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APPENDIX
Basic Finite Element Theory

The basis for finite element analysis is the principle of minimum
potential energy which states that, for a given state of displace-
ments and strains, the equilibrium conditions are satisfied when
the total potential energy associated with that state is a mini-
mum. A plane structure to be analyzed is considered to be
divided into an assemblage of finite elements (triangles) con-
nected at nodes (corners). Using the notation of Oden [15],
the total potential energy V for one finite element triangle with
zero body forces is

V= f Wdvy — fSauads a=12 (A-1)
vo s

where v, = volume of undeformed element and S, = components
of surface traction per unit of deformed surface area, s.

Assuming that the displacement field u, may be approximated
by a linear function in each triangular element yields

Ua = (ky + Cayzs)iye N=123af=12 (A2

where ky, Cgy = constants dependent on the undeformed area
and initial nodal coordinates and uy, are the nodal displacements
for each triangle.

' In terms of nodal displacements the strains become constant
In each finite element and are given by

Yag = Captyg + Coytiya + CanCoutiyyibyy

NM =128
o B,y=12
204 = 0 (A-4)
2e = N — 1 (A-5)
The total potential energy is
V = wW — Pyaliya (A-6)

Where Pyo = generalized nodal forces (corresponding to wuy,)
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Pyo = f;S‘,x(kN + Cayaglds (A-7)
s

For incompressible materials ¥ is to be minimized subject to the
constraint

J—1=]0;+2)—-1=0  4j=1,273 (A8

Multiplying the above constraint by a Lagrange multiplier v,
and adding the result to V yields a functional V*

V* = 0W — Pyotiya + vh(J — 1) (A-9)
which will be a minimum when

ov*

UN o

v+ =

Oy = 0 (A-10)

Equations (A-6) and (A-10) imply that

bo) oJ
Pyo = n W -+ A (A-11)
ye AUy w

The foregoing represents the equilibrium requirements for a
single finite element. The incompressibility constraint (A-8)
implies that the initial volume v, and the final volume v of the
finite element are equal, i.e.,

v — v = la(uya) — loto = 0 (A-12)

where ao and @ are the initial and final areas of the triangle, re-
spectively. Now

A= (A-13)

and

209 = (.’Cnxm + T + .’b‘aﬂ'm) - (2721$12 + awe 1+ 3«'112332)
(A-14)

20(uye) = (Yuye + vays + yaye) — Wae + Yaye + ynys)
(A-15)

where Yya = Tya + Uya and Ty, = the initial nodal coordi-
nates. Hence with the above (A-12) is of the form

a(uya) — % = 0 (A-16)

DISCUSSION
R. N. Vaishnav®

The authors of this paper have solved the problem of evaluat-
ing the distribution of tangential and radial stresses in an artery
treated as a thick-walled pressurized circular cylinder con-
strained to a fixed length. The arterial wall has been considered
to be composed of an incompressible, orthotropic, nonlinearly
elastic material.

The authors show that the actual distribution of the tangential
stress is far from being uniform and that even the Lamé solu-
tion (valid for isotropic, linearly elastic case) severely underes-
timates its maximum value. This conclusion is valid and stems
from the facts that the wall material becomes increasingly stiffer
with strain and the strain increases as one progresses from the
outer to the inner surface. This important fact should be borne
in mind when calculating stresses using a theory based on as-
suming the wall as thin. However, we may note that the cor-

3 Professor of Mechanics, The Catholic University of America,
‘Washington, D.C.
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responding error in the constitutive constants is not large; the
exponent k in equation (26) is unaffected and the coefficient A
is affected only slightly as seen in Fig. 3 by comparing the
solid curves with the dashed ones. This is so because of the
integration in equation (20) through which the stresses affect
the constitutive parameters.

Finally, attention should be drawn to the fact that, whereas
equations (1) and (7) are correct starting points, equation (26)
is valid only for a given longitudinal extension. A complete
characterization of the wall material would involve postulation
and experimental validation of a constitutive relation involving
both the circumferential and longitudinal extension ratios as
variables. We have developed such a constitutive relation

4 Young, John T., “Determination of Constitutive Constants of
Canine Aorta Under Large Deformations,” Master's thesis, The
Catholic University of Ameriea, Apr. 1970,
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which was published as a Master's thesis? and will be detailoq
in a forthcoming publication.®
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should be noted that both the coefficient 4 and the exponent j
in equation (26) were adjusted in determining the mechanjeg]
response for other aortas tested and for-data reported in refep.
ences [12 and 14]. The thick-walled pressure-radius respongg
and tangential stress distribution show considerable deviatigng
from the corresponding thin-walled tube results. These resultg
will appear in a future publication.
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