie, individuals reporting dietary change were excluded). We used chi-square analyses for categorical variables and a general linear model for continuous log-transformed variables to test for trend across FTO genotypes, assuming an additive genetic model. Anthropometric factors were adjusted for age and sex. Dietary factors were adjusted for age, sex, and season and for age, sex, season, and BMI.

The subjects were divided into sex-specific tertiles according to the percentage of energy obtained from fat, carbohydrates, and protein and fiber density (g/1000 kcal). In multivariate nutrient-density models, associations of dietary intakes and FTO genotype with BMI were evaluated by using general linear models, adjusted for total energy intake, age, sex, and season. We conducted logistic regression to calculate odds ratios (ORs) and 95% CIs of obesity (BMI ≥30) associated with the FTO polymorphism in strata of dietary intake categories (adjusted for energy intake, age, sex, and season) or leisure-time physical activity categories (adjusted for age and sex). For dietary factors, additional adjustments for smoking and tertiles of leisure-time physical activity were performed. For leisure-time physical activity, additional adjustments for smoking and tertiles of carbohydrate intakes were performed. The interaction between dietary factors or leisure-time physical activity and FTO genotype was assessed by introducing a multiplicative factor with continuous variables.

RESULTS

Associations between FTO and obesity measures

In this population, 12% were obese (BMI >30). The 17% of the individuals who were homozygous for the risk allele (A) had a 1.7-kg higher weight and 0.6-unit higher BMI than did the TT carriers. Significant trends for association across FTO genotypes for body fat weight (P = 0.005), percentage body fat (P = 0.04), and waist circumference (P = 0.01) were observed (Table 1).

Associations between FTO, dietary factors, and leisure-time physical activity

We observed a higher frequency of individuals who under-reported their dietary energy intake among the AA and AT genotype carriers than among those with the TT genotype (16–17% compared with 14%; P = 0.02). Among those with a BMI >30, 30% of AA carriers were categorized as underreporters compared with 20% of TT carriers (P = 0.05). Moreover, we observed a higher proportion of individuals with a low reported level of leisure-time physical activity among the AA carriers than among the TT carriers (38% compared with 33%; P = 0.02) (Table 1). We observed a lower total energy intake with the A allele (2357 kcal for AA carriers compared with 2404 kcal for TT carriers; P = 0.05), and the association was only slightly attenuated after BMI was adjusted for (P = 0.07). The difference in energy intake between the genotypes was not significant when nonadequate reporters of energy were excluded (2415 kcal for AA carriers compared with 2445 kcal for TT carriers; P = 0.17). We found a higher percentage of energy from protein for carriers of the A allele (15.7 and 16.0 % of energy for TT carriers and AA carriers, respectively; P = 0.01) (Table 1). The significant difference in protein intake remained when the analyses were repeated in adequate energy reporters only (P = 0.02), after individuals who reported substantial dietary change in the past were excluded (P = 0.002) and after BMI was adjusted for (P = 0.04). Among obese adequate reporters, homozygous A allele carriers reported a higher amount of energy from fat (P = 0.03) and a lower amount from carbohydrates (P = 0.001) than did obese subjects not carrying the risk allele.

Interactions between dietary factors, FTO, and obesity

The observed increase in BMI across FTO genotypes was mainly restricted to those who reported an energy-adjusted high-fat diet, with a mean BMI of 25.3 among TT carriers compared with 26.3 among AA carriers (P = 0.0001) (Table 2). We found
TABLE 1
Anthropometric measures, nutrient intakes, and participant characteristics according to FTO genotype in the Malmo Diet and Cancer-Cardiovascular Cohort

