Effects of progesterone on sperm function: mechanisms of action

Aldo E. Calogero1,3, Nunziatina Burrello1, Nunziata Barone1, Irina Palermo2, Umberto Grasso1 and Rosario D’Agata1

1Division of Endocrinology and 2Department of Andrological Sciences: New Methodologies in Human Reproductive Medicine, Department of Internal Medicine, University of Catania Medical School, Catania, Italy

3To whom correspondence should be addressed

Progesterone stimulates sperm functions, e.g. hyperactivation, acrosome reaction, binding to oocyte zona pellucida and penetration rate into the hamster oocyte. The physiological relevance of these effects has been shown using female genital tract fluids which modulate sperm function according to their progesterone content. Progesterone interacts with specific sperm binding sites that, unlike the classic nuclear receptors, are located on the plasma membrane of the spermatozoon. Binding studies have revealed the presence of two classes of progesterone receptors in the human spermatozoon, one class has an elevated affinity constant (nanomolar) and is specific for progesterone, whereas the other class has an affinity constant in the micromolar range and binds equally well other hydroxylated progesterone derivatives. Following exposure to progesterone, the main event is a rapid (within seconds) increase of the intracellular free calcium concentration, followed by a sustained rise lasting for several minutes (plateau phase). Both these calcium transients are dependent upon entry of extracellular calcium. The nature of the calcium channel that mediates the effects of progesterone is, currently, unknown. It has been postulated that it may be: (i) part of the progesterone receptor; (ii) voltage-dependent; or (iii) operated by second messengers following activation of the progesterone receptor. Progesterone also modulates sperm function by stimulating a trypsin-like proteolytic activity, the biosynthesis of polyamine (putrescine and spermidine), phospholipase A2 activity and protein tyrosine kinase activity in the sperm cell. Recent studies have shown that chloride ion efflux is vital for progesterone to promote the acrosome reaction. This effect is achieved by interaction with a sperm membrane receptor which resembles the neuronal GABA_A receptor. Accordingly, GABA_A receptors have been found in the spermatozoon plasma membrane and GABA stimulates hyperactivation and promotes the acrosome reaction.

Key words: GABA_A receptor/intracellular calcium/progesterone/sperm function
Progesterone action on spermatozoa

Introduction
Mammalian spermatozoa must spend some time in the female genital tract or under certain conditions \textit{in vitro} before being able to fertilize the oocyte. During this time, spermatozoa undergo a not completely understood cellular process named capacitation which culminates with the acrosome reaction, a modified exocytotic event involving fusion followed by vesiculation of sperm head membranes (Yanagimachi, 1994).

It is widely accepted that a glycoprotein of the zona pellucida (ZP3) is the \textit{in vivo} initiator of the acrosome reaction of a fertilizing spermatozoon (Kopf and Gerton, 1991). However, human spermatozoa can also undergo an acrosome reaction when they come into contact with the cumulus oophorus, a clump of ovarian follicular cells surrounding the ovulated oocyte (reviewed in Meizel \textit{et al}., 1990).

Progesterone, present around or secreted by cumulus oophorus cells, is capable of initiating the acrosome reaction \textit{in vitro} in spermatozoa of several mammals, including humans. Hence, it has been postulated that this steroid, acting by itself and/or in synergy with the zona pellucida, is another physiological initiator of the acrosome reaction \textit{in vivo} (Meizel \textit{et al}., 1990). Indeed, a synergic action between solubilized zona pellucida and progesterone on the acrosome reaction has been found in mouse spermatozoa \textit{in vitro} (Roldan \textit{et al}., 1994). However, to act as a ‘primer’, progesterone must be added to capacitated spermatozoa a few minutes earlier than the addition of the zona pellucida extracts. Direct evidence for the existence of this type of mechanism is lacking in humans and there are conflicting reports on whether acrosome-reacted human spermatozoa retain unmodified their capacity to bind the zona pellucida (Morales \textit{et al}., 1989; Liu and Baker, 1990). Evidence supporting a physiological role for progesterone in the human sperm acrosome reaction comes from reports suggesting a relationship between male infertility and the inability of spermatozoa to respond to progesterone \textit{in vitro} (Tesarik and Mendoza, 1992; Falsetti \textit{et al}., 1993; Oehninger \textit{et al}., 1994).

