Continued from page 112

61 DISTINCT, STABLE, LOCALLY MAXIMUM 65-GONS EXIST, WITH FROM 5 TO 65 VERTICES ON Y = 16 - X.

Fig. 3

Continued from page 112

116 The Computer Journal
is usual form of Newton's method for finding of terms to exhibit the correction to be made at any stage. The however, quite well known, being Newton's method with rearrange-
attributes to his colleague, Mr. J. Grabau. The method given is,
Journal,
6 December 1971

\[x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right) \]

which can be rewritten as

\[x_{i+1} = x_i + \frac{a - x_i^2}{2x_i} \]

to show the correction. Mr. Honey's (or Mr. Grabau's) technique is therefore seen to be equivalent to one more step of the Newton process after the single-length result has been obtained.

However, it is necessary to take care when this method is being used in fixed-point arithmetic, as overflow could result if the 'wrong' single-length square root is taken. It is not enough to take the un-rounded (rounded down) value, because this leads to a value x satisfying

\[0 < a - x^2 < 2x, \]

and this can obviously give overflow. No such difficulty can arise if we take the rounded value, because this satisfies

\[-x < a - x^2 < x, \]

with a correction of at least 1 unit, although it may be of either sign. In Mr. Honey's example, therefore, he should have used 14 as his initial guess at \(\sqrt{192} \), which would have led to 13.86 as the better approximation, instead of 13.88. Since (13.86)² = 192.0996 this gives an error which is about 1/7 of that quoted. Indeed, it is not difficult to show that the maximum relative error using the rounded single-length approximation will be about 1/7 of the error that could arise from using the unrounded version. Choosing the rounded approximation is thus noticeably more accurate for the same amount of work.

Yours faithfully,

P. A. SAMET

Computer Centre
University College London
19 Gordon Street
London WC1
14 December 1971

Mr. Honey replies:

I am obliged to Professor P. A. Samet for his letter commenting on 'Grabau's Method' for obtaining a double precision result using single precision techniques.

I think that I may have misled the readers by the lack of emphasis on the single precision. Professor Samet is quite correct in his observation that Newton's method is involved, although I had not appreciated this fact at the time. My main concern was that single precision techniques are used throughout the process and is something often overlooked by software designers with non-mathematical background.

I am also obliged for Professor Samet's further comment re 'overflow' (again sometimes overlooked), and his development of my worked example in decimal in which a rounded value is taken in 'overflow' (again sometimes overlooked), and his development of my worked example in decimal in which a rounded value is taken in preference to an unrounded value—a technique I shall remember in future.

I am sure that several readers will have gained benefit from our minor correspondence—which is its basic purpose. Thank you, Professor Samet, once again.

Yours faithfully,

K. A. BRONS

1928 Cardinal Lake Drive
Cherry Hill
New Jersey 08034
USA
6 December 1971

To the Editor
The Computer Journal
Sir

Calculation of a double-length square root from double-length number using single precision techniques

I write to comment on the letter by D. W. Honey (this Journal, Vol. 14, Nov. 1971, p. 443) where he describes a method which he attributes to his colleague, Mr. J. Grabau. The method given is, however, quite well known, being Newton's method with rearrangement of terms to exhibit the correction to be made at any stage. The usual form of Newton's method for finding \(\sqrt{a} \) is

\[x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right) \]

This can be rewritten as

\[x_{i+1} = x_i + \frac{a - x_i^2}{2x_i} \]

to show the correction. Mr. Honey's (or Mr. Grabau's) technique is therefore seen to be equivalent to one more step of the Newton process after the single-length result has been obtained.

However, it is necessary to take care when this method is being used in fixed-point arithmetic, as overflow could result if the 'wrong' single-length square root is taken. It is not enough to take the un-rounded (rounded down) value, because this leads to a value x satisfying

\[0 < a - x^2 < 2x, \]

and this can obviously give overflow. No such difficulty can arise if we take the rounded value, because this satisfies

\[-x < a - x^2 < x, \]

with a correction of at least 1 unit, although it may be of either sign. In Mr. Honey's example, therefore, he should have used 14 as his initial guess at \(\sqrt{192} \), which would have led to 13.86 as the better approximation, instead of 13.88. Since (13.86)² = 192.0996 this gives an error which is about 1/7 of that quoted. Indeed, it is not difficult to show that the maximum relative error using the rounded single-length approximation will be about 1/7 of the error that could arise from using the unrounded version. Choosing the rounded approximation is thus noticeably more accurate for the same amount of work.

Yours faithfully,

P. A. SAMET