Natural History of Leisure-time Physical Activity and Its Correlates: Associations with Mortality from All Causes and Cardiovascular Disease Over 28 Years

George A. Kaplan,1 William J. Strawbridge,2 Richard D. Cohen,2 and Laura R. Hungerford2

The association between leisure-time physical activity and 28-year (1965–1993) risk of death from all causes and cardiovascular disease was studied in 6,131 adults who participated in the Alameda County Study in Northern California. Because study participants were interviewed on a number of occasions, it was possible to include in the analyses information on changes over time in levels of leisure-time physical activity as well as changes in a wide variety of other risk factors. There were 47,616 person-years of observation for males (639 deaths from all causes and 321 from cardiovascular disease) and 57,666 person-years of observation for females (587 deaths from all causes and 388 from cardiovascular disease). In analyses in which only the baseline values of all covariates were included, a four-point increase on the leisure-time physical activity scale, the interquartile range, was associated with reduced risk of death from all causes (relative risk (RR) = 0.90, 95% confidence interval (CI) 0.83–0.99) and cardiovascular disease (RR = 0.85, 95% CI 0.75–0.97). When time-varying information on leisure-time physical activity and all other covariates was included, there was still a protective effect for all-cause and cardiovascular disease mortality (RR = 0.84, 95% CI 0.77–0.92 and RR = 0.81, 95% CI 0.71–0.93, respectively). The association between leisure-time physical activity and risk of death was not altered when information on variations over time in leisure-time physical activity and many determinants and consequences of physical activity were explicitly included in survival models. Am J Epidemiol 1996; 144:793–7.

cardiovascular diseases; exercise; longitudinal studies; mortality; physical fitness; risk factors
ity and other risk factors enables us to directly address
the design limitation described above.

MATERIALS AND METHODS

Study sample

The Alameda County Study is a longitudinal study of factors associated with health and mortality. Since 1965, it has followed 6,928 Northern California adults who were aged 16–94 years at baseline (16, 17). Subjects were originally selected through a stratified random sample of Alameda County households to be representative of Alameda County, California, and have been followed regardless of where they have moved. Survivors were resurveyed in 1974, 1983 (a 50 percent sample), and 1994. The percent response rates for the four surveys were 86, 85, 87, and 93, respectively. The current analyses utilize physical activity and other risk factor data collected in 1965, 1974, and 1983. Subjects who answered the 1965 physical activity questions and who had no missing responses on any of the adjustment variables used were included in the analyses (n = 6,131) reported here.

Measures

Physical activity. A scale was constructed from three questions on physical activity. Subjects were asked how often they did physical exercise, took part in active sports, and took long walks or swam. Responses to these questions were never, sometimes, or often and were scored as 0, 2, or 4, respectively. The resulting physical activity scale had a range of 0 to 12 for each follow-up. The items have been used in a number of other analyses from the Alameda County Study, and scores which include them have been importantly associated with risk of death (2, 9, 17, 18).

Other risk factors. Sociodemographic variables included age, sex, race/ethnicity (black vs. other), and education (less than high school graduate, high school graduate or more). Health conditions included self-reported mobility impairment (trouble climbing stairs or going outdoors), perceived health (good or excellent vs. fair or poor), and the self-reported presence or absence in the past 12 months of diabetes mellitus, stroke, heart trouble, asthma, high blood pressure, and shortness of breath. Other risk factors included cigarette smoking (current, former, or never) and body mass index (weight (kg)/height (m)^2), which was used to divide subjects into weight tertiles. Social isolation was based on an isolated response to two of three questions: whether subjects had less than three close friends, less than three close relatives, and saw less than three of these close friends or relatives monthly. These risk factors have been shown to predict both mortality and morbidity in Alameda County Study respondents and elsewhere (2, 9, 17–19).

RESULTS

All-cause mortality

Basic descriptive data on the sample are presented in table 1. Table 2 presents all-cause and cardiovascular disease deaths by sex, person-years of follow-up, and crude mortality rates for each measure of physical
activity and the combined index. In all cases, the least active category has the highest mortality rate, and the rates generally show a consistent increasing gradient with decreasing amounts of activity. Table 3 presents the results for all-cause mortality separately for the fixed-covariate and time-dependent covariate models for the 1,226 deaths between 1965 and 1993. With all variables held constant at their baseline value, physical activity was protective with a four-unit increase, the interquartile range, associated with a 20 percent lower risk of death when only age, sex, ethnicity, and education were included (RR = 0.80, 95 percent CI 0.74–0.87). When health conditions were included, the relation between physical activity weakened somewhat but remained statistically significant (RR = 0.87, 95 percent CI 0.80–0.95). The addition of other risk factors had little further effect on the observed relation (RR = 0.90, 95 percent CI 0.83–0.99).

In the time-dependent covariate analyses, the relations between physical activity and mortality were stronger in all models compared to the fixed covariate models. With adjustment for age, sex, ethnicity, and education, a four-point increase in the physical activity scale was associated with 28 percent lower risk of death (RR = 0.72, 95 percent CI 0.65–0.78). In the model with all covariates, a four-point increase was associated with more than 50 percent greater protective effect (16 percent vs. 10 percent) in the time-dependent covariate analysis compared to the fixed covariate analysis.