Progesterone and sperm function

Progesterone induces sperm hyperactivation (Uhler \textit{et al}., 1992; Sueldo \textit{et al}., 1993; Calogero \textit{et al}., 1996), stimulates the acrosome reaction (Osman \textit{et al}., 1989; Foresta \textit{et al}., 1992; Parinaud \textit{et al}., 1992; Bronson \textit{et al}., 1999), increases the binding of spermatozoa to the oocyte zona pellucida (Sueldo \textit{et al}., 1993), and increases the sperm penetration rate into hamster oocytes (Margalioth \textit{et al}., 1988; Sueldo \textit{et al}., 1993) (Table I).

The physiological relevance of these effects have been proven by studies involving incubation of spermatozoa with female genital tract fluids which modulate sperm function in a manner related to their steroid content. For example, the follicular fluid exerts a stimulating effect on human sperm motility (Calvo
Table I. Effects of progesterone on sperm function

<table>
<thead>
<tr>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of sperm hyperactivation</td>
</tr>
<tr>
<td>Induction of the acrosome reaction</td>
</tr>
<tr>
<td>Enhancement of the binding of spermatozoa to the oocyte zona pellucida</td>
</tr>
<tr>
<td>Increment of the sperm penetration rate into the hamster oocyte</td>
</tr>
</tbody>
</table>

et al., 1989; Falcone et al., 1991; Revelli et al., 1992) and acrosome reaction (Tesarik, 1985; Suarez et al., 1986; Calvo et al., 1989; Stock et al., 1989; Siegel et al., 1990; Revelli et al., 1992) and these effects disappear when follicular fluid samples are stripped of steroids.

High performance liquid chromatography of human follicular fluid revealed two peaks with acrosome reaction-stimulating activity and these peaks were identified as progesterone and 17α-hydroxy-progesterone (Osman et al., 1989). Another study (Morales et al., 1992) further supported the hypothesis that progesterone is the compound which mediates the biological activity of the follicular fluid on sperm function. These authors observed a significant correlation between progesterone concentration of individual follicular fluid samples and their competence to stimulate the acrosome reaction. In contrast, no correlation was observed between the rate of acrosome reaction and the follicular fluid content of other steroids, such as 17β-oestradiol, testosterone, or 17α-hydroxy-progesterone. Furthermore, the biological activity of the follicular fluid could be removed by treatment with activated charcoal, which extracts steroids, and replaced by the addition of exogenous progesterone, but not of 17β-oestradiol.

We found that progesterone induces the acrosome reaction in a concentration-dependent manner with a half-maximal stimulatory concentration of 32.4 ± 1.97 μg/ml (Calogero et al., 1999). Even at concentrations ~50-fold higher than those found in the follicular fluid, progesterone retains its ability to promote the acrosome reaction without affecting sperm viability (Parinaud et al., 1992). Although its biological effect is lower than that of the calcium ionophore A23187, a non-physiological acrosome reaction inducer, its lower cytotoxic effect resulted in a similar percentage of live, acrosome-reacted spermatozoa. In addition, progesterone did not significantly affect total sperm motility, whereas A23187 had a detrimental effect.

Progesterone has been found able to increase significantly the number of spermatozoa moving with hyperactivated motility even at very low concentrations (~3 ng/ml). This effect was observed on both capacitated or capacitating cells and appeared after 10 min of incubation. Higher concentrations did not result in a further increase of the percentage of hyperactivated cells (Uhler et al., 1992). We examined the effects of progesterone on sperm kinematic parameters evaluated by computer-assisted semen analysis (CASA) (Calogero et al., 1996). Progesterone increased beat cross frequency and curvilinear velocity, and decreased linearity of progression and straightness of motile spermatozoa. No significant effect was seen on the other parameters. This resulted in an almost three-fold increase of the percentage of spermatozoa moving with hyperactivated motility (Table II).
Progesterone action on spermatozoa

Table II. Effects of progesterone on sperm kinematic parameters and hyperactivation (modified from Calogero et al., 1996)

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 12)</th>
<th>Progesterone (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beat cross frequency (Hz)</td>
<td>4.93 ± 0.15</td>
<td>5.27 ± 0.14**</td>
</tr>
<tr>
<td>Curvilinear velocity (µm/s)</td>
<td>44.7 ± 0.57</td>
<td>48.5 ± 1.39*</td>
</tr>
<tr>
<td>Linearity of progression (%)</td>
<td>46.8 ± 2.0</td>
<td>41.0 ± 2.1**</td>
</tr>
<tr>
<td>Straight line velocity (µm/s)</td>
<td>21.3 ± 0.93</td>
<td>20.3 ± 1.32</td>
</tr>
<tr>
<td>Straightness (%)</td>
<td>77.4 ± 2.0</td>
<td>72.5 ± 2.2**</td>
</tr>
<tr>
<td>Lateral head displacement (µm)</td>
<td>3.72 ± 0.23</td>
<td>3.71 ± 0.13</td>
</tr>
<tr>
<td>Average path velocity (µm/s)</td>
<td>27.7 ± 0.96</td>
<td>27.7 ± 1.18</td>
</tr>
<tr>
<td>Hyperactivationa (%)</td>
<td>1.45 ± 0.32</td>
<td>3.82 ± 0.84**</td>
</tr>
</tbody>
</table>

*P < 0.05; **P < 0.005 compared with control (Student’s paired t-test).

aSpermatozoa moving with a curvilinear velocity ≥ 70 µm/s, linearity of progression ≤ 65%, and with lateral head displacement ≥ 5 µm.

