Global heat flow simulation based on a kinematic model of mantle flow

Zheng-Ren Ye and Jian Wang

Institute of Geology & Geophysics, Chinese Academy of Sciences, Beijing 100101, China. E-mail: zrye@mail.c-geos.ac.cn

SUMMARY

The global heat flow is the surface representation of thermal processes within the earth's mantle. The long-wavelength pattern of observed heat flow closely resembles the plate tectonics and its most prominent feature is higher values along ocean ridge systems. Theoretically, to determine the thermal state of the Earth's mantle, the heat transfer problem and the mantle convection problem have to be solved simultaneously since they are coupled with each other. However, the development of global seismic tomography provides us with a possibility that, at least under certain assumptions, these problems can be decoupled from each other and solved separately. This allows us to calculate mantle flow velocities first based on the internal loading theory and then use the velocity field as the input to solve the thermal problem. In addition to the internal density anomalies, surface plate movements also excite mantle circulations and, under certain circumstance, they may dominate the structure of the mantle flow.

In this study, using a kinematic model of mantle convection and heat transfer, we investigated the underlying processes that generated the observed global heat flow. Buoyancy from the density anomalies and the coupling from the overlying plates are treated as the mantle flow driving force. Both advection and conduction heat transfers are included in the energy equation. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around mid-ocean ridge systems can be reproduced very well. The predicted average temperature as a function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core–mantle boundary. The rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.

Key words: density anomaly, heat flow, mantle flow, plate motion, tomography.

1 INTRODUCTION

The global heat flow is of significance because it provides an important constraint that any dynamic model of the Earth must accommodate. With increasing observations, we now have a relatively accurate understanding on its regional variations. One of the most prominent features of the global heat flow is the higher value along the ocean ridge systems that closely resemble the global plate tectonics (Pollack et al. 1993; Sclater et al. 1980; Chapman & Pollack 1975; Deelinger 1992). Variations in heat flow (as well as sea-floor depth) versus the distance away from mid-ocean ridges can be explained within the framework of plate tectonics. Both the plate-moving model and the half-space cooling model (Parson & Sclater 1977; Davis & Lister 1974) well explain the relationship between the variation in heat flow and the ocean floor age. These theories predicted that heat flows decrease with age$^{-1/2}$ when away from ridge crests (Stein & Stein 1992). However, all these works were based on 1-D analyses.

Recently, Pari & Peltier (1998) gave an explanation of the global heat flow pattern in terms of tomography-based mantle flow, in which they assumed that the heat flow is linearly related to the radial component of flow velocity in the uppermost mantle.

In this paper, we are aiming to model the global surface heat flow. Instead of using a 1-D heat transfer model or assuming a simple relationship between the mantle flow velocity and the heat flow, we try to simulate the global heat flow distribution by formally solving the energy equation and calculate the temperature field. Theoretically, the convection pattern and temperature field of the earth's mantle should be determined by simultaneously solving the coupled momentum equation and energy equation. However, the new
results from global seismic tomography provide us with the information on 3-D seismic velocity anomalies in the mantle. Based on this information and under certain approximations, mantle flow and temperature field can be solved separately. Following this approach, the moment equation is solved first. Density anomalies derived from seismic tomography are treated as sources of the buoyancy exciting the mantle flow. Mantle flow velocities can then be obtained based on the internal loading theories (Hager 1984; Richards & Hager 1984; Ricard & Vigny 1998; Forte & Peltier 1991; Ye et al. 1996). In addition to the internal density anomalies, surface plate movements can also drive the mantle circulation. Sometimes, they will even dominate part of the flow structure in the mantle (Zhong et al. 2000). After mantle flow velocities are obtained, they can be used in the energy equation for solving the global temperature distribution and surface heat flow (Pari & Peltier 1998; Ye & An 1999). All these processes, mantle flow, heat transfer and surface heat flow, are examined in a 3-D spherical geometry frame.