<table>
<thead>
<tr>
<th>Variables</th>
<th>TT (n = 1673)</th>
<th>TA (n = 2336)</th>
<th>AA (n = 830)</th>
<th>P for trend (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>57.7 (57.4, 57.9)</td>
<td>57.3 (57.1, 57.6)</td>
<td>58.0 (57.6, 58.4)</td>
<td>0.16</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>25.5 (25.3, 25.7)</td>
<td>25.8 (25.6, 25.9)</td>
<td>26.1 (25.8, 26.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>73.8 (73.3, 74.4)</td>
<td>74.6 (74.1, 75.0)</td>
<td>75.5 (74.7, 76.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>170.1 (169.8, 170.4)</td>
<td>170.2 (169.9, 170.4)</td>
<td>170.2 (169.8, 170.6)</td>
<td>0.87</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>84.4 (83.9, 84.8)</td>
<td>85.0 (84.6, 85.4)</td>
<td>85.5 (84.8, 86.1)</td>
<td>0.01</td>
</tr>
<tr>
<td>Fat weight (kg)</td>
<td>25.9 (25.7, 26.2)</td>
<td>26.0 (25.8, 26.2)</td>
<td>26.4 (26.1, 26.7)</td>
<td>0.04</td>
</tr>
<tr>
<td>Total energy (kcal/d)</td>
<td>2404 (2375, 2434)</td>
<td>2387 (2362, 2412)</td>
<td>2357 (2317, 2398)</td>
<td>0.05</td>
</tr>
<tr>
<td>Carbohydrates (g/d)</td>
<td>258.1 (254.6, 261.6)</td>
<td>255.5 (252.5, 258.6)</td>
<td>252.8 (247.8, 257.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>BMI (%)</td>
<td>45.5 (45.2, 45.8)</td>
<td>45.3 (45.1, 45.6)</td>
<td>45.3 (44.9, 45.7)</td>
<td>0.47</td>
</tr>
<tr>
<td>Protein (g/d)</td>
<td>88.0 (87.0, 89.1)</td>
<td>87.3 (86.4, 88.2)</td>
<td>87.5 (86.0, 89.0)</td>
<td>0.64</td>
</tr>
<tr>
<td>Fat (% of energy)</td>
<td>15.7 (15.6, 15.8)</td>
<td>15.7 (15.6, 15.8)</td>
<td>16.0 (15.8, 16.1)</td>
<td>0.01</td>
</tr>
<tr>
<td>Fat (g/d)</td>
<td>99.9 (98.2, 101.5)</td>
<td>99.5 (98.1, 100.9)</td>
<td>97.4 (95.0, 99.7)</td>
<td>0.07</td>
</tr>
<tr>
<td>Fat weight (kg)</td>
<td>21.4 (21.0, 21.7)</td>
<td>21.1 (20.8, 21.4)</td>
<td>21.5 (21.0, 22.0)</td>
<td>0.92</td>
</tr>
<tr>
<td>Fiber (g/1000 kcal)</td>
<td>9.2 (9.0, 9.3)</td>
<td>9.1 (9.0, 9.2)</td>
<td>9.4 (9.2, 9.6)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

\(^1\) Anthropometric measures were adjusted for age and sex, and nutrient intakes were adjusted for age, sex, and season.

\(^2\) P values for differences in characteristics across FTO genotype were based on chi-square tests for categorical variables or on a general linear model for continuous log-transformed variables with the assumption of an additive genetic model.

\(^3\) Adjusted mean; 95% CI in parentheses (all such values).

A significant interaction between fat intake and the genotype on BMI (P = 0.04), which was also observed when the ≥20% of individuals flagged as nonadequate reporters were excluded (P = 0.02) and when individuals reporting a substantial dietary change in the past were excluded (P = 0.005). The FTO genotype was associated with a higher BMI among individuals who consumed a diet low in carbohydrates, with mean BMIs of 25.4 and 26.8 for TT carriers and AA carriers, respectively (P = 2 × 10\(^{-18}\)). On the other hand, the FTO variant was not associated with a higher BMI among subjects with higher carbohydrate intakes. We observed a significant interaction for carbohydrate intake and genotype for BMI (P = 0.001), which remained after exclusion of nonadequate reporters (P = 0.001) and for individuals who reported dietary changes in the past (P = 0.001). None of the results listed above changed markedly when adjusted for smoking and leisure-time physical activity.