Sperm progesterone receptor

Like other steroids, progesterone acts to induce transcriptional events mediated by an intracellular receptor belonging to the superfamily of nuclear transactivators. However, in the case of the spermatozoon, progesterone acts on an almost completely transcriptionally inactive cell, with mechanisms that are not responsive to antagonists of the classic progesterone receptor (Blackmore et al., 1991). Therefore, the mechanisms by which progesterone elicits a biological response from human spermatozoa involve interactions with a cell surface receptor and this is further substantiated by the rapid onset of its biological effects (Thomas and Meizel, 1989; Blackmore et al., 1990, 1991). A demonstration of the presence of a surface receptor comes from studies showing that progesterone covalently conjugated to serum albumin, a molecule which does not allow the steroid to cross the sperm membrane, is able to increase the intracellular concentrations of free calcium and to induce the acrosome reaction (Blackmore et al., 1991; Meizel and Turner, 1991). More recently, the presence of masked progesterone receptors has been shown on human sperm membranes treated with surfactants (Ambhaikar and Puri, 1998). These binding sites seem to have a structural homology with the nuclear progesterone receptor, but differ in terms of ligand specificity and location.

Since one of the mechanisms by which cell surface receptors transduce ligand-generated signals across the plasma membrane is receptor aggregation, other authors (Tesarik et al., 1992b) evaluated whether this mechanism also occurs in spermatozoa. The addition of non-stimulatory concentrations of progesterone followed by antibody anti-progesterone, which causes receptor aggregation, results in an increase of the intracellular free calcium concentrations and an induction of the acrosome reaction (Blackmore et al., 1991; Meizel and Turner, 1991). More recently, the presence of masked progesterone receptors has been shown on human sperm membranes treated with surfactants (Ambhaikar and Puri, 1998). These binding sites seem to have a structural homology with the nuclear progesterone receptor, but differ in terms of ligand specificity and location.
A. E. Calogero et al.

a cascade of biochemical events culminating in the activation of the intracellular effectors of the hormone response.

In this regard, a progesterone-binding protein is an essential component of the acrosome reaction-inducing capacity of the follicular fluid. In fact, treatment of human follicular fluid with proteases results in a loss of biological activity that cannot be restored by the addition of progesterone. Preliminary biochemical characterization of this substance revealed a concentration of activity in a peak spanning the molecular mass of 37–53 kDa (Fehl et al., 1995). Since the acrosome-inducing competence of the human follicular fluid is suppressed by the addition of antibodies against corticosteroid-binding globulin (CBG) and the addition of CBG to progesterone significantly increases its ability to promote the acrosome reaction (Miska et al., 1994), the progesterone-binding protein seems to be similar to the 50 kDa CBG. A lack of CBG may be one of the reasons why some studies have failed to find any effect by progesterone on the acrosome reaction (Carver-Ward et al., 1992).

A conjugate of fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and progesterone has been used to localize progesterone receptors in the sperm plasma membrane. The results of these studies showed that only a relatively small percentage of spermatozoa (~10–30%) binds this hormone and that the binding has a marked topographical selectivity, being restricted to the whole or the equatorial acrosomal region (Blackmore et al., 1991; Tesarik et al., 1992a). Using an antibody directed against the C-terminal portion of the genomic progesterone receptor and able to inhibit the steroid-promoted acrosome reaction activity, a 52 kDa antigen has been found in the equatorial segment of ~50% of sperm heads (Sabeur et al., 1996). These findings suggested that the expression of the progesterone receptor on human spermatozoa is the major factor determining the biological responsiveness of individual sperm samples to progesterone stimulation. Such results led some authors to propose that the low number of spermatozoa that bind FITC-labelled BSA–progesterone may be due to the possibility that only capacitated spermatozoa exhibit the receptor (Mendoza and Tesarik, 1993).

