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Credible Confidence: A Pragmatic View on the 
Frequentist vs Bayesian Debate
Casper J. Albers, Henk A. L. Kiers and Don van Ravenzwaaij

The debate between Bayesians and frequentist statisticians has been going on for decades. Whilst 
there are fundamental theoretical and philosophical differences between both schools of thought, we 
argue that in two most common situations the practical differences are negligible when off-the-shelf 
Bayesian analysis (i.e., using ‘objective’ priors) is used. We emphasize this reasoning by focusing on interval 
estimates: confidence intervals and credible intervals. We show that this is the case for the most common 
empirical situations in the social sciences, the estimation of a proportion of a binomial distribution and 
the estimation of the mean of a unimodal distribution. Numerical differences between both approaches 
are small, sometimes even smaller than those between two competing frequentist or two competing 
Bayesian approaches. We outline the ramifications of this for scientific practice.
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The exchange of arguments between frequentist statisticians 
and Bayesian statisticians goes back many decades. 
Frequentists rely on the work of classical statisticians such as 
Fisher, Pearson and Neyman, and apply the lines of thought 
of these scholars in estimation and inference, most notably 
in their approach to null hypothesis significance testing 
(NHST) and the construction of confidence intervals. On the 
other hand, Bayesians rely on Bayes’ paradigm on conditional 
probability and adjust (subjective) a priori thoughts about 
the truth – formalized by a probability distribution – into a 
posteriori statements after observing data.

For many years, the Bayesian approach had two 
practical disadvantages: (i) many types of models needed 
a vast amount of computing time, e.g. for estimation 
through Markov Chain Monte Carlo methods (see, e.g. 
van Ravenzwaaij, Cassey, & Brown, 2018 for an introduction 
for psychologists). With the rise of faster computers, this 
disadvantage has diminished. (ii) Statistical software 
for researchers within the social sciences, most notably 
SPSS, as well as teaching of statistical methods relied 
exclusively on frequentist methods. Nowadays, alternative 
software with support for Bayesian statistics, most notably 
R (R Core Team, 2018) and JASP (JASP Team, 2018), are 
becoming widespread and efforts to teach Bayesian 
reasoning to social scientists are blossoming (cf. Etz, 
Gronau, Dablander, Edelsbrunner, & Baribault, 2017; Etz 
& Vandekerckhove, 2018). As a consequence, the Bayesian 
approach is quickly gaining in popularity.

The frequentist and Bayesian approaches have 
fundamental philosophical differences as to how to 
describe Nature in the form of probability statements. It 
is obviously important to discuss these differences and the 
consequences of the choices that both sides make, and this 
has been done extensively in the (mathematical) statistical 
literature (cf. Bayarri & Berger, 2004; Pratt, 1965; Rubin, 
1984). It is important to have a good, healthy debate 
between both schools. In general, the criticism of Bayesian 
methods is that there is too much room for subjectivity 
(or sometimes not enough, cf. Gelman, 2008), whereas the 
criticism to frequentist methods is that they are prone to 
misinterpretation (Bakan, 1966; Cohen, 1994; Goodman, 
2008; Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 
2016; Oakes, 1986; Schervish, 1996) and provide answers 
to unasked questions (Wagenmakers, Lee, Lodewyckx, & 
Iverson, 2008).

However, too often in our view, the debate is harsh, 
with Bayesians claiming that all frequentist methods are 
useless, or vice versa. This style of debating is not new. For 
instance, over four decades ago Lindley already stated that 
“the only good statistics is Bayesian statistics” (Lindley, 
1975). In recent years, the debate has re-gained popularity 
due to the increased interest in Bayesian methods in social 
science research. Furthermore, social media introduced 
this debate to people previously unaware of this debate. 
This heated debate has led many non-statisticians to 
the impression that at least one of the approaches – or, 
possibly even both approaches – simply must be wrong. 
An extreme example is that the journal Basic and Applied 
Social Psychology recently banned frequentist analyses 
altogether, including reporting of p-values, statements 
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including the word ‘significant’, etc. (Trafimow & Marks, 
2015).

At the core, frequentist and Bayesian approaches have 
the same goal: proper statistical inference. Philosophical 
differences in how best to conduct such inference seem 
less important than the merits of what both approaches 
have in common. As we will show in this paper, in 
practice the overlap in uncertainty intervals produced 
for parameter estimates by both schools is often very 
large.