We observed significant interactions between carbohydrate intake and genotype on risk of being obese (BMI > 30; P = 0.0004; Figure 1). For example, among individuals with a low carbohydrate intake, AA carriers had an OR of 3.11 (95% CI: 2.05, 4.72) for an increased risk of obesity compared with TT carriers. This can be compared with an OR of 0.99 (95% CI: 0.62, 1.57) among those who reported a diet high in carbohydrates. We observed a borderline significant interaction between fat intake and genotype on risk of being obese (P = 0.05). Among individuals with a high fat intake, AA carriers had an OR of 2.47 (95% CI: 1.59, 3.85) for increased risk of obesity compared with TT carriers. This can be compared with an OR of 1.29 (95% CI: 0.85, 1.98) among those who reported a diet low in fat. The test of interaction between fat intake and genotypes was significant when individuals flagged as nonadequate energy reporters were excluded (P = 0.01).

Protein and fiber intakes seemed to modify the association between FTO genotype and BMI to a lower degree, and no evidence of an interaction between protein or fiber intake and the FTO genotype on BMI was observed (P = 0.39 and P = 0.24, respectively). However, the association between FTO genotype and higher BMI was mainly observed among those who consumed a high-protein diet (P = 0.006).

Interaction between leisure-time physical activity, FTO, and obesity

The increase in BMI across FTO genotypes was mainly restricted to individuals who reported low leisure-time physical activity, and a borderline significant interaction was observed.
TABLE 2

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Mean intakes (range) No. of subjects</th>
<th>Mean (95% CI) for</th>
<th>P for (T) trend</th>
<th>P for (T) interaction</th>
<th>P for (T) by (A) interaction ((P_{\text{interaction}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>Fat (% of energy)</td>
<td>25.5 (25.5, 26.4)</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AT/AA</td>
<td>Low</td>
<td>25.6 (25.5, 25.7)</td>
<td>0.37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>26.0 (25.5, 26.5)</td>
<td>0.001</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>26.7 (25.8, 26.8)</td>
<td>0.0001</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Carbohydrates (% of energy)</td>
<td>26.8 (26.3, 27.2)</td>
<td>2.4·10^-6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>T</td>
<td>Leisure-time physical activity</td>
<td>25.7 (25.4, 25.9)</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>25.7 (25.4, 25.9)</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>25.9 (25.6, 26.1)</td>
<td>0.37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>26.0 (25.7, 26.3)</td>
<td>0.001</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Dietary intakes were evaluated by using general linear models, adjusted for total energy intake, age, sex, and season. Physical activity levels were adjusted for age. Nonadequate energy reporters were excluded. In addition, a higher frequency of individuals reporting a low level of leisure-time physical activity was observed among risk-allele carriers, which may contribute to this tendency for lower energy intake among risk-allele carriers. Several earlier studies observed higher energy intakes, especially higher intakes from fat, among \(FTO \) risk-allele carriers (3, 4). However, most of these studies were conducted in children and adolescents. The effect of social desirability (25, 26) and underreporting (27) is probably larger in adults than in children; therefore, the findings in children may be more robust. However, because the difficulties estimating energy intake and energy expenditure with the use of self-reported methods have received much attention (28, 29), and are a major focus of nutrition epidemiology research, the effect of \(FTO \) variants on energy homeostasis in both children and adults will need to be evaluated by using more precise methods. We focused on relative intakes of macronutrients and observed significant differences in macronutrient intakes between the different genotype carriers, particularly among the obese subjects. In their diet, the obese AA carriers reported higher percentages of energy from fat and lower percentages of energy from carbohydrate than did the obese individuals not carrying any \(FTO \) risk alleles, which supports earlier findings (\(P = 0.05 \)) between leisure-time physical activity and genotypes. Among individuals with a low level of leisure-time physical activity, we observed a 0.8-unit higher mean BMI for AA carriers than for those homozygous for the \(T \) allele (\(P = 0.003 \)). The \(FTO \) variant was not associated with a higher BMI among subjects with a high level of leisure-time physical activity (\(P = 0.97 \)). The results did not change markedly when adjusted for smoking and carbohydrate intake (\(P \) for interaction = 0.06). No significant sex interactions between diet or leisure-time physical activity and \(FTO \) on BMI were observed.