The paucity of cells exhibiting the progesterone receptor is, however, in contrast with recent data employing image analysis techniques to monitor the size of the sperm population that responds to progesterone, which indicate that >90% of all spermatozoa do so (Plant et al., 1995). This evidence suggests that the binding of FITC-labelled BSA–progesterone to human spermatozoa does not reflect the true size of the progesterone-responsive cell population.

Computer analysis of binding competition curves with different steroids revealed the presence of two distinct binding sites for progesterone in human spermatozoa. The high affinity site (K_d in the nanomolar range) appears to be specific for progesterone, whereas the low affinity one (K_d in the micromolar range) binds with equal affinity 11β-hydroxyprogesterone and 17α-hydroxyprogesterone. A significant correlation exists among the affinity constants of these binding sites and the potency of these steroids to increase the intracellular concentration of free calcium. In particular, dose–response curves for progesterone
Table III. Mechanisms of progesterone action on sperm function

<table>
<thead>
<tr>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase of the intracellular free calcium concentration</td>
</tr>
<tr>
<td>Depolarization of the plasma membrane (due to sodium influx)</td>
</tr>
<tr>
<td>Stimulation of a trypsin-like proteolytic activity</td>
</tr>
<tr>
<td>Activation of polyamine biosynthesis pathway</td>
</tr>
<tr>
<td>Activation of protein tyrosine kinase</td>
</tr>
<tr>
<td>Stimulation of protein kinase C</td>
</tr>
<tr>
<td>Increase of the intracellular concentration of cAMP</td>
</tr>
<tr>
<td>Activation and redistribution of extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>Activation of phospholipase A_2 and increased biosynthesis of platelet-activating factor</td>
</tr>
<tr>
<td>Maintenance of a basic intracellular pH</td>
</tr>
</tbody>
</table>

were biphasic, with an EC_{50} in the nm range and another in the micromolar range. Conversely, curves for the other two steroids were monophasic, with an EC_{50} in the μm range (Luconi et al., 1998b).

Progesterone mechanisms of action

A number of mechanisms of action may occur when spermatozoa are exposed to progesterone (Table III). Among them, the increase of the intracellular concentration of free calcium plays a critical role and the activation of other pathways seems to increase the availability of this ion.

Calcium ion transmembrane flux

An increase of the intracellular free calcium concentration is observed when progesterone activates human spermatozoa (Thomas and Meizel, 1989; Blackmore et al., 1990; Baldi et al., 1991; Foresta et al., 1993; Aitken et al., 1996). During incubation with progesterone, there is an immediate increase of free calcium which takes place within seconds after the addition of the steroid, followed by a sustained increase (plateau phase) which may last for minutes. A similar increment is also observed in non-capacitated human spermatozoa, although they do not acrosome react (Thomas and Meizel, 1989; Meizel et al., 1990; Blackmore et al., 1990), suggesting that capacitation involves more than just an increase of intracellular free calcium concentration. Using video-image analysis, it has been shown that progesterone treatment of capacitated spermatozoa resulted in a wave-like increase in sperm head cytosolic free calcium that appears to increase fastest in a region near the equatorial segment and then spreads throughout the rest of the head (Meizel et al., 1997). Single cell analysis showed the presence of two increases of intracellular free calcium (Tesarik et al., 1996).

The transient of the intracellular free calcium after progesterone exposure is dependent upon the presence of extracellular free calcium (Thomas and Meizel, 1989; Blackmore et al., 1990). Even in the presence of compounds able to mobilize the intracellular free calcium stores (inhibitors of the endoplasmic...
reticulum calcium-ATPase pump), the acrosome reaction requires an influx of extracellular free calcium (Meizel and Turner, 1993a). In many cells, the endoplasmic reticulum is the site of calcium stores, but the endoplasmic reticulum in the cytoplasm of mature spermatozoa is almost completely absent. Hence, hypothetical calcium storage sites in the spermatozoon are the nucleus and the outer acrosomal membrane (Blackmore, 1993; Meizel and Turner, 1993a). Interestingly, receptors for inositol trisphosphate, a physiological releaser of intracellular calcium stores, have been detected in the acrosomal region of rat spermatozoa (Walensky and Snyder, 1995).

The nature of the calcium channel that mediates the effects of progesterone on sperm function is not known and there are conflicting reports concerning the effects of various calcium channel blockers (for review, see Shi and Roldan, 1995). The calcium channel may be: (i) part of the progesterone receptor; (ii) voltage-dependent and hence opened by depolarization of the plasma membrane; or (iii) operated by second messengers following activation of the progesterone receptor. Inhibitor studies indicate that neither voltage-sensitive nor second messenger-operated channels are involved in the generation of the primary calcium transient in response to progesterone (Aitken et al., 1996).