Occasionally, the Bayesian and frequentist approach 
yield substantially different inferences. Usually this occurs 
when the sample size is very small (see Morey et al. (2016, 
example 1) and Jaynes and Kempthorne (1976, examples 5 
& 6)). It can happen that both approaches yield substantially 
different outcomes for larger samples, but so far this has 
only been demonstrated for special ‘constructed’ examples 
where, e.g. the space of the outcome variable of interest is 
highly bi-modal or non-continuous.

Previous work has examined the relationship between 
the frequentist p-value and the Bayesian Bayes factor, both 
in theory (Benjamin et al., 2017; Johnson, 2005; Marsman 
& Wagenmakers, 2017) and in practice (Aczel, Palfi, & 
Szaszi, 2017; Wetzels et al., 2011). In this paper, we examine 
the similarities between frequentist confidence intervals 
and Bayesian credible intervals in practice. We will show 
that in most common cases, the frequentist confidence 
intervals and Bayesian credible intervals lead to very 
similar conclusions. By recognizing the near-equivalence 
between Bayesian and frequentist estimation intervals 
in ‘regular cases’, one can benefit from both worlds by 
incorporating both types of analysis in their study, which 
will lead to additional insights. We wish to stress that 
our line of reasoning is not new. For instance, the paper 
by Bayarri and Berger (2004) starts with “Statisticians 
should readily use both Bayesian and frequentist 
ideas. […] The situations we discuss are situations in 
which it is simply extremely useful for Bayesians to use 
frequentist methodology or frequentists to use Bayesian 
methodology”. We feel, however, that recent work has 
stressed differences more than similarities. This paper 
aims to provide some perspective in this debate.

We shall motivate our opinion on the basis of a series 
of typical examples from social research. The structure 
of the paper is as follows. In the next section, we discuss 
estimation of the population mean in the form of interval 
estimates. In the section thereafter, we outline, through 
simulation techniques, the consequences when we are 
moving away from the ‘regular situation’ of normally 
distributed values around a group mean. We end with a 
discussion including practical recommendations.

Interval estimation of the population 
proportion
Suppose the interest lies in estimating the proportion 
of a given population that holds a specific property. This 
is a very general research question, applicable to many 
areas: the proportion of diabetes patients that respond 
positively to a certain treatment method, the proportion 

of voters expected to vote for a certain political party, the 
proportion of students passing an exam, etc.

To express the statistical uncertainty about the 
population proportion, a point estimate alone is not 
sufficient and an estimate in the form of an interval is 
preferred. Frequentists call such an interval a confidence 
interval, Bayesians call it a credible interval. These two 
types of intervals are, from a theoretical/philosophical 
point of view, fundamentally different. From a practical 
point of view, however, both intervals share a common 
feature: the interval is preferred over the point estimate to 
express uncertainty. Suppose one estimates a population 
proportion θ with the interval (.42, .78). This clearly 
provides different information about the population 
proportion than the interval (.59, .61), even though 
in both cases the interval is symmetrical around .60. 
Furthermore, when a certain value, say .50, is far from the 
interval, this gives the applied researcher confidence in 
believing that the unknown true value is unequal to .50: 
with the interval (.42, .78) one is not keen on rejecting 
the possibility that θ  = .50, whereas with the interval 
(.59, .61) one can be much more confident about rejecting 
θ = .50. For this intuitive interpretation, it does not matter 
whether the interval is constructed using frequentist or 
Bayesian methods.

There are different frequentist and Bayesian approaches 
to generating such intervals, all based on a random 
sample of n objects, of which it is recorded that m objects 
hold the property of interest. These models differ in 
the mathematical way they are constructed, yet all are 
sensible approaches to estimating a proportion. Below, 
we outline three common frequentist approaches and two 
common Bayesian approaches. For sake of simplicity, we 
set the confidence/credible level at a fixed value of 95%. 
Furthermore, we assume that the population size is much 
larger than the sample size, such that we do not need to 
worry about finite population corrections.

Approach F1: Plus four method
When n, np and n(1–p) are all not ‘too small’, an 
approximate confidence interval is directly obtained from 
the normal approximation Bin(n, p) ≈ N(np, np(1–p)) due 
to the Central Limit Theorem. This gives the interval

   ( )1
1.96 ,ˆ1ˆ ˆp p p

n
± −  (1)

where p̂ = m/n is the observed proportion in the sample 
and 1.96 is the percentile of the standard normal 
distribution corresponding to the 95% level.

This asymptotic approach can be improved upon 
through the so-called plus-four method (Agresti & Coull, 
1998). In this method, the estimate p̂ in (1) is replaced, 
on all three instances, by p̃ = (m + z)/(n +2z), where 
z = 1.96. Roughly, this method adds two successes and 
two failures to the sample, hence the name plus-four 
method. For large samples this change has little effect: the 
difference between p̃ and p̂ is relatively small. For smaller 
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samples Agresti and Coull have shown that their method 
constitutes an improvement.