Because a high intake of fat was correlated with a low level of leisure-time physical activity in our study, we also examined the BMI differences across \(FTO \) genotypes with different fat intakes and physical activity levels. Among individuals with low leisure-time physical activity and a high fat intake, we observed a BMI difference between \(TT \) carriers and AA carriers of 1.8 (\(P = 0.0003 \)). However, the difference in mean BMI was only 0.2 between \(TT \) carriers and AA carriers among those with a low level of leisure-time physical activity and a low fat intake (\(P = 0.61 \)) and was 0.7 among those with a high level of leisure-time physical activity and a high fat intake (\(P = 0.31 \)).

DISCUSSION

The present study, conducted among middle-aged individuals in Sweden using dietary data of high validity, indicates that macronutrient composition of the diet may modify the association between the \(FTO \) variant and obesity, with the effect of the variant mainly restricted to the group of individuals who consumed high-fat and low-carbohydrate diets. We also provide further evidence that low leisure-time physical activity may accentuate the susceptibility for higher BMI by the \(FTO \) variant.

Unexpectedly, a borderline significantly lower reported energy intake in risk-allele carriers was observed in our study. However, our finding of greater underreporting explains this observation, because no significant difference in energy intake between the different genotype carriers was observed when the nonadequate reporters were excluded from the analysis. In addition, a higher frequency of individuals reporting a low level of leisure-time physical activity was observed among risk-allele carriers, which may contribute to this tendency for lower energy intake among risk-allele carriers. Several earlier studies observed higher energy intakes, especially higher intakes from fat, among \(FTO \) rs9939609 AA genotype carriers (3, 4). However, most of these studies were conducted in children and adolescents. The effect of social desirability (25, 26) and underreporting (27) is probably larger in adults than in children; therefore, the findings in children may be more robust. However, because the difficulties estimating energy intake and energy expenditure with the use of self-reported methods have received much attention (28, 29), and are a major focus of nutrition epidemiology research, the effect of \(FTO \) variants on energy homeostasis in both children and adults will need to be evaluated by using more precise methods. We focused on relative intakes of macronutrients and observed significant differences in macronutrient intakes between the different genotype carriers, particularly among the obese subjects. In their diet, the obese AA carriers reported higher percentages of energy from fat and lower percentages of energy from carbohydrate than did the obese individuals not carrying any \(FTO \) risk alleles, which supports earlier findings (\(P = 0.05 \)) between leisure-time physical activity and genotypes. Among individuals with a low level of leisure-time physical activity, we observed a 0.8-unit higher mean BMI for AA carriers than for those homozygous for the \(T \) allele (\(P = 0.003 \)). The \(FTO \) variant was not associated with a higher BMI among subjects with a high level of leisure-time physical activity (\(P = 0.97 \)). The results did not change markedly when adjusted for smoking and carbohydrate intake (\(P \) for interaction = 0.06). No significant sex interactions between diet or leisure-time physical activity and \(FTO \) on BMI were observed.

Because a high intake of fat was correlated with a low level of leisure-time physical activity in our study, we also examined the BMI differences across \(FTO \) genotypes with different fat intakes and physical activity levels. Among individuals with low leisure-time physical activity and a high fat intake, we observed a BMI difference between \(TT \) carriers and AA carriers of 1.8 (\(P = 0.0003 \)). However, the difference in mean BMI was only 0.2 between \(TT \) carriers and AA carriers among those with a low level of leisure-time physical activity and a low fat intake (\(P = 0.61 \)) and was 0.7 among those with a high level of leisure-time physical activity and a high fat intake (\(P = 0.31 \)).

DISCUSSION

The present study, conducted among middle-aged individuals in Sweden using dietary data of high validity, indicates that macronutrient composition of the diet may modify the association between the \(FTO \) variant and obesity, with the effect of the variant mainly restricted to the group of individuals who consumed high-fat and low-carbohydrate diets. We also provide further evidence that low leisure-time physical activity may accentuate the susceptibility for higher BMI by the \(FTO \) variant.