Sodium ion transmembrane flux

In an attempt to clarify the mechanism through which progesterone raises intracellular free calcium, one study (Foresta et al., 1993) found that the intracellular free calcium content in response to progesterone was potentiated in the absence of sodium ions. The acrosome reaction and plasma membrane depolarization (due to sodium influx) were not affected by sodium ions, whereas the absence of calcium caused a larger depolarization following progesterone exposure. These findings led the authors (Foresta et al., 1993) to postulate that sodium and calcium ions penetrate into the cell through the same channel. In a subsequent study, however, they gated experimental information to suggest the presence of two distinct channels activated by progesterone: one for calcium and the other for sodium (Foresta et al., 1995). A study by another laboratory partially contradicted these findings by showing that progesterone loses its acrosome reaction-inducing effect in the absence of sodium ions (Garcia et al., 1996).

Proteolytic activity

Trypsin-like activity in spermatozoa seems to play a role in the progesterone-mediated increase of intracellular free calcium concentration. Pre-incubation of capacitated human spermatozoa with inhibitors of trypsin-like enzymes suppresses almost completely the increase of intracellular free calcium and the acrosome reaction induced by exposure to progesterone. Transmission electron microscopic examination of spermatozoa after progesterone treatment confirmed that the inhibitors blocked the calcium-dependent membrane fusion events of the acrosome reaction (Pillai and Meizel, 1991). Since such inhibitors do not modulate the
binding of progesterone to its receptor (Tesarik and Mendoza, 1993), these results suggest that some sperm trypsin-like activity is directly or indirectly involved in increasing sperm intracellular free calcium concentrations during stimulation with progesterone.

Polyamines

The polyamine putrescine and its derivative spermidine and spermine are present in mammalian spermatozoa (Breitbart et al., 1997). In an attempt to further clarify the mechanism of progesterone action of sperm function, Meizel and Turner (1993b) studied the effects of DFMO, an inhibitor of putrescine synthesis, and MDL-73811, an inhibitor of spermidine and spermine synthesis, on progesterone-induced sperm function. DFMO inhibited the acrosome reaction induced by progesterone and preincubation with putrescine or with spermidine counteracted this inhibition. MDL-73811 also inhibited the progesterone-induced acrosome reaction and preincubation with spermidine, but not with putrescine or spermine, reversed this inhibition. Both DFMO and MDL-73811 partially inhibited the rapid calcium transient produced by progesterone which was partially reversed by putrescine and spermidine, respectively. Putrescine or spermidine alone did not have any effect on acrosome reaction or intracellular free calcium concentrations. Neither inhibitor was able to inhibit the acrosome reaction initiated by the calcium ionophore ionomycin. These data suggest that the sperm polyamine biosynthetic pathway, leading to a rise of spermidine, mediates the rapid increase of intracellular free calcium concentrations and the subsequent acrosome reaction induced by progesterone. Although polyamines can activate a number of mammalian cell enzymes and can enhance the ligand binding affinity of several brain receptors (Williams, 1994), the precise mechanisms involved in the sperm function are not known.

Protein tyrosine kinase

Progesterone stimulation triggers changes in the tyrosine phosphorylation status of spermatozoa (Tesarik et al., 1993). The target for this signal transduction pathway is not known, but it could relate to phosphoinositidase C-mediated hydrolysis of the polyphosphoinositides seen after stimulation with progesterone (Thomas and Meizel, 1989). It has been proposed that one of the progesterone binding sites on the human spermatozoon is itself a tyrosine kinase receptor, that can be activated by a progesterone-induced oligomerization process (Tesarik et al., 1993). Indeed, the progesterone-induced opening of the plasma membrane calcium channel and the activation of protein tyrosine kinase are two distinct reactions triggered by the steroid which can be experimentally dissected (Mendoza et al., 1995). These effects of progesterone, however, influence each other. A recent study, using a single cell analysis protocol, showed that inhibition of protein tyrosine kinase does not influence the initial progesterone-induced calcium transient, but inhibits the secondary free calcium increase, and the resulting
The initial protein tyrosine kinase-independent calcium response can be induced by progesterone in both non-capacitated and capacitated spermatozoa, whereas the ability to generate a secondary, protein tyrosine kinase-dependent response developed during in-vitro capacitation (Tesarik et al., 1996).