Approach F2: Exact confidence interval
Approach F1 is asymptotic and – even with the “plus 
four”-correction outlined – does not necessarily work 
well for small samples. However, it is frequently used, 
mainly because of its simplicity and the lack of alternative 
methods available in common software packages. Blyth 
(1986) discusses a method for computing the exact 
confidence interval, after Clopper & Pearson (1934):

( )

11
1

1 , 1
1

n m n m
mA m B
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with A = F0.025; 2m, 2(n – m + 1) and B = F0.975; 2(m + 1), 2(n – m) being 
percentiles from F-distributions.

Approach F3: through arc sine transformation
This approach is based on the approximation (cf., Shao, 
1998) that

( )1 1
var sin

4
p

n
− ≈

which, after some derivations, leads to the interval
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One of the instances where this approach is used is in the 
computation of Cohen’s h.

Approach B1: uniform prior
Bayesian approaches are specified through their prior 
distribution. The beta-distribution is a so-called conjugate 
prior of the Binomial distribution, which means that the 
posterior distribution is also Beta. In general, when using 
a Beta(a, b) distribution as prior, the posterior is given 
by the Beta(a + m, b + n – m) distribution. By taking the 
2.5% and 97.5% percentile points of this distribution, one 
achieves the 95% credible interval.

Approach B1 is based on the prior assertion that all 
values for p between 0 and 1 are equally likely. This is 
achieved by using the uniform(0,1) distribution, which is 
identical to the Beta(1, 1) distribution, as prior. This results 
in a Beta(1 + m, 1 + n – m + 1) as posterior.

Approach B2: Jeffreys prior
Jeffreys prior is a so-called non-informative prior (which 
means it is invariant under reparametrizations of the 
problem space), which is a desirable property of a prior. 
The Jeffreys prior for the current setting is the Beta(½, ½) 
distribution, yielding the Beta(½ + m, ½ + n – m) posterior.

Comparison
Table 1 lists the intervals obtained by the five methods 
for various choices of m and n. It is clear that the methods 
are in general agreement, especially when n is large. 
Only exception is the arcsine method, that consistently 
provides wider intervals. In Table 2, we study the five 
approaches in more detail. For various choices for n, it lists 
the average overlap between approaches for all possible 
values of m (i.e. m = 0, 1, …, n). The arcsine method clearly 
has different behavior than the four others. For those 
other methods, even with n as low as 10, the overlap 
between any two approaches, whether one is Bayesian 
and the other frequentist, or whether both are from 
the same ‘school’, is at least 90%. For these methods, 
the agreement increases if n increases. Both Bayesian 
approaches are usually, but not always, somewhat more 
similar to each other than to the frequentist approaches, 
and the same can be said for the frequentist approaches 
F1 and F2. However, the differences are negligible. Thus, 
a frequentist might have the same level of agreement 
with a fellow frequentist as with a Bayesian. Similarly, 
it is entirely possible that two Bayesians agree less with 
each other than with a frequentist. In the words of the 
Bayesians Jaynes and Kempthorne (1976, p. 195): “The 
differences are so small that I could not magnify them 

Table 2: Overlap between methods. Overlap between approaches A and B is computed as the average of the percentage 
of the CI of A that is also covered by the CI of B, and the percentage of the CI of B also covered by A’s interval.

n F1–F2 F1–F3 F2–F3 F1–B1 F1–B2 F2–B1 F2–B2 F3–B1 F3–B2 B1–B2

10 .978 .924 .935 .913 .916 .930 .933 .890 .903 .970

25 .978 .893 .909 .950 .948 .950 .947 .873 .885 .971

50 .978 .879 .896 .969 .965 .962 .958 .867 .877 .975

100 .980 .869 .884 .981 .977 .971 .968 .862 .869 .980

500 .987 .852 .861 .994 .989 .985 .984 .850 .853 .990

Table 1: 95% confidence/credible intervals for the five 
methods for various settings of m and n.

Method n = 40, 
m = 10

n = 40,  
m = 20

n = 80,  
m = 40

n = 500,  
m = 250

F1 (.134, .410) (.345, .655) (.390, .610) (.456, .544)

F2 (.127, .412) (.338, .662) (.386, .614) (.455, .545)

F3 (.119, .429) (.305, .743) (.357, .667) (.440, .564)

B1 (.142, .403) (.351, .649) (.393, .607) (.456, .544)

B2 (.136, .398) (.350, .650) (.392, .608) (.456, .544)
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into the region where common sense is able to judge 
the issue”.