Unexpectedly, a borderline significantly lower reported energy intake in risk-allele carriers was observed in our study. However, our finding of greater underreporting explains this observation, because no significant difference in energy intake between the different genotype carriers was observed when the nonadequate reporters were excluded from the analysis. In addition, a higher frequency of individuals reporting a low level of leisure-time physical activity was observed among risk-allele carriers, which may contribute to this tendency for lower energy intake among risk-allele carriers. Several earlier studies observed higher energy intakes, especially higher intakes from fat, among \(FTO \) rs9939609 AA genotype carriers (3, 4). However, most of these studies were conducted in children and adolescents. The effect of social desirability (25, 26) and underreporting (27) is probably larger in adults than in children; therefore, the findings in children may be more robust. However, because the difficulties estimating energy intake and energy expenditure with the use of self-reported methods have received much attention (28, 29), and are a major focus of nutrition epidemiology research, the effect of \(FTO \) variants on energy homeostasis in both children and adults will need to be evaluated by using more precise methods. We focused on relative intakes of macronutrients and observed significant differences in macronutrient intakes between the different genotype carriers, particularly among the obese subjects. In their diet, the obese AA carriers reported higher percentages of energy from fat and lower percentages of energy from carbohydrate than did the obese individuals not carrying any \(FTO \) risk alleles, which supports earlier findings (\(P = 0.05 \)) between leisure-time physical activity and genotypes. Among individuals with a low level of leisure-time physical activity, we observed a 0.8-unit higher mean BMI for AA carriers than for those homozygous for the \(T \) allele (\(P = 0.003 \)). The \(FTO \) variant was not associated with a higher BMI among subjects with a high level of leisure-time physical activity (\(P = 0.97 \)). The results did not change markedly when adjusted for smoking and carbohydrate intake (\(P \) for interaction = 0.06). No significant sex interactions between diet or leisure-time physical activity and \(FTO \) on BMI were observed.

Because a high intake of fat was correlated with a low level of leisure-time physical activity in our study, we also examined the BMI differences across \(FTO \) genotypes with different fat intakes and physical activity levels. Among individuals with low leisure-time physical activity and a high fat intake, we observed a BMI difference between \(TT \) carriers and AA carriers of 1.8 (\(P = 0.0003 \)). However, the difference in mean BMI was only 0.2 between \(TT \) carriers and AA carriers among those with a low level of leisure-time physical activity and a low fat intake (\(P = 0.61 \)) and was 0.7 among those with a high level of leisure-time physical activity and a high fat intake (\(P = 0.31 \)).
that indicate a preference for fat-rich diets by FTO risk-allele carriers (3, 4).

The higher frequency of underreporters among AA carriers than among TT carriers may represent an important novel observation. Because underreporting of energy intake by individuals with a higher BMI is a common phenomenon, and because the FTO risk allele is associated with a higher BMI, the finding that AA carriers underreport their energy intake to a higher degree could simply reflect its association with obesity. However, because this issue remained after stratifying for obesity status and because the difference was even more pronounced among those with a BMI >30, another explanation is warranted. The knowledge concerning systematic underreporting is limited. However, underreporting was previously indicated to be particularly associated with foods high in fat and/or carbohydrates (14) and could be a putative explanation for our findings. Our observation may also be explained if AA carriers had a lower than expected estimated energy expenditure because of a metabolic or sympathetic effect of the variant. Interestingly, FTO^{-/-} mice are leaner despite having relative hyperphagia, because they have increased energy expenditure associated with systemic sympathetic activation (30). However, no difference in measured energy expenditure according to FTO genotype has been observed in human studies (8, 31). Regarding the exclusion of underreporters, who constituted \(\approx 20\% \) of all individuals and 80\% of all nonadequate reporters, generally stronger effects were observed.