Protein kinase C

Indirect studies suggest that protein kinase C has a role in sperm motility and acrosome reaction. It may be involved in progesterone-stimulated acrosome reaction, although controversial results have been obtained concerning the effect of protein kinase C inhibition of progesterone-stimulated intracellular free calcium increase and tyrosine phosphorylation of proteins. Recently, it has been reported that progesterone stimulates protein kinase C and that its inhibition partially reverses the effects of progesterone on the acrosome reaction, whereas it was devoid of effect on progesterone-stimulated calcium transient. In addition, preincubation with protein kinase C inhibitors have a suppressive effect on tyrosine phosphorylation of sperm proteins induced by progesterone (Bonaccorsi et al., 1998). These results suggest that protein kinase C plays a role in progesterone-induced acrosome reaction and that progesterone-stimulated activation of protein kinase C is downstream to stimulation of calcium influx by the steroid.

cAMP

Progesterone action does not appear to involve activation of G proteins (Foresta et al., 1993), whereas it may involve generation of cAMP. Indeed, Parinaud and Milhet (1996) found that progesterone increases sperm cAMP content in a concentration-dependent fashion. Kinetic study revealed the presence of two peaks, a smaller one occurring after 30 min and a more robust peak detected after 120 min of incubation. These effects of progesterone on intracellular cAMP content were partially inhibited by the tyrosine kinase inhibitor genistein and correlated positively with the percentage of hyperactivated spermatozoa occurring at the same time.

Extracellular signal-regulated kinases

Extracellular signal-regulated kinases (ERKs) are cytoplasmic and nuclear serine/threonine kinases present in spermatozoa which seem to be involved in the regulation of the capacitation process (Luconi et al., 1998a). It has been shown that progesterone modulated the activity of ERKs. Indeed, short-term incubation of spermatozoa with progesterone induces phosphorylation and activation of these kinases, resulting in a redistribution of the proteins from the post-acrosomal region to the equatorial segment of the sperm head. Interestingly, the ERK cascade inhibitor PD-098099 suppresses progesterone-induced ERK-2 activation, prevents the redistribution of the enzyme to the equatorial region of the sperm
Progesterone action on spermatozoa

head, but does not have any effect on progesterone-induced acrosome reaction (Luconi et al., 1998c).

Platelet-activating factor

Stimulation of spermatozoa with progesterone also leads to activation of phospholipase A₂ and synthesis of alkyl-acetyl-glycerophosphocholine (platelet-activating factor) (Baldi et al., 1993), but mechanisms regulating these processes are also unknown.

Intracellular pH

The absence of extracellular bicarbonate partially suppresses the progesterone-induced acrosome reaction in human spermatozoa (Sauber and Meizel, 1995). Recently, a study was published (Aitken et al., 1998) which evaluated the mechanism(s) of this interaction. They found bicarbonate to exert a dose-dependent impact on the ability of progesterone to promote sperm–oocyte fusion. The loss of sperm function in bicarbonate-free medium was found associated with a failure to produce reactive oxygen species, an impaired capacity to exhibit redox-associated changes in tyrosine phosphorylation, and an apparent incapacity to generate normal calcium transients in response to progesterone. These defects were not related to a cAMP deficiency, but were associated with a significant fall in intracellular pH, emphasizing the importance of an alkaline intracellular milieu for the extragenomic action of progesterone.

Progesterone and the GABA_A receptor

A growing body of literature has shown that progesterone modulates sperm function by interacting with a membrane-binding site resembling the γ-aminobutyric acid (GABA_A) receptor. It has been shown that the progesterone-initiated acrosome reaction could be prevented by preincubation of capacitated spermatozoa with chloride channel blockers or incubation in medium devoid of chloride ions (Wistrom and Meizel, 1993). Our findings further substantiate this hypothesis. In fact, blockade of the GABA_A receptor with picrotoxin, a chloride channel blocker, or bicuculline did not allow progesterone to induce the acrosome reaction (Calogero et al., 1999). The efficacy of bicuculline in suppressing progesterone-initiated acrosome reaction is probably due to its ability to block the chloride channel (Aprison and Lipkowitz, 1989) where the steroid appears to have a binding site (Turner et al., 1989). Recently, the presence of chloride channels has been revealed in mouse spermatozoa by patch-clamp recording (Espinosa et al., 1998).

Neuronal GABA_A receptor

The GABA_A receptor is a plasma membrane multisubunit receptor complex constituting a chloride channel. The binding site for GABA on the GABA_A
receptor is identified by the binding of the antagonist bicuculline, whereas muscimol is the classic competitive agonist for this site. Activation of the GABA_A receptor results in the opening of the chloride channel, leading to an influx of chloride ions and cell hyperpolarization in the neuron. Both benzodiazepines and barbiturates modulate GABA_A receptors allosterically by interacting with specific binding sites present on this molecule (Bowery et al., 1984). More recently, progesterone and its metabolites have been shown to enhance the interaction of GABA with the GABA_A receptor in the central nervous system (Lan et al., 1991). Indeed, progesterone amplifies GABA-induced chloride currents in the spinal cord (Majewska et al., 1986).