Cardiovascular disease mortality

Table 2 presents the crude results for cardiovascular disease mortality, and table 4 presents the results for the fixed-covariate and time-dependent models for cardiovascular disease mortality. There were 609 cardiovascualr disease deaths over the 28-year period. In all models, the relation between physical activity and mortality was stronger than it was for all-cause mortality, and the protective association diminished somewhat with adjustment for health status and other risk factors. While the protective effect of physical activity is stronger in the time-dependent covariate analyses, the differences between the fixed and time-dependent analyses are somewhat smaller than they were for deaths from all causes.

Validity of covariates

The persistence of a protective effect of leisure-time physical activity with adjustment for baseline health status and risk factors as well as changes over time could reflect poor measurement of health status and other risk factors. As discussed earlier, risk factors included in the regression models were chosen because they were strong predictors of morbidity and mortality in other analyses using this cohort. In preliminary bivariate analyses, we verified that they all were strong and significant predictors of all-cause and cardiovascular disease mortality. In the baseline covariate regression model with all covariates simultaneously included, the following covariates were associated with all-cause mortality (relative risk with 95 percent CI): age (1.10, 1.09–1.10), sex (0.64, 0.61–0.72), perceived health (1.24, 1.07–1.44), mobility impairment (1.34, 1.10–1.63), heart trouble (1.34, 1.09–1.57), high blood pressure (1.27, 1.09–1.48), diabetes (1.98, 1.52–2.57), shortness of breath (1.23, 1.03–1.46), current smoking (1.85, 1.60–2.13), low body mass index (1.17, 1.01–1.36), and social isolation (1.17, 1.02–1.34). In the time-dependent model, stroke and former smoking were also significantly associated with all-cause mortality.

Effect of early deaths

Baseline covariate analyses were repeated with elimination of deaths which occurred during the first 3 years of follow-up (n = 154). The magnitude of the effect of physical activity changed only in the second and third decimal places.

DISCUSSION

These analyses provide information to address the two methodological issues that we raised in the introduction. Taking into account changes in physical activity over the follow-up period resulted in a stronger protective effect for physical activity than when such changes were not considered. This is consistent with the smaller association in the fixed covariate model, reflecting misclassification over time of the level of

| TABLE 1. Baseline characteristics, Alameda County Study, Northern California |
|-------------------------|---------------------|
| Characteristic | Value |
| Age (years) (mean) | 43.0 |
| Sex (% male) | 46.2 |
| Race (% black) | 11.9 |
| Physical activity | |
| Exercise (% often) | 17.6 |
| Active sports (% often) | 15.5 |
| Long walks/swimming (% often) | 16.5 |
| Education (% <high school) | 34.5 |
| Mobility Impairment (%) | 5.3 |
| Perceived health (% fair/poor) | 17.9 |
| Chronic conditions (mean no. out of six possible) | 0.34 |
| Smoking (% current) | 45.0 |
| Body mass index (kg/m²) (mean) | 23.8 |
| Social Isolation (%) | 25.0 |
| Smoking (% current) | 45.0 |
| Body mass index (kg/m²) (mean) | 23.8 |
| Social Isolation (%) | 25.0 |
physical activity. Furthermore, while health status and other factors that influence physical activity may change over time, taking these changes into account does not eliminate the protective effect of physical activity for either all-cause or cardiovascular disease mortality.

Am J Epidemiol Vol. 144, No. 8, 1996
To some extent, the results of the time-dependent covariate analyses may reflect the consequences of adjusting for both antecedent and intervening risk factors. For example, in the Alameda County Study, low levels of physical activity are associated with increased incidence of social isolation (15) and social isolation is associated with decreases in physical activity over time (12). Such interdependency of risk factors may be the rule rather than the exception, resulting in considerable complexity in understanding causal pathways in epidemiologic studies.

While we have adjusted for both baseline health status and updated measures of health status at each wave of data collection, it may still be possible, to some extent, that the results reflect the impact of health status of physical activity. However, in the baseline model in which the effect of health status on the physical activity association with mortality should be the greatest (because there is no subsequent updating of health status information and physical activity information), the effect of elimination of early deaths was trivial.

There are several features of the current analyses that require comment. Measurement of leisure-time physical activity is difficult, and the measure used in the current analyses, although significantly associated with mortality risk, is rather crude. It is likely that the comparison of the fixed and time-dependent analyses would be more dramatic with a better measure of physical activity, because better measures seem to show greater protective effects (7). Similarly, because of the long intervals between data collection, the current analyses involve, at the most, only three measures of physical activity. Thus, while these analyses go beyond previous ones, trajectories of physical activity and other risk factors over the follow-up period would be better assessed by more frequent data collection. Despite these concerns, the present analyses provide further support for the importance of physical activity, and indicate that the protective effect of physical activity is a robust one.

ACKNOWLEDGMENTS

Partially supported by grant no. 1R37AG11375 from the National Institute on Aging.

REFERENCES