Interval estimation of the population mean
Methods
For continuous data, the central limit theorem states 
that for any reasonable n, the sampling distribution of 
the sample mean is approximately normal. A frequentist 
95% confidence interval for the population using the 
commonly used t-distribution is as follows

    1 / ,nx t s n−±  (2)

where x– is the sample mean, tn – 1 is the corresponding 
critical value from a t-distribution with n – 1 degrees 
of freedom, s is the sample standard deviation, and n is 
the sample size. We are going to contrast this standard 
frequentist confidence interval with a Bayesian credible 
interval, based on a default Cauchy prior on effect size, as 
this is currently implemented in e.g. the ‘point-and-click’ 
programmes JASP (JASP Team, 2018) and jamovi (jamovi 
project, 2018). The construction of such an interval 
proceeds as follows.

A prior is constructed for the population effect size 
delta, such that d ~ N(0, 2

ds ) and 2
ds  ~ Inverse χ2(1). 

Combining these two yields d ~ Cauchy (Liang, Paulo, 
Molina, Clyde, & Berger, 2008). The next step is the 
construction of a likelihood function: L(data|d). The 
posterior is proportional to the product of the prior and 
the likelihood. The 95% credible interval constitutes the 
middle 95% of this posterior.

With these restrictions in place, we conducted two 
sets of simulations. In the first set, we generate normally 
distributed data for a single group that varied along the 
following two dimensions:

1. Corresponding t-statistic: 0.5, 1, 1.5, and 2 (i.e., a 
sample of generated values was transformed such 
that the corresponding t-values exactly equaled 
these values, and that the sample standard devation 
equaled 1);1

2. Number of participants: 10, 12, 14, 16, 18, 20, 22, 
24, 26, 28, and 30.

Subsequently, we calculated 95% confidence and credible 
intervals for the resulting data.

In the second set of simulations, the data is artificially 
constructed such that the data vary on how skewed the 
underlying population distribution is. This was done by 
simulating data using the rsn function in R (from package 
sn, see Azzalini, 2017). Skew was manipulated by varying 
the ‘alpha’ parameter from 0 to 10 in steps of 1 (see 
Azzalini, 2014 for details). The number of participants 
was fixed to 20 for this set of simulations. Subsequent 
to sampling from the skewed normal distribution, the 
data was standardized and t/√20 was added to each data 
point to ensure all simulations varied only along the 
value of the t-statistics and the alpha parameter. Finally, 
we calculated 95% confidence and credible intervals for 
the resulting data.

Results
Results for the first set of simulations, based on normally 
distributed data, are shown in Figure 1. The figure shows 
that frequentist confidence intervals and Bayesian credible 
intervals correspond closely. For lower sample sizes, 
the confidence intervals appear to be marginally wider 
than the credible intervals, but this difference quickly 
disappears for more realistic (but still small) sample sizes.2

Results for the second set of simulations, based on 
right-skewed data, are shown in Figure 2. The results of 
this second set of simulations mirror those of the first set 
of simulations in that there is no qualitative difference 
between the confidence and credible intervals. This 
is perhaps not so surprising: although the data itself 
deviates from normality, the central limit theorem implies 
that the sampling distribution of the sample mean is 
still approximately normal. As such, there is no reason 
to expect substantial differences between both sets of 
simulations.3

Discussion
In the present paper, we have demonstrated by means of 
various examples that confidence intervals and credible 
intervals, in various practical situations, are very similar 
and will lead to the same conclusions for many practical 
purposes when relatively uninformative priors are used. 
The examples used here are based on small samples 
but are otherwise well behaved and could easily occur 
in practice. When sample size increases, the numerical 
difference between both types of interval will (usually) 
decrease.

So in what situations do the approaches yield more 
substantial differences? There are two main examples: 
(1) restriction of range of the data; (2) Bayesian methods 
based on a considerably more informative prior. As an 
example of the first point, consider 15 scores on a Likert 
scale ranging from 1 to 5. Suppose that ten scores are 1, 
four scores are 2, and one score is 5. Construction of a 
classical 95% confidence interval results in the interval 
(0.95, 2.12), an interval that includes values below the 
minimum possible value of 1. The Bayesian 95% credible 
interval is bounded by definition to not include values 
beyond the range of the parameter space. For a uniform 
prior on this interval, combined with the assumption 
that the sample standard deviation equals the population 
standard deviation, the resulting 95% credible interval is 
(1.08, 2.07) (see Figure 3).