Sperm GABA_A receptor

Progesterone and its metabolites with a hydroxyl group (OH) in position 3α (anaesthetically active) potentiate GABA activation of neuronal GABA_A receptors and some of them are able to activate this receptor by themselves, whereas progesterone metabolites with a hydroxyl group in position 3β (anaesthetically inactive) are devoid of this effect. Using a number of these metabolites, one study (Wistrom and Meizel, 1993) determined that anaesthetically-active metabolites initiated the acrosome reaction, whereas the 3β-OH isomers were without effect. The greater effectiveness of progesterone, a progestin which is not able to activate the neuronal GABA_A in the absence of GABA, suggested that the GABA_A receptor present in the human spermatozoan is not identical to that present in the neuron. The difference with the neuronal GABA_A receptor is further illustrated by the fact that activation of the sperm GABA_A-like receptor results in an efflux of chloride ions rather then an influx as reported in the neuronal tissue. The stimulation of a chloride efflux is not simply a matter of opening a channel because the chloride concentration in the extracellular space is significantly higher than the sperm cytoplasm. Chloride ions have therefore to be pumped out of the cell against a concentration gradient. In this context, it may be significant that induction of chloride efflux by progesterone is tyrosine phosphorylation-dependent (Meizel and Turner, 1996).

The presence of GABA receptors on human spermatozoa has been evaluated by using a monoclonal antibody to the bovine cerebral cortex GABA_A receptor α-subunit. Immunoreactivity was observed in live and fixed spermatozoa as a fluorescent band in the plasma membrane overlying or near the narrow equatorial segment region of the acrosome. Immunoblotting using this antibody detected two major bands; one with an apparent molecular weight of 50 kDa, as reported in other cell types, and a second of 75 kDa, which has not been reported from other cells (Wistrom and Meizel, 1993). Accordingly, Aanesen et al. (1995) found the presence of GABA binding sites on the surface of human spermatozoa, and they seem to be the GABA_A receptor (Erdö and Wekerle, 1990; Ritta et al., 1998).
Progesterone action on spermatozoa

Table IV. Effects of the selective GABA_A receptor antagonist bicuculline or the selective GABA_B receptor antagonist saclofen on the basal and GABA-stimulated rate of acrosome reaction of capacitated human spermatozoa

<table>
<thead>
<tr>
<th></th>
<th>GABA (µM)</th>
<th>Bicuculline (µM)</th>
<th>Saclofen (µM)</th>
<th>Acrosome-reacted spermatozoa (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1 (n = 21)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6 ± 0.3</td>
</tr>
<tr>
<td>Experiment 2 (n = 11)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>3.1 ± 0.5</td>
</tr>
<tr>
<td>Experiment 3 (n = 9)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>5.7 ± 0.6</td>
</tr>
<tr>
<td>Experiment 4 (n = 21)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10.6 ± 1.3*</td>
</tr>
<tr>
<td>Experiment 5 (n = 12)</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>4.7 ± 0.6**</td>
</tr>
<tr>
<td>Experiment 6 (n = 9)</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>7.2 ± 0.8**</td>
</tr>
</tbody>
</table>

n = number of replicates; GABA = γ-aminobutyric acid.
*P < 0.05 compared with experiment 1; **P < 0.05 compared with experiment 4.

Sperm GABA_A receptor and calcium influx

The acrosome reaction initiated by the calcium ionophore ionomycin is not affected by chloride ions (Wistrom and Meizel, 1993). Similarly, chloride channel blockers or exposure to GABA_A receptor antagonists do not have any effect on the increase of intracellular free calcium induced by progesterone (Baldi et al., 1991; Turner et al., 1994; Aitken et al., 1996). However, the chloride flux may be involved in the regulation of secondary calcium transient essential for the expression of the biological response (Tesarik et al., 1996; Meizel et al., 1997). The chloride efflux from the spermatozoon induces depolarization of the plasma membrane and not the hyperpolarization observed when chloride channels are opened in the post-synaptic membranes of neurons in response to the inhibitory neurotransmitter GABA. This chloride-induced depolarization may then open an additional set of channels that are voltage-regulated, leading to the secondary calcium transient and the induction of acrosome reaction (Tesarik et al., 1996). Evidence for the involvement of voltage sensitive channels in mediating the extragenomic actions of progesterone has come from studies on murine (Shi and Roldan, 1995) and human (Shi et al., 1997) spermatozoa in which the abilities of progesterone, GABA and muscimol to induce the acrosome reaction were blocked by EGTA and calcium channel antagonists.