2 3-D MODEL OF MANTLE TEMPERATURE

The mantle is assumed to have an infinite Prandtl number Pr (Pr = υ/k, where υ is the kinematic viscosity and k is the thermal diffusivity); behaving as an incompressible Newtonian fluid; and having a radial symmetric shell viscosity structure. Because of the infinite Pr number, the inertial term in the momentum equation is negligible. Equations governing the mantle flow reduce to

\[\nabla \cdot \mathbf{v} = 0 \]
\[\nabla \cdot \mathbf{T} + \delta \rho g = 0 \]
\[\mathbf{T} = -p + 2 \mu \mathbf{r} \]

where \(\mathbf{v} \) is the velocity, \(\mathbf{T} \) is the stress tensor, \(\delta \rho \) is the density anomaly, \(g \) is the gravitational acceleration, \(p \) is the pressure, \(\mu \) is the viscosity and \(\mathbf{r} \) is the strain tensor. Several approaches have been proposed to solve these equations within a spherical frame (Buck 1968; Hager & O’connell 1978; Richards & Hager 1984; Forte & Peltier 1987). The basic technique is to convert partial differential equations into a set of radial-dependent first-order ordinary differential equations by introducing velocity-stress vectors and spherical harmonic expansions. Then solve the two-point boundary value problems of resulted ODEs. Here, we just write down these ODEs as our working equations:

\[\frac{dX_1^m}{dr} = A_1 X_1^m + D_1^m \]
\[\frac{dX_2^m}{dr} = B_2 X_2^m \]

where \(X_1^m \) and \(X_2^m \) are 4 x 4 spherical harmonics and its radial-dependent is expanded using a set of trigonometric functions, which automatically satisfy the boundary conditions.

After mantle flow velocities excited by density anomalies and plate movements were obtained, we want to estimate their influence on the temperature distribution. Theoretically, whether or not the material flux significantly disturbs the initial temperature distribution depends on the non-dimensional number Pe (Tritton 1977). The Peclet number Pe is defined as \(\text{Pe} = UL/k \), where \(U \) and \(L \) are scales of the velocity and the length of the system and \(k \) is the thermal diffusivity. The Peclet number can be interpreted as a measure of the relative importance of the heat advection and conduction. For the mantle dynamic system, the thermal diffusivity \(k \) is in the order of \(10^{-5} \text{ m}^2 \text{ s}^{-1} \). Taking the typical plate motion velocity and the depth of the core–mantle boundary as velocity and length scales, we have an estimation of several thousands for the Peclet number, a value large enough to significantly influence the initial conductive temperature field in the mantle and hence the heat flow distribution pattern at the surface of the Earth. The non-dimensional energy equation describing temperature field is

\[\frac{\partial \theta}{\partial t} + \mathbf{v} \cdot \nabla (\theta + \theta_c) = \nabla^2 \theta. \quad (3) \]

Here the first term on the left hand side of eq. (3) is the time variation of the temperature, the second term is advection heat transfer and the right hand side is the conductive heat transfer. Due to a high Peclet number, advection heat transfer is dominant in most of the mantle. However, the conductive term may still be locally important. For example, in boundary layers near the surface and core–mantle boundary, velocities are nearly perpendicular to temperature gradients and the advection heat transfer is inefficient. These regions are particularly important to problems such as surface heat flows and the thermal history of cooling oceanic plates, etc. For this reason, we keep both advection and conduction terms, together with the time variation term, in our energy equation.

To solve the energy equation, the temperature is divided into two parts. \(\theta_c \) is the temperature distribution under a purely conductive state, satisfying the 1-D homogeneous Laplace equation and can be obtained under the boundary conditions of \(\theta_c = 0 \) at the Earth’s surface and \(\theta_c = 1 \) at the core–mantle boundary. The process yields \(\theta_c(r) = r/r_c \), where the modifiers \(c \) and \(s \) denote non-dimensional radius at the core–mantle boundary and the surface, respectively. \(\theta \) is the temperature deviation from the conductive state. The non-dimensional scales used for length, time, velocity and temperature are \(d, d^2/k, k/d, \text{ and } \Delta T \), where \(d \) is the depth of the core–mantle boundary, \(k \) is the thermal diffusivity and \(\Delta T \) is the temperature difference between the surface and the core–mantle boundary. The non-dimensional boundary conditions for \(\theta \) are \(\theta = 0 \) at both the surface and the core–mantle boundary.

