As in earlier volumes of the Journal, we still find that most of the articles in volume 8 would be more likely to interest the biologist than the epidemiologist. Of the 53 papers published in 1928 (not including a large supplement on hookworm disease), 18 were devoted to protozoa. Trichomonads were the subject of six of these papers, a notable increase over earlier volumes. Many papers were long, with detailed tables and illustrations, with an average length of the papers of 19.4 pages. In this respect, as well as in topics covered, times have changed. For the first half of 1998, volume 147 contained 151 articles, with an average length of 7.5 pages. Only one of the papers dealt with protozoa. In this instance, it was Cryptosporidia in drinking water (1).

Of the papers in volume 8 that seem of interest to modern epidemiologists, particularly those with a historical bent, three dealt with acute communicable diseases. James A. Doull, who later became one of the world’s experts on leprosy, noted that diphtheria and scarlet fever cases and deaths occurred at earlier ages in Alabama than in Kansas or New York (2). This was not true for measles or whooping cough. Scattered findings from the rest of the world were consistent with Doull’s observation. Although he was unable to come up with a satisfactory explanation for his findings, he still felt that they had a bearing on public health policy. For diphtheria, “active immunization, to be equally effective must be given earlier in the south” (2, p. 646).

W. Thurber Fales was also interested in the age distribution of the common acute communicable diseases (3). His data on this poorly documented point had to be restricted to five northern states for which he could obtain reasonable divisions of the population into urban and rural areas and age-specific reports of chicken pox, diphtheria, measles, scarlet fever, and whooping cough. In all instances for which data were available, the mean age at onset was higher in rural than in urban areas.

Although the paper by W. Lloyd Aycock (4) dealt with measles, diphtheria, and poliomyelitis, he was primarily interested in poliomyelitis, a disease to whose epidemiology he made major contributions. His conclusions are best set forth in his own words:

In measles it is clear that its age distribution is determined by immunity from an attack of the disease, while the age distribution of diphtheria is largely determined by subclinical immunity. The similarity of the age distribution of poliomyelitis to that of measles and diphtheria is, therefore, taken as evidence that immunity, largely subclinical, is likewise responsible for its age distribution. On this basis, the idea is set forth that the virus of poliomyelitis attains a distribution equal to that of measles and diphtheria, in the course of which the majority of persons become immunized either subclinically or through unrecognized attacks of the disease (4, p. 54).

Anna M. Baetjer, one of the pioneers in occupational health, showed her early interest in this field in her paper with Linda Lange (5). The textile industry was known to have a high incidence of tuberculosis among its workers. High temperature and humidity in these factories were suspected as possible risk factors for tuberculosis. Baetjer and Lange tested this hypothesis in guinea pigs. There was no evidence that temperature and humidity typical of textile mills had any effect on the development or progression of tuberculosis in guinea pigs.

While current interest in fish is focused on their lipids, investigators 70 years ago wanted to know the adequacy of various proteins. Kik, a doctoral candidate, and his mentor, McCollum, tested the adequacy of fish proteins in rats (6). They chose haddock and herring because these fish were in common use at that time. They concluded that “haddock and herring protein at 9 and 15 per cent levels in diets which are otherwise adequate are of sufficiently good quality to promote growth and well-being of the rat over an extended period” (6, p. 681). These fish proteins were good supplements to cereal proteins but added little to the proteins of legumes.

A reminder that the “good old days” were more old than good comes from Shrader et al. (7) of the Baltimore Health Department, Baltimore, Maryland.
Powdered milk was a major component of ice cream. Because increasing attention was being paid to the bacteriologic quality of ice cream, it was only natural that one of its major components, powdered milk, would also come under scrutiny. Among 100 samples of powdered milk from widely scattered geographic areas, it was found that many were produced from milk with very high bacterial counts, that many of the powdered samples were also excessively high in bacteria, and that handling of the product during manufacture and distribution was often unsanitary. The only good news was that no sample showed evidence of living tubercle bacilli.

Because of a major typhoid epidemic in 1924–1925 caused by contaminated oysters, an investigation into the bacteriologic status of oysters was conducted in Maryland (8). It was found that surface water quality was poorly correlated with the quality of water close to the bottom, that there was poor correlation between water quality and bacteriologic content of packed oysters, and that lack of cleanliness at the packing plants and poor refrigeration during shipping were responsible for much of the bacterial contamination of shucked oysters. It was concluded that “there is apparently no reason why oysters cannot be packed in such a way as to give results just as satisfactory as those obtained in an efficient dairy for the production of certified milk” (8, p. 721). Not a great deal of reassurance, knowing the problems with certified, but unpasteurized, milk!

Another paper that, like its two predecessors, would certainly be deemed unsuitable for publication in the Journal these days is “Arch Mechanics of the Normal Adult Foot” (9) by Halbert L. Dunn, a former Chief of the National Office of Vital Statistics, US Public Health Service. In the days when armies moved largely by marching, flat feet were major barriers to enlistment and cause for considerable complaint thereafter. Dunn’s study of 545 university students training as Army Reserve officers led him to believe that arch height, longitudinal or transverse, was “essentially a nonentity in the[ir] functioning” (9, p. 445) and that reliance on this measurement was “a poor basis for the rejection of army recruits” (9, p. 446).

REFERENCES