GABA and sperm function

The presence of GABA receptors on spermatozoa and their biological competence is substantiated by a number of studies showing that GABA is, by itself, able to initiate the acrosome reaction in human (Wistrom and Meizel, 1993; Aanesen et al., 1995; Shi et al., 1997) and murine spermatozoa (Shi and Roldan, 1995). We have recently conducted a study in an attempt to establish which GABA receptor mediates its stimulatory effect on the acrosome reaction (Calogero et al., 1999). GABA seems to stimulate acrosome reaction of human spermatozoa through both GABA_A and GABA_B receptors (Table IV). However, the involvement of the GABA_A receptor is more pronounced since muscimol, a selective
agonist for this receptor, mimicked almost entirely the effects of GABA. Although no data are available on the presence of the GABA$_B$ receptor in human spermatozoa, the findings that baclofen (a selective agonist for this receptor), induced the acrosome reaction and that the stimulatory effect of GABA was not completely overridden by the chloride channel blocker picrotoxin, shed some light on a possible functional role of this receptor. This is more relevant if we consider that other biological actions of GABA on human sperm function, such as modulation of kinematic parameters and hyperactivation, are not mediated exclusively by the GABA$_A$, but also by the GABA$_B$ receptor (Calogero et al., 1996).

Since GABA receptors and the GABA uptake system are present in the human ovary, uterus, and Fallopian tubes and the concentration of GABA in the epithelial tissue of the Fallopian tube increases towards the ampulla (Erdo, 1989; László et al., 1992), these findings suggest that this neurotransmitter, alone or in conjunction with progesterone, may be regarded as another physiological modulator of the sperm function.

Conclusions

Progesterone modulates many aspects of the sperm function and it is the compound which mimics almost entirely the acrosome reaction-inducing properties of the follicular fluid. The effects of progesterone on sperm function are mediated by receptors located on the plasma membrane. Albeit their exact nature is not known, experimental evidence suggests that there may be at least three types of receptors: a plasma membrane calcium channel, a GABA$_A$-like receptor and a membrane-associated protein tyrosine kinase (Tesarik, 1996).

The main mechanism through which progesterone modulates the sperm function is the increase of the intracellular free calcium concentration. Indeed, following exposure to progesterone, there is a rapid (within seconds) increase of the concentration of this ion, followed a secondary transient which requires an influx of extracellular calcium. Many other mechanisms activated by progesterone contribute to its determination, e.g. stimulation of a trypsin-like activity, biosynthesis of polyamines (putrescine and spermidine) and platelet-activating factor (PAF), and protein tyrosine kinase (PTK) activity (Figure 1). However, not all the biological effects of progesterone are mediated by an increase of intracellular calcium. Experimental evidence suggests that chloride ion transmembrane flux is vital for progesterone to promote the acrosome reaction. This efflux is activated by interaction with the GABA$_A$-like receptor and seems to require PTK mediation since it happens against a chemical gradient. The ensuing membrane depolarization causes biological effects. Recent observations, however, suggest that these two pathways are not independent, but influence each other. Indeed, membrane depolarization, induced by sodium ion influx or by chloride ion efflux, seems to increase the concentration of intracellular free calcium (Figure 1).
Progesterone action on spermatozoa

Figure 1. Simplified scheme of the mechanisms through which progesterone modulates the sperm function. The increase of the intracellular free calcium concentration appears to be a central mechanism of action and is dependent upon an influx of calcium ion from the extracellular compartment. Bicarbonate is required for progesterone to increase the intracellular free calcium concentration, whereas sodium ions seem to restrain this increase. Also chloride ion efflux, triggered by progesterone interaction with a GABA A-like receptor, seems to play an important role for the secondary free calcium increase. GABA A = γ-aminobutyric acid; PLA 2 = phospholipase A 2; PAF = platelet-activating factor (alkyl-acetyl-glycerophosphocholine); PTK = protein tyrosine kinase; PKC = protein kinase C.

To this already complex network of mechanisms of action, it must be added that progesterone increases the intracellular content of cAMP and stimulates the activity of the protein kinase C (PKC) which seems to mediate progesterone biological effects downstream to calcium increase (Figure 1).

References

A.E. Calogero et al.

Progesterone action on spermatozoa

A.E. Calogero et al.

Progesterone action on spermatozoa