We use the spherical harmonic expansion and the Galerkin method (Zebib et al. 1980) to find out the solution of eq. (3) under the boundary conditions mentioned above. The longitudinal and latitudinal dependents of the temperature field are expanded using spherical harmonics and its radial-dependent is expanded using a set of trigonometric functions, which automatically satisfy the boundary conditions.

\[\theta(t, r, \lambda, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sum_{j=1}^{\infty} \Theta_j \Theta_j(t) Y_{lm}(\lambda, \phi) C_j \]

where \(C_j = \sqrt{2} \sin[j \pi (r - r_c)] \), Substituting (4) into the temperature eq. (3), multiplying it by \(C_j = \sqrt{2} \sin[j \pi (r - r_c)] \) and integrating from \(r_c \) to \(r \), the procedure eventually leads to a set of initial value problems for expansion coefficients \(\Theta_j(t) \)

© 2002 RAS, GJI, 148, 329–335
\[
\frac{d\Theta_{\text{lm}}}{dt} = \sum_{j=1}^{\infty} \alpha_{ljk} \Theta_{jlm} - \sum_{j=1}^{\infty} \sum_{l_1=0}^{\infty} \sum_{m_2=-l_2}^{l_2} F(k, l, m, j_1, l_2, m_2) \Theta_{j_1l_2m_2} + \beta_{\text{lm}}
\]

where

\[
\alpha_{ljk} = \int_{r_e}^{r_*} C_J D_l C_k \, dr, \quad D_l = \frac{d}{dr} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2}
\]

\[
\beta_{\text{lm}} = \int_{r_e}^{r_*} \left(\frac{r e}{r - r_c} \right) \frac{U^{\text{lm}}(r)}{r} C_k \, dr
\]

\[
F(k, l, m, j_1, l_2, m_2) = \frac{1}{4\pi} \sum_{l_1=0}^{\infty} \sum_{m_1=-l_1}^{l_1} \left[p_1 \int_{r_e}^{r_*} U^{l_1m_1}(r) C_l C_k r \, dr + p_2 \int_{r_e}^{r_*} V^{l_1m_1}(r) \frac{C_l}{r} \, dr + p_3 \right]
\]

\[
p_1 = \int_{\Omega} Y_{l_1m_1} Y_{l_2m_2} Y_m^{l_1} d\Omega
\]

\[
p_2 = \int_{\Omega} \left(Y_{l_1m_1} Y_{l_2m_2} - Y_{l_1m_2} Y_{l_2m_1} \right) Y_m^{l_1} d\Omega
\]

\[
p_3 = \int_{\Omega} \left(Y_{l_1m_1} Y_{l_2m_2} + Y_{l_1m_2} Y_{l_2m_1} \right) Y_m^{l_1} d\Omega
\]

where \(Y_m^{l_1} \) is fully-normalized surface harmonics of degree \(l_1 \) and order \(m \).

\[
U^{l_1}, V^{l_1}, W^{l_1} \text{ are components in velocity-stress vectors, respectively. Noting that in eq. (5) modes } \Theta_{jlm} \text{ are coupled with each other, which results from the contribution of the advective heat transport. Since the above summations go to infinity, we have no obvious way to solve these equations. However, if we truncate the summations up to } l_{\max} \text{ and } j_{\max}, \text{ we will have a finite number of linear ordinary differential equations that can be numerically integrated with arbitrary values of } \Theta_{jlm}. \text{ For different initial values, numerical tests reveal that a steady state can be reached after a relatively short time interval.}

3 Results

There are two factors affecting the mantle flow structure. One is the depth dependence of the mantle viscosity; another is the proportional factor between density anomaly and seismic velocity anomaly in the mantle. To investigate the sensitivity of mantle viscosity, four viscosity models are used in our numerical calculations. These viscosity models are shown in Fig. 1(a). Model 1 has a constant viscosity of \(10^{21} \) Pa s throughout the mantle. Model 2, which is adopted from Richards & Hager (1984), has a high viscosity lower mantle that is 30 times higher than that of the upper mantle. Model 3 differs from Model 2 in that there is a lower viscosity layer (0.032 \(\times 10^{21} \) Pa s) between depths 100 and 400 km. Model 4 is same as model 3 except that the viscosity in the uppermost 100 km is \(10^{22} \) Pa s.