The FTO polymorphism has been associated with obesity in most of the examined populations, despite differences in allele frequency of the high-risk variants and the linkage disequilibrium structure of the region between populations. Our results support the hypothesis that the FTO variant would likely be higher in a population with a Western lifestyle characterized by an energy-dense diet and a sedentary lifestyle than in a population with a diet lower in fat content and with a higher degree of physical activity (32). Whether the lack of such an obesogenic environment explains the lack of association between the FTO variant and obesity in some of the studies in Asian and African populations remains to be shown (33–35).

Most studies that investigated the association between FTO genotype and physical activity have observed no or weak associations (5, 8, 9, 36). More importantly, several studies have observed an interaction between physical activity and FTO genotype. This can be compared with an OR of 0.99 (95\% CI: 0.62, 1.57) among those reporting a diet high in carbohydrates (P for trend = 0.90). We observed significant interactions between carbohydrate intake and genotype on risk of obesity (P = 0.0004).

FIGURE 1. Association between FTO genotype and obesity in strata of dietary intake categories (fat and carbohydrate intakes as a percentage of energy) in the Malmö Diet and Cancer—Cardiovascular cohort. Logistic regression was used to calculate odds ratios (ORs) and 95\% CIs of obesity (BMI ≥ 30, in kg/m²) associated with FTO genotypes (TT, white bars; AT, gray bars; AA, black bars) in strata of dietary intake categories adjusted for energy, age, sex, and season. The interaction between dietary factors or leisure-time physical activity and FTO genotype was assessed by introducing a multiplicative factor with continuous variables. A: Among individuals with a high fat intake, AA carriers had an OR of 2.47 (95\% CI: 1.59, 3.85) for increased risk of obesity compared with TT carriers (P for trend across genotypes = 6 × 10⁻⁵). Among individuals with a low fat intake, AA carriers had an OR of 1.29 (95\% CI: 0.85, 1.98) for increased risk of obesity compared with TT carriers (P for trend = 0.21). A borderline significant interaction between fat intake and genotype on risk of being obese was observed (P = 0.05). B: Among individuals with a low carbohydrate intake, AA carriers had an OR of 3.11 (95\% CI: 2.05, 4.72) for increased risk of obesity compared with TT carriers (P for trend = 1× 10⁻⁷). This can be compared with an OR of 0.99 (95\% CI: 0.62, 1.57) among those reporting a diet high in carbohydrates (P for trend = 0.90). We observed significant interactions between carbohydrate intake and genotype on risk of obesity (P = 0.0004).
diet and could in the future contribute to personalized dietary advice. From a public health perspective, it can be speculated that a reduction in overall fat consumption in the population and an increase in the level of physical activity could minimize the effect of this genetic susceptibility factor on obesity status. For example, no increased risk of obesity was observed among individuals who consumed <41% of energy from fat in our study. Moreover, the FTO allele had a minimal effect on BMI among individuals who reported a high leisure-time physical activity.

FTO explained only a small part of the genetic susceptibility to obesity in the population, and several other obesity genes have recently been identified (37–39). As for FTO, many of the novel genes are highly expressed in the hypothalamus and few (eg, SH2B1 and BDNF) have a clear role in appetite control, as shown in knockout models that develop hyperphagia and obesity (40, 41). However, the mechanisms by which most of these genes, particularly common variations in noncoding regions, can affect appetite control or in other means contribute to obesity in humans still remain to be explained.

Herein we propose an important role for both diet composition and physical activity in modifying the susceptibility of developing obesity by the common variant in FTO. Future studies using dietary data of high quality are warranted to further define whether, how, and to what degree the genetic risk by FTO—or other obesity-susceptibility genes—can be modified by lifestyle factors aiming for individualized lifestyle advice to prevent obesity in genetically predisposed individuals.

The authors’ responsibilities were as follows—ES: conducted the statistical analysis and wrote the manuscript; and BG: assisted with the statistical analyses. All authors contributed to the analytic design, data interpretation, revision of the manuscript, and final approval of the manuscript. None of the authors had any conflicts of interest.

REFERENCES