The second point highlights the scope of our present 
findings: we have shown numerical similarities between 
frequentist and Bayesian methods for (relatively) 
uninformative priors. Depending on the research context, 
vastly different intervals can be obtained if one chooses a 
specific informative prior. Our paper meant to highlight 
similarities when relatively standard, off-the-shelve, 
methods are used for constructing intervals under both 
regimes, using ‘objective’ or fairly uninformative priors, in 
the simple common contexts of estimation of proportions 
and means.

Why then, in cases with little or no prior information, 
bother with Bayesian approaches, and not stick to the 
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more traditional frequentist confidence interval? A 
good reason is that a Bayesian analysis is more in line 
with the way researchers actually interpret their results 
(whether frequentist or not). That is, researchers tend to 
interpret their results in explicit or implicit terminology 
indicating how certain they are about what the effect 
size truly (i.e. in the population) is. As many papers and 
text books emphasize, frequentist approaches cannot 
warrant such statements, but Bayesian approaches can: 
One can claim that there is a 95% chance that the true 
effect size is in the credible interval. Even stronger, one 
can accompany the credible interval with a full picture 
of the distribution from the true effect size by means of 
giving the full posterior distribution, see Figure 3 for an 
example. Similar frequentist approaches to distributional 
inference exist (Albers, 2003; Kroese & Schaafsma, 2004), 
but are neither straightforward nor often used in practice. 
A frequentist analogue to the rich information provided 
by the posterior distribution is the bootstrap (Efron & 
Tibshirani, 1994).

The frequentist approach works from the premise that 
only the data are prone to random fluctuations, while the 
true effect is fixed, and hence it makes no sense to specify 
probabilities for the (fixed) population effect size but 
only about the probability as to whether the confidence 
intervals estimated by means of the data will cover the 
true effect size. This is a subtle difference with the Bayesian 
credible interval interpretation, but as the way people 
like to interpret results is more in line with the latter, 
the Bayesian approach is better in serving researchers at 
their wishes. This comes with a price, however. The price 
is that the statements are always conditional upon the 
prior that one has specified. Fortunately, however, the 
exact location of credible intervals does not appear to 
vary strongly with variations in the prior. Indeed, in the 
case where we assume that the population variance is 
known, the confidence interval for means can be obtained 
by a particular choice of the prior, namely the uniform 
prior. This is implausible in practice, but can be seen as 
a limiting case of a flat prior. And as we have seen now, 

Figure 1: Comparison of 95% confidence intervals (black) to 95% credible intervals, based on the default Cauchy prior 
(red) for Normally distributed data. Results show intervals are nearly identical.
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it does not lead to very different intervals than does the 
more realistic Cauchy prior.

For us the main message of our paper is as follows. 
Frequentist confidence intervals can be interpreted as a 
reasonable approximation to a Bayesian credible interval 
(with uninformative prior). This is reassuring for those 
who struggle with the formally correct interpretation 
of frequentist intervals. Additional insight can be 
obtained when these intervals are complemented (or 
replaced) by a full posterior distribution for the effect 
size measure under study. The posterior distribution 
will, conditionally upon a chosen prior, give the full 
picture of the uncertainty around its possible value. 
It can provide information on skewness, bimodality, 
and other properties – or the lack thereof, such as in 
Figure 3 – that a simple interval, with only a lower and 
upper bound, can not. Furthermore, it can estimate the 
probability that the parameter is larger or smaller than 
a fixed value, e.g. 0 or 0.5, or is within a certain interval. 
As such, posterior distributions can ideally work towards 
the enhancement of science.

Figure 2: Comparison of 95% confidence intervals (black) to 95% credible intervals, based on the default Cauchy prior 
(red) for right-skewed data. Results show intervals are nearly identical.

Figure 3: Posterior density, credible interval (red) and 
 confidence interval (blue) for the example with 15 
measurements on a Likert-scale.
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Data Accessibility Statement
All computations have been performed using R (R Core 
Team, 2018). All software code is available from https://
osf.io/dgfht/.

The preprint of this paper has also been published on 
OSF.

Notes
 1 With this specification for each data set s = 1, and 

the sample mean equals t/√n, which implies that the 
confidence interval in (2) is exactly specified as t/√n ± 
tn – 1/√n.

 2 We replicated this simulation study 25 times, and 
only found negligible differences in lower and upper 
bounds, see supplementary materials.

 3 We also replicated this simulation study 25 times and 
again only found negligible differences in the lower 
and upper bounds, see supplementary materials.
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