The relationship between density anomalies and seismic velocity anomalies shows complexity since in different regions, e.g. deep continental roots, subducted lithosphere and the D\(^\text{'}\) layer, chemical heterogeneities may play different roles. Some results were derived in recent years (Ricard et al. 1989; Forte et al. 1994; Karoto 1993; Pari & Peltier 1995). In this work, we use a depth dependent proportional factor to link the density and the S-wave velocity (\(d \ln \rho / d \ln v_s \)), used in the study. After Pari & Peltier (1995).

Based on a large number of heat flow data, Pollack et al. (1993) worked out a spherical harmonic representation of the global heat flow simulation...
Fig. 2. Comparison between observed global heat flow and predicted depth derivatives of near surface non-dimensional temperature. Both of them are summed up to degree and order 12. (a) is the observed global heat flow in mw m\(^{-2}\) which has been modified by the stripping of continental crustal radioactivity according to Pari & Peltier (1998). (b) is predicted depth derivatives of near surface non-dimensional temperature for viscosity Model 2. Both density anomaly-driven and plate-driven mantle flows are considered.

In their model, contributions from the crustal radioactivity and the associated fraction of primarily continental heat flux were not taken into account. Pari & Peltier (1998) introduced a 'continental function' to correct the original observations. A 0 to 12 the degree representation of the modified heat flow is presented in Fig. 2(a) on which plate boundaries are also superimposed. The higher heat flow values around the mid-ocean ridge system, especially near the East Pacific Rise and the East Indian Ridge are clearly shown in this figure.

The depth derivatives of the near surface non-dimensional temperature (i.e., the radial components of the near surface temperature gradients), which are proportional to the surface heat flows, are simulated for four different viscosity models using the method provided in Section 2. Depth derivatives of near surface temperatures (summed up to degree 12) for viscosity Model 2 are shown in Fig. 3. Degree correlations between the observed surface heat flow and predicted near surface temperature gradients for four viscosity models.

Fig. 2(b). From the figure it can be seen that predicted heat flows match the observations (Fig. 2a) very well. The areas around the East Pacific Rise and the Indian Ridge show much higher temperature gradients than the rest of the world. The relatively higher values of the heat flow around the Mid-Atlantic Ridge are also reflected in the simulation. The locations of the higher temperature gradients calculated are migrated slightly from observed maximum heat flows in three oceanic ridges (Figs 2a and b). There are also some mismatches in subduction zones in West Pacific Ocean. These errors may result from the fact that the current calculation is based on a kinematic model and the loading systems (both density anomalies and plate motions) are time invariant.

Degree correlations between calculated depth derivatives of near surface temperature and observed heat flows for four viscosity models are shown in Fig. 3. The degree correlation \(\gamma(l)\) for functions \(F(\lambda, \phi)\) and \(G(\lambda, \phi)\) on a spherical surface is defined as

\[
\gamma(l) = \frac{\sum_{m=-l}^{l} F_{lm} G_{lm}^{*}}{\left(\sum_{m=-l}^{l} F_{lm} F_{lm}^{*}\right) \left(\sum_{m=-l}^{l} G_{lm} G_{lm}^{*}\right)}
\]

where, \(F_{lm}\) and \(G_{lm}\) are spherical harmonic coefficients, \(l\) and \(m\) are degree and order numbers of \(F\) and \(G\). By examining Fig. 3 we can see that correlations between the observed heat flow and the predicted surface temperature gradients for degrees 1–5 and for all four viscosity models are good. Fig. 4 shows variances of observed heat flows and calculated surface temperature gradients versus degree numbers for viscosity model 2. These variances are normalized according to the RMS value of the degree 1 variance that has been set to unity. Observations and predictions show similar decaying slopes with the increasing of degree numbers.

Included in Fig. 5 is the spherically averaged non-dimensional temperature (total temperature \(\theta + \theta_e\) versus depth for viscosity Model 2. The adiabatic temperature variation is not included. Thermal boundary layers with rapid temperature variations near the Earth's surface and the core–mantle boundary are clearly seen. Within about 150 km of the top of the mantle, the mean temperature quickly rises from its surface value to an isothermal state and keeps that until it reaches the bottom of the lower mantle where, again, it increases rapidly to the core–mantle boundary temperature. These features are consistent with our knowledge of the thermal structures within the lithosphere and the D' layer. Fig. 6 shows the average depth derivative of temperature versus the depth. The temperature...
1.0

Average Temperature grad.

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-10 -5 0 5 10 15 20 25 30

Average Temperature grad.

Figure 6. Spherically averaged depth derivative of the non-dimensional temperature as a function of depth.

4 CONCLUSIONS AND DISCUSSION

Global heat flow is an important observation associated with the thermal and dynamical processes in the earth's mantle. In this study, we investigated the origin of the global heat flow pattern based on a kinematic mantle flow model. The mantle flow is driven by internal density anomalies and surface plate motions. Results show that the observed global heat flow can be explained well using such a model. Various characteristics including the higher heat flow values around mid-ocean ridge systems can be properly recovered. The predicted and observed surface heat flows show similar power decays versus spherical harmonic degrees. In addition to the lateral characteristics, the radial variation of the mantle temperature field is also an important indicator. The laterally averaged temperature versus depth

Figure 4. Degree variances for the observed heat flow (Δ) and the predicted surface temperature gradient (O). Curves have been normalized to have a unity RMS amplitude at degree 1. Both plate-motion and density-anomaly driven mechanisms are considered.

Figure 5. Spherically averaged non-dimensional temperature as a function of depth.

gradient reaches its maximum value at the Earth's surface and the core–mantle boundary, and vanishes in the near isothermal mantle.

Figs 5 and 6 suggest that the initial conductive state of the temperature field has been changed significantly due to the convective heat transfer in the mantle. Both internal density anomalies and surface
Our work is based on a whole mantle flow model and a radial symmetric viscosity structure. Layered mantle flow and lateral variations of the viscosity as well as their effects on the mantle thermal structure will be left for the future work. In our model we did not consider the internal heat source in the mantle. The main reason is that at present we do not have a realistic description of mantle heat source. The contribution from the crustal radioactivity and the associated continental heat flux has been corrected roughly by introducing a ‘continental function’ (Pari & Peltier 1998). It is necessary to point out that our model is a kinematic rather than a dynamic model. The velocity and temperature fields in the mantle, which are coupled with each other, were solved separately. The plate motions were imposed as a surface load which actually are part of the convection. Han & Gurnis (1999) conducted extensive numerical tests of both dynamic and kinematic models. Their results suggested that, with properly chosen parameters, a kinematic model could reasonably recover many useful features of a fully dynamic model. In the future, numerical calculations of 3-D convection with variable viscosity (Christensen & Hager 1991; Zhang & Yuen 1995; Zhong et al. 2000) will undoubtedly deepen our understanding of the thermal structure and plate-like surface motion.

ACKNOWLEDGMENTS

We would like to thank G. Pari for providing us the modified harmonic coefficients of global heat flow. The authors thank reviewers for thoughtful reviews leading to an improved paper. We wish to thank Xiao-bi Xie for his great help to refine the manuscript. The work was supported by the National Science Foundation of China (No. 49974022) and Chinese Academy of Sciences (No. k2x2-112).

REFERENCES

Global heat flow simulation

© 2002 RAS, GJI, 148, 